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Abstract Concept detection is a core component of video database search, con-
cerned with the automatic recognition of visually diverse categories of objects (“air-
plane”), locations (“desert”), or activities (“interview”). The task poses a difficult
challenge as the amount of accurately labeled data available for supervised training
is limited and coverage of concept classes is poor. In order to overcome these prob-
lems, we describe the use of videos found on the web as training data for concept
detectors, using tagging and folksonomies as annotation sources. This permits us to
scale up training to very large data sets and concept vocabularies.
In order to take advantage of user-supplied tags on the web, we need to overcome
problems of label weakness; web tags are context-dependent, unreliable and coarse.
Our approach to addressing this problem is to automatically identify and filter non-
relevant material. We demonstrate on a large database of videos retrieved from the
web that this approach – called relevance filtering – leads to significant improve-
ments over supervised learning techniques for categorization. In addition, we show
how the approach can be combined with active learning to achieve additional per-
formance improvements at moderate annotation cost.
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1 Introduction

Recent technological developments like high-speed internet and large-scale storage
devices have made it possible for private users to generate, publish, and share large
amounts of data. This has led to a break-through of digital video, which is now
not only broadcasted by TV stations but is also produced, streamed and stored on
a private basis. Web video portals like YouTube, blinkx, or myspace1 have become
essential sources of information and entertainment to millions of users, and it is fair
to say that digital video is part of our everyday life, with massive amounts of content
being viewed and stored [34, 44].

While video content is fairly simple to produce, finding the desired information
becomes a difficult challenge as video databases grow larger and larger. The most
comfortable way for users to express their information needs remains a text-based
approach on the basis of keywords. This, however, requires an indexing that links
the video content in a database to semantic concepts (or tags) appearing in it, like
objects (“airplane”), scene types (“cityscape”), and activities taking place (“inter-
view”). The challenge of creating such an index has been referred to as the semantic
gap [36], the discrepancy between a video’s low-level content on the one hand and
the viewer’s high-level interpretation on the other.

So far, the only reliable bridge over the semantic gap remains human perception.
This means that – to build an accurate textual index for video search – human op-
erators are required to manually label video content with concepts appearing in it.
For many large-scale practical applications, however, this approach is simply too
time-consuming. As a scalable alternative to complement human labeling, concept
detection systems have been developed that infer the presence of tags automatically
from the content of a video [7, 6, 46, 49]. Though such detectors do not reach a
precision comparable to human annotators, they have been demonstrated to be ex-
traordinarily useful in a video search context [38].

While concept detection is considered an approach of high potential for video
search and has been realized in several research prototypes [7, 6, 19], it has not been
widely applied in practical large-scale settings yet. One reason for this is that the
supervised machine learning techniques underlying concept detection require video
content labeled with target concepts for training. Currently, this training information
is acquired manually, i.e. human operators label data with respect to concept pres-
ence. The quality of the resulting training material is high in a sense that the anno-
tated concepts are carefully selected with respect to feasibility and usefulness [27],
that clear and restrictive definitions of concepts are predefined, and that fine-grain
annotation is done on shot level.

On the downside, the effort associated with such a time-consuming acquisition
restricts concept detection in several ways: first, it limits the number of concepts
to be learned, such that the size of current detector vocabularies is far from opti-
mal [17]. Second, detectors have been reported to overfit to small training sets and
generalize poorly [51]. Third, keeping track of dynamic changes of users’ infor-

1 http://www.youtube.com, http://www.blinkx.com, http://vids.myspace.com
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Fig. 1 Sample frames from YouTube clips tagged with “basketball”. While some frames do show
basketball (top), other non-relevant content is not visually related to the concept (bottom).

mation needs is infeasible as new concepts of interest emerge (such as “President
Obama” or “Olympics 2008”).

Given this scalability problem, the question arises whether explicit manual anno-
tations – which are precise but difficult to acquire – can be substituted with weaker
label information that can be obtained more easily (or is even freely available). One
source of such information is web video, which is publicly available at a large scale
from portals such as YouTube and comes with tags indicating the presence of con-
cepts in a clip. If we could utilize this tag information as class labels in a concept
learning framework, systems could automatically harvest training material from the
web. This way, detectors could perform a more autonomous learning, scale up to
thousands of concepts, and keep track of trends in user interest.

Two key aspects are important: first, the described label information is signifi-
cantly easier to acquire at a large scale, as the annotations used have already been
made by a large community of YouTube users. Second, labels are weak, i.e. content
annotated with a target concept may show the concept but does not necessarily do
so. An illustration is given in Fig. 1, which shows representative keyframes from
web videos tagged with “basketball”. While the concept is present in some frames,
others are not visually related to it at all. We will refer to the first kind of frames as
relevant, while calling the latter non-relevant.

It should be noted that non-relevant content can be caused by different reasons:
for once, tags are coarse and indicate that a concept appears in a video, but not when
it appears. A second reason is that labels are inherently unreliable - for example, the
tag “Steven Spielberg” does not necessarily indicate that Steven Spielberg appears
in a clip but might just hint to a news report on the Academy Awards.

In the following, we will refer to training content where positive labels are only
coarse and unreliable indicators of concept presence as weakly labeled. Obviously,
training a concept detection system on such data is a difficult challenge: typically,
for each target concept a binary classification problem is cast of differentiating con-
cept presence from concept absence, and a statistical model is learned from a set of
labeled training samples (here, keyframes). When applying such supervised learning
to web video, non-relevant content causes false positives in the training set, and it is
to be expected (and will be demonstrated later) that concept detection performance
degrades with increasing influence of non-relevant content.
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Fig. 2 Our concept detection system learning from web video. Clips downloaded from online
platforms like YouTube are used for concept learning. Since such videos are only weakly labeled,
relevance filtering identifies and discards non-relevant content. The resulting statistical model is
applied to detect the learned concepts in previously unseen videos.

In this chapter, this setup of training concept detectors on weakly labeled web
video data is studied. We will show that the tag information associated with web
video is in fact unreliable, and that non-relevant material in the training set can de-
grade the performance of standard detectors severely (Sect. 3). To overcome this
problem, we present a framework for learning from weakly labeled web video data
called relevance filtering (Sect. 4). This probabilistic approach views the given la-
bels as weak indicators of true latent class labels, which are inferred during concept
detector training. This corresponds to a filtering of non-relevant material, which can
be applied as a wrapper around well-known supervised learning techniques. Two
such extensions are presented, one for a generative approach (kernel density esti-
mation) and one for a discriminative one (support vector machines [SVMs]). It is
shown in quantitative experiments (Sect. 5) that relevance filtering can successfully
identify non-relevant content and give significant improvements over standard su-
pervised learning.

As outlined so far, relevance filtering works without manual supervision and
identifies non-relevant material automatically based on its distribution in feature
space. Beyond this, we also demonstrate that the approach can be extended with
active learning. In this framework, the system requests labels for a few samples
from a user (Sect. 6). By selecting the most informative query samples, concept
models can be improved further at moderate annotation cost.

Overall, our contributions constitute an approach for concept learning from web
video. As illustrated in Fig. 2 for the concept “basketball”, concepts are learned by
acquiring a raw dataset from web portals like YouTube. Relevance filtering - which
can be optionally enriched with thoroughly selected manual annotations – is used
for a joint model learning and content filtering. The resulting concept detector can
then be applied to previously unseen videos.
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2 Related Work

In this section, related work in the context of learning from weakly labeled videos
is outlined. We will omit a general review of concept detection (for more informa-
tion on this topic, please refer to the literature [17, 27, 35, 39, 46, 49] or to a recent
survey [37]) and focus on the aspect of weak label information instead. This setup
is viewed from two different perspectives – the first tackles the machine learning
aspects of the problem and discusses semi-supervised learning (Sect. 2.1). The sec-
ond perspective is domain-specific and focuses on learning from noisy image and
video content. (Sect. 2.2 and Sect. 2.3).

2.1 Semi-supervised Learning

Semi-supervised learning refers to a class of machine learning techniques designed
for dealing with incomplete label information. In this setup, a (usually small) set of
training samples XL = {x1, ..,xl} with class labels y1, ..,yl is assumed to be given. A
second (usually large) set of samples XU = {xl+1, ..,XN} is available as well, but the
associated labels are unknown (or latent). Semi-supervised learning can be seen as
a borderline case between supervised learning (where all training data is labeled, i.e.
XU = ∅) and unsupervised learning (where no labels are given at all, i.e. XL = ∅).

Semi-supervised learning is attractive in application areas where lots of unlabeled
training samples can be obtained easily, but the acquisition of label information is
associated with considerable effort (as it is the case for concept detection). While
supervised methods in such setups learn only from a small set of labeled examples,
semi-supervised techniques can exploit further information in form of unlabeled
content (which can be viewed as evidence on the overall sample distribution p(x)).
To leverage this information, a variety of strategies has been proposed (for a survey
of the field, please refer to [9, 52]).

One simple semi-supervised learning strategy is to infer the labels of unlabeled
samples and treat the resulting labeled samples in a supervised framework. This
self-training is an iterative wrapper around a base classifier, in which samples are
iteratively classified and the training set is automatically expanded with a selection
of the newly labeled data (usually the ones for which the classifier is most confident).
As an extension, co-training [5] has been suggested, where multiple classifiers are
trained on different feature subsets of the data and “teach” each other.

Another technique called Expectation Maximization (EM) [11] casts semi-
supervised learning in a probabilistic setting. Model parameters are fitted by max-
imizing the data likelihood, whereas a marginalization over latent class labels is
done. This leads to a search in parameter space in which alternately label posteriors
are inferred, and based on these estimates the system parameters are updated.

An alternative strategy follows from the insight that decision boundaries are usu-
ally situated in low-density areas of p(x), and should correspondingly lie far away
from data points. If cast in a maximum-margin setting, this approach leads to trans-
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ductive SVMs [20], which estimate unseen labels together with a separating hyper-
plane. Finally, graph-based methods have been proposed, which view samples as
nodes in a graph and estimate node labels via label propagation or regularization [9,
Ch. 11].

2.2 Learning from Web Images

Web image content (as it can be acquired via text-based image search engines or
from portals like Flickr) is a data source similar to web video content in a sense that
label information is weak and large parts of the retrieved training data may be junk.
For Google Image Search, Fergus et al. [14] have reported a label precision between
18% and 77% for 7 object categories. Schroff et al. [31] have measured an average
precision of 39% over 18 categories.

To overcome this label weakness, a variety of approaches have been suggested [4,
31, 40, 50] targeted at a content-based refinement of raw web image sets. Usually,
a three-step procedure is applied: first, a raw set of images is acquired from the
web. Second, a subset of “good” candidate images for concept presence is selected,
which can be done using manual annotation [4] or an analysis of text and meta-data
surrounding the image [31, 50]. Finally, a statistical model of concept presence (a
support vector machine [31], a region-level annotation model [3], or a mining pro-
cedure based on a saliency measure [40]) is trained on the refined image set and
used to re-rank all web images. Similar to the work in this chapter, this approach is
targeted at a refinement of training sets. However, it does not cover the actual learn-
ing of concept models. In contrast to this, we tackle a joint training set refinement
and model learning, and our focus is on the performance of the resulting detectors.

Other related work follows an approach more similar to ours and combines train-
ing data refinement with model learning. Fergus et al. [14] learn visual models of
object categories from Google’s image search using a topic model. The key as-
sumption of the approach is that images showing the target object accumulate in a
single cluster (or topic), which is then used for object recognition. The OPTIMOL
system by Li et al. [24] follows an incremental approach instead: a training set is
agglomerated while learning an object model in parallel. The approach works in a
self-training fashion, starting from an initial highly accurate set of sample images.
Iteratively, a topic model is trained and the pool of training data is expanded using a
Bayesian decision. The approach has been demonstrated to outperform Fergus’ sys-
tem [14]. Yet, a problem remains in the initialization with good training samples,
which has been reported to be a crucial factor [26].

In contrast to the incremental OPTIMOL system [24], Wnuk and Soatto [48] fol-
low a filtering approach. A measure of strangeness is defined based on a nearest
neighbor analysis in feature space, and content with high strangeness values is fil-
tered out. We follow this general idea and extend it to a probabilistic setting called
relevance filtering, which can be integrated with a variety of supervised learning
techniques (Sect. 4).
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2.3 Learning from Weakly Labeled Videos

Only few previous contributions have been made with respect to learning from video
data with weak labels. Gargi and Yagnik [15] point out that label information in
videos may be coarse, which they refer to as the label resolution problem. They
rely on a feature selection using Adaboost to achieve robustness with respect to non-
relevant content. Gu et al. [16] cast concept detection as a multiple instance problem
and propose to adapt the kernel function in an SVM framework. Both methods,
however, do not model non-relevant content explicitly.

A contribution closer to the one presented here has been made by Wang et
al. [47], who study concept detection in a semi-supervised setup (where only a few
initial labeled samples are given). A kernel density model is extended such that the
contribution of each training sample is weighted by its class posterior, and an itera-
tive fitting algorithm is proposed to match unlabeled content to classes. Performance
improvements over supervised learning from a few initial samples are demonstrated.

In previous work, we have already addressed the problem of concept learning
from weakly labeled web videos [43] and proposed a model similar to the one by
Wang et al. In this chapter, we will extend this idea further and demonstrate that it
can be integrated with a variety of supervised learning techniques.

3 Concept Learning on Web Video

In a first experiment, we study web video as a data source for concept detector train-
ing. First, we present manual annotation results demonstrating that the tag informa-
tion coming with web videos is only an unreliable indicator of concept presence,
such that web video training sets contain significant amounts of non-relevant con-
tent (Sect. 3.1). Second, we study how standard concept detection techniques are
influenced by this non-relevant content (Sect. 3.2) and show that significant perfor-
mance loss is to be expected.

3.1 The Precision of Web Video Tags

In a first experiment, we study the precision of web video tags when used as class
labels in a concept learning framework. Therefore, keyframes are sampled from
YouTube videos and serve as positive training samples (if the video is tagged with
the target concept) or as negative ones (if it is not). Since tags are coarse and un-
reliable, we expect that only a certain fraction of positive training samples is truly
relevant. This relevance fraction is denoted with α in the following:

α :=
number of positive training samples showing the concept

number of positive training samples
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Table 1 A manual annotation of training material downloaded from YouTube indicates that the
label precision α of web video training sets is low (in most cases below 50%).

Concept Raw Query∗ Refined Query∗ Concept Raw Query∗ Refined Query∗

basketball 20.5 40.6 helicopter 14.6 38.1
beach 15.6 44.3 sailing 16.4 26.2
cats 47.6 50.1 soccer 25.3 43.7
desert 11.4 19.0 swimming 23.4 60.0
eiffeltower 21.4 39.7 tank 14.5 24.3

average 21.1 38.6
∗ values indicate fraction of relevant training content α (%)

α can be seen as the precision of label information. It is close to 100% if annotations
are accurate (as it is usually assumed in concept detector training). For web video,
however, we expect α to be significantly lower and also to vary between concepts:
while for some concepts high-quality training sets may be obtained, others may be
used as tags often but appear only infrequently.

To get a deeper insight into the quality of tags as training annotations, we con-
ducted an annotation experiment. Ten test concepts were chosen from the YouTube-
22concepts dataset2 with respect to a good coverage of concepts, including ob-
jects (“cats”, “eiffeltower”), locations (“beach”, “desert”), and sports (“basketball”,
“golf”). For each concept, 1,000 clips were downloaded from YouTube using two
different queries to the YouTube API (the overall length of the dataset is about 100
hours):

1. Raw Queries: The query consists of a single tag describing the concept, like
“beach”. This may be the case if a concept detection system is given only a
vocabulary of tags and crawls YouTube fully automatically for training material.

2. Refined Queries: Querying the YouTube API with a single tag must be expected
to give very noisy results. For example, the query “beach” does not only re-
turn scenes of beaches, but also music videos by the “Beach Boys” and scenes
of Daytona Beach. While these may be valid annotations to the video owner,
they must be considered non-relevant when it comes to learning a specific con-
cept like beach sceneries. Therefore, two refinements are made. First, the fact
is used that videos at YouTube are organized in categories like “Pets&Animals”
or “Autos&Vehicles”. The download is restricted to a canonical category (like
“Travel&Places” for “beach”, which excludes music videos). Second, queries
are refined according to a brief analysis of the first YouTube results page. For
example, the query “beach” is replaced with “walk on the beach”, which usually
rules out city names.

For each concept, a canonical definition was formulated (which can be found
in the Appendix and is publicly available3), and over 1,000 keyframes sampled

2 http://www.dfki.uni-kl.de/˜ulges/youtube-22concepts/
3 http://www.dfki.uni-kl.de/˜ulges/VSM-testconcepts/
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from YouTube clips tagged with the concepts were manually assessed according
to these definitions. Results of the annotation process are given in Table 1. They
indicate that YouTube labels are in fact weak – the downloaded content contains
significant fractions (in most cases more than 50%) of non-relevant material. It can
also be seen that α is particularly low for raw queries (21.1% on average), whereas a
manual refinement leads to better results (38.6%). Finally, the percentage of relevant
material varies strongly between concepts: for example, the label precision ranges
from 26.2% (“sailing”) to 60% (“swimming”) for refined queries.

These results correspond to similar observations made previously for the image
domain: for datasets based on image search, a precision of 39% have been reported
for object category recognition [31]. For Flickr images, Kennedy et al. [21] have
observed an accuracy of 50% for the domain of New York sights. These precisions
are slightly higher than our results, which can be attributed to the fact that for video
the coarseness of labels in the time domain poses an additional problem. Yet, it
should be noted that this does not necessarily mean that video is a worse source for
visual learning than images. Rather, it is to be expected that the preferred training
modality depends on the concepts: a wide variety of concepts are action-related or
video-specific (for example, think of “soccer” or “interview”). For such concepts,
video-based training material will be more appropriate than images.

3.2 Concept Learning from Web Video

In the last section, YouTube datasets have been demonstrated to contain significant
amounts of non-relevant content. The next key question is how this influences con-
cept detectors when trained on web video using standard methods. Intuitively, it can
be expected that material similar to false positives in the training set will be classi-
fied incorrectly, such that detection performance degrades. This is validated in the
following experiment.

Data The experiment is conducted on the same YouTube data and annotations
used in the last section. According to our ground truth labels, we randomly compiled
training sets of varying noise ratio α as illustrated for the concept “desert” and
α = 60% in Fig. 3: negative samples – which can be obtained easily from videos
not tagged with the concept – are drawn for the background class. Positive samples
consist of 60% true positives (which were manually assessed to show the target
concept) and 40% non-relevant frames, which were again drawn randomly from
YouTube videos not tagged with the concept. Further, test sets with known ground
truth labels were sampled:

for α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0}:

1. // sample training set
– sample 1000 non-relevant frames with label −1
– sample (1−α) ·500 non-relevant frames with label 1 (“false positives”)
– sample α ·500 relevant frames with label 1 (“true positives”)
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relevant samples non-relevant samples negative samples

ground
truth ++ ++ ++ -- -- -- -- --

weak
labels ++ ++ ++ -- -- --++ ++

Fig. 3 Sampling a random training set for the concept “desert” and α = 60%. Non-desert content
models the background class (right). Positive samples are mixed of 60% desert frames and 40%
non-desert frames. The latter are incorrectly labeled as relevant. This weakly labeled setup (top) is
compared with learning from correct labels (bottom).

2. // sample test set
– sample 500 relevant frames with label 1
– sample 1500 non-relevant frames with label −1

To avoid overfitting, it was made sure that no material from the same video clip was
assigned to training and testing at the same time. Also, it should be noted that only
the training set is weakly labeled, while the test set uses ground truth to assure a
precise evaluation.

Features Frames are represented by bag-of-visual-words features [33], which
have previously been demonstrated to give a good performance in a variety of recog-
nition tasks including concept detection [45] or object category recognition [13].
For each frame, a feature is extracted by regularly sampling about 3,600 SIFT
patches [25] at several scales. These are matched with a 2,000-dimensional visual
codebook learned previously on a large dataset of 81 concepts. A dimensionality
reduction is applied to the resulting visual word histograms using PLSA [18], ob-
taining a 64-dimensional feature vector per frame. This dimensionality reduction is
done for efficiency purposes and has previously been validated to give comparable
results to the high-dimensional visual word histograms.

Models Tests were run for two standard supervised learning approaches: a gen-
erative model (kernel densities) [12, Ch. 4] and a discriminative one (SVMs) [30].
Given training samples x1, ..,xn with labels y1, ..,yn ∈ {−1,1}, the kernel density
approach models class-conditional densities of concept presence and absence:

p1(x) =
1
Z ∑

i:yi=1
Kh(x;xi),

p0(x) =
1
Z′ ∑

i:yi=−1
Kh(x;xi).

(1)

A test frame x is scored using Bayes’ rule (the class prior – which does not influence
the ranking of test items – is assumed to be uniform):
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Fig. 4 Comparing concept detection when trained on ground truth labels (green) and on weak
labels (red). The mean average precision over all 10 test concepts is plotted against the label preci-
sion α . The two results on the left represent the kernel density system for bandwidths 0.25 (a) and
0.3 (b), the result on the right is for SVMs (c).

P(y = 1|x) =
p1(x)

p1(x)+ p0(x)

As a kernel function, the well-known Epanechnikov kernel with Euclidean distance
function is used:

Kh(x;x′) =
3
4
·
(

1− ||x− x′||2

h2

)
·1(||x−x′||≤h)

This choice is made mostly for efficiency reasons: as the Epanechnikov kernel has
only local support, it can be evaluated efficiently when combined with methods for
fast nearest neighbor search such as kd-trees [28]. The kernel bandwidth h is a free
parameter of the system. It has been reported previously to have a strong influence
on the resulting kernel densities [42], with high values of h leading to a smoother
density in feature space. For the experiment presented here, several choices of the
kernel bandwidth h ∈ {0.225, 0.25, 0.275, 0.3, 0.325} were tested, and results are
reported for a representative low value (h = 0.25) and a high one (h = 0.3).

As a discriminative approach, Support Vector Machines (SVMs) [30] were
tested, which are a popular choice for concept detection [45, 49, 51]. An RBF ker-
nel is used, whereas the smoothness σ and the cost C are evaluated in a grid search
cross-validation (for more information on these parameters, please refer to [8]). For
efficiency reasons, no complete search was done for each run, but the values C = 5
and σ = 25 are used, which were validated to give stable good results. SVM scores
were mapped to class posterior estimates using the LIBSVM implementation [8].

Results Both systems – kernel densities and SVMs – were tested in two setups
(as illustrated in Fig. 3):

• weak labels: this setup corresponds to the practical situation of concept learning
from weakly labeled web content. Only a fraction α of positive training samples
is truly related to the concept.
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• ground truth: this is a control run with an oracle providing ground truth labels
(which are not available in practice). The run indicates how well concept learning
would work if non-relevant content content was filtered out.

As a performance measure, average precision is used, i.e. the area under the recall-
precision curve over the ranked list of test frames. By averaging over all 10 test
concepts, we obtain the mean average precision (MAP), which is a standard choice
for concept detector evaluation [22]. Quantitative results are given in Fig. 4 (all
values were obtained by averaging over 5 runs). Both systems were tested for vary-
ing fractions of relevant content α , and the system performance on the test data is
plotted against α .

We now study how concept detection behaves when varying the noise level in the
training set. A first observation is that the influence of non-relevant material on the
oracle-based control run (green) is negligible, such that performance remains almost
constant when varying α . This is intuitively correct, since non-relevant samples
(which become more frequent with lower values of α) are assigned their correct
negative labels. A lower performance for low relevance fractions α ≈ 10% can be
attributed to a lower absolute number of positive training samples.

When comparing the ground truth runs with systems trained on weakly labeled
data, we can see that in the absence of noise (α = 1) both systems give the same per-
formance (which is trivial, as no false positives exist and training labels are identical
otherwise). However, when decreasing α the performance of the weakly supervised
system degrades significantly: for example, for training sets with 70% non-relevant
material (α = 0.3) and a bandwidth of 0.25, the kernel density estimation trained
on weakly labeled data gives a performance of 43.7%, while training on the correct
labels gives 54.1%. The more noise in the training data, the stronger the gap be-
tween the weakly supervised run and the control run becomes. This observation can
be made for the generative model (Fig. 4(b) and 4(a)) as well as the discriminative
one (Fig. 4(c)).

We can now match these results with the annotations in Table 1, which indicate
that the label precision of web video data is typically in the range of 20% (for raw
queries) to 50% (for refined queries). This range is highlighted in yellow in all plots.
If we focus on this area, we can see that performance degradation due to weak labels
is significant, ranging from 4% to 19%.

4 Relevance Filtering

Our results in the last experiment indicate that concept learning on web video could
be improved significantly if we were able to filter out non-relevant content in the
training set. In this section, we follow this strategy and present a framework in
which the statistical models underlying concept detection are adapted such that
non-relevant content is automatically identified and filtered during training. The
approach is based on a formulation of concept learning as a weakly supervised
learning problem, in which the given labels (here: YouTube tags) are only weak
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Table 2 An overview of the basic concepts and notation used in Sect. 4. Concept detection is
viewed as a weakly supervised learning problem, in which given labels are only weak indicators of
true, latent ones.

x feature vector representing a test keyframe
y ∈ {−1,1} absence/presence of target concept in x
P(y = 1|x) keyframe score (to be estimated)

x1, ..,xn feature vectors representing training frames
ỹ1, ..., ỹn ∈ {−1,1} weak labels of concept presence in training frames (observed)
y1, .,yn ∈ {−1,1} actual absence/presence of target concept in training frames (unknown)

β j := P(yi = 1|xi, ỹi) relevance score: the probability of a training frame being relevant (un-
known)

α := P(yi = 1|ỹi = 1) relevance prior: assumed fraction of truly relevant training frames
among potentially relevant ones

indicators of true class labels. These true class labels are inferred during concept
learning.

This approach will be referred to as relevance filtering in the following. Its
core assumption is that relevant content forms clusters in feature space, while non-
relevant material comes as outliers that can be identified and relabeled. The ap-
proach can be combined with a variety of well-known supervised learning tech-
niques. Two such combinations are presented for the models used in the last exper-
iment (namely, kernel density estimation and Support Vector Machines).

4.1 Basic Concepts

In the following, a video is represented by keyframes, such that concept detection
is effectively conducted on keyframe level. Each frame is associated with a feature
vector x ∈ Rd . The presence of the target concept is denoted with a label y, such
that y = 1 indicates concept presence and y = −1 concept absence. The goal of
concept detection is to estimate the concept score P(y = 1|x). Training data is also
represented by keyframes (or associated features) x1, ..,xn ∈ Rd . For each training
frame xi, a weak indicator of concept presence is given that tells us whether the
concept may appear in the frame (in practice, this is a tag given to the corresponding
web video clip). This information is denoted by a weak label ỹi ∈ {−1,1}. The
actual presence of the target concept, however, is latent. It is denoted with yi ∈
{−1,1}. Concept detection is now cast as a binary classification problem (see Table
2 for an overview of the notation used):

Definition 1. Weakly Labeled Binary Classification Problem
Given training data in form of samples x1, ..,xn ∈Rd with labels ỹ1, .., ỹn ∈ {−1,1},
learn a scoring function φ : Rd → [0,1] such that φ(x)≈ P(y = 1|x). Thereby, train-
ing labels are assumed to be weak indicators of true labels y1, ..,yn such that:
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1. If the weak label is negative (ỹi =−1), the true label is negative as well (yi =−1).
2. If the weak label is positive (ỹi = 1), the sample may belong to the positive class,

but does not necessarily do so, i.e. the true label yi is unknown.
3. A prior for weakly labeled samples being truly positive is assumed to be given,

which is denoted with α := P(yi = 1|ỹi = 1).

In this setup, true latent class labels are separated from given ones. They can thus
be estimated during learning, such that the model φ is effectively trained on the
estimated true class labels instead of the weak labels. It should also be noted that
– while we model false positives (i.e. it is possible that ỹi = 1 and yi = −1) – false
negatives (ỹi = −1 and yi = 1) are not taken into account. Strictly speaking, this
is not true (for example, there might be videos showing “basketball” that the user
has simply forgotten to label). According to our observations made on web video,
however, the percentage of such false negatives is negligible compared to the one of
false positives.

Let us compare the weakly labeled classification problem with other learning se-
tups. First, when compared with standard supervised learning, two key differences
are that only weak indicators of the true class labels are given, and that an additional
assumption is made (in form of α) on how much of the weakly labeled material
does in fact show the target concept. Particularly, the supervised setting can be seen
as a special case of the weakly supervised one, where α equals 100%.

Compared with the semi-supervised learning setup, the above definition can
be seen as a degenerate special case. This is because weakly labeled samples
{xi : ỹi = 1} can be viewed as unlabeled (their true label yi is not known). This
leads to an extremely imbalanced problem: while semi-supervised learning usu-
ally assumes a few initial labels of either class to be given, in our setup we are
confronted with many samples from class −1 (simply because content not labeled
with a concept can be obtained easily) but no sample of class 1 (since indicators
of concept presence are weak). This renders a straightforward application of many
semi-supervised algorithms impossible, since these would require an initialization
with a few reliable samples of both classes.

Finally, the weakly labeled learning setup strongly resembles several approaches
for visual learning from noisy image sources like Google’s image search [14, 24,
48]. The work in this chapter follows a strategy similar to these approaches (partic-
ularly to the one by Wnuk and Soatto [48], who also propose a distribution-based
filtering of training sets). Yet, several differences remain. First (and obviously), the
web video domain addressed here differs from images delivered by web search en-
gines. Second (and more importantly), we do not cover a single statistical model,
but view relevance filtering as a wrapper than can be applied around a variety of su-
pervised learning techniques. For both a generative and a discriminative base model,
relevance filtering extensions will be presented in the following.
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4.2 The Generative Case: Kernel Density Estimation

In this section, relevance modelling is used as a wrapper around a generative model
for concept detection, namely kernel density estimation [12, Ch. 4]. Thereby, the
relevance of training content is modeled as a latent random variable that is inferred
during the learning procedure.

Class-conditional Densities and Scoring Class-conditional densities of relevant
and non-relevant content are modeled by the following weighted kernel densities p1

β

and p0
β

:

p1
β
(x) =

1
Z
·

n

∑
i=1

βi ·Kh(x;xi),

p0
β
(x) =

1
Z′
·

n

∑
i=1

(1−βi) ·Kh(x;xi),
(2)

where Z = ∑i βi and Z′ = n−Z are normalization constants. Compared to the fully
supervised setup from Equation (1), the key difference is that p1 and p0 are now
parameterized by a vector β = (β1, ..,βn). This vector consists of relevance scores
βi := P(yi|ỹi,xi), which means that for p1

β
each training sample is weighted by its

probability of being relevant (correspondingly, for the distribution of non-relevant
content p0

β
this weight is 1− βi). Consequently, if a training sample is likely to

be relevant, it has a strong influence on the distribution of relevant samples p1
β

but
low influence on p0

β
. In this way, the uncertainty of label information is taken into

account (a similar model has been used in a semi-supervised setup before [47]).
Note that if we set the relevance scores according to the weak labels:

βi =
{

1, ỹi = 1
0, ỹi =−1

the system degenerates to the standard supervised case (Equation (1)) in which all
positively labeled samples are assumed to be relevant.

Training To compute the class-conditional densities p1
β

and p0
β

, the vector of
relevance scores β must be inferred in system training. The input consists of features
x1, ..,xn, weak labels ỹ1, .., ỹn, and the relevance prior α . For each training frame xi,
three situations may occur:

1. ỹi =−1 (negative): if xi is not labeled with the concept, it is assumed to be non-
relevant, i.e. βi = 0.

2. ỹi = yi = 1 ( true positive): xi is labeled with the concept and is in fact relevant.
Accordingly, βi should be high.

3. ỹi = 1,yi =−1 (false positive): xi is labeled with the concept but is not relevant.
Such noise samples may occur, since labels ỹi are only weak indicators of concept
presence. For them, βi should be low.
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Let us assume that m training samples are weakly labeled with the concept, and
that training samples are sorted such that ỹ1 = .. = ỹm = 1 and ỹm+1 = .. = ỹn =−1.
While we know that βm+1 = .. = βn = 0, the relevance scores β1, ., ,βm need to be
estimated, i.e. training must divide potentially relevant frames into actually relevant
ones and non-relevant ones. Therefore, the parameter vector β is restricted to the
non-zero entries β = (β1, ..,βm).

Our strategy to estimate β is based on a simple fixpoint iteration in parameter
space. First, relevance scores are initialized with the relevance prior: β 0 = (α, ..,α).
Then, the parameter vector β k is iteratively updated to a new version β k+1 by plug-
ging the current parameter estimate β k into the class-conditional densities p1

β k and

p0
β k (Equation (2)). From these densities, new estimates of relevance scores can be

obtained using Bayes’ rule:

β
k+1
i := P(yi = 1|xi, ỹi = 1)

=
p(yi = 1,xi|ỹi = 1)

p(yi = 1,xi|ỹi = 1)+ p(yi =−1,xi|ỹi = 1)

≈ P(yi = 1|ỹi = 1) · p(xi|yi = 1)
P(yi = 1|ỹi = 1) · p(xi|yi = 1)+P(yi =−1|ỹi = 1) · p(xi|yi =−1)

≈
α · p1

β k(xi)

α · p1
β k(xi)+(1−α) · p0

β k(xi)

This process is repeated for a fixed number of iterations. Intuitively, the algorithm
identifies regions in feature space where positively labeled samples concentrate and
assigns high relevance scores to them. Outliers similar to negative content are given
low relevance scores. The approach resembles the well-known Expectation Max-
imization (EM) scheme [11], which maximizes the data likelihood by alternating
so-called “E” steps (in which posteriors for latent variables are estimated) and “M”
steps (in which system parameters are updated according to this knowledge by max-
imizing the expected log-likelihood of training data). If we compare the EM scheme
to the fixpoint iteration used here, the relevance scores βi resemble posteriors for la-
tent variables in the EM scenario (namely the true labels yi). However, since the
parameters of the class-conditional densities are equal to the relevance scores βi and
the framework is non-parametric otherwise, no “M” step is required.

The approach is also similar to the training procedure used by Wang et al. [47],
but the system is constrained in a different way: while Wang et al. addressed a semi-
supervised setup – where initial reliable training samples for all classes are available
– we cannot rely on such information in our weakly supervised setup. Instead, we
constrain the system with a certain prior of the label precision α . Note that if we
choose this relevance prior to be α = 1, it follows that β1 = β2 = .. = βm = 1, such
that the model degenerates to the supervised case (Equation (1)).

A Sample Problem In the following, an illustration of relevance filtering for
kernel densities is given in a small experiment. A two-dimensional weakly labeled
dataset is generated such that samples from the positive class contain a certain
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(b)

error rate (%)
α̂

α 0.2 0.6 1.0
0.2 27.7 32.2 35.5
0.6 13.0 12.1 15.8
1.0 11.0 10.9 4.1

(c)

Fig. 5 (a) A 2D sample training set. Positive samples (red) concentrate in 5 peaks, but contain
40% outliers. (b) A learned relevance map shows that relevant content is identified at the correct
five peaks. (c) Classification error rates on synthetic sample sets, whereas the fraction of relevant
content α and its estimate α̂ are varied. A choice of α̂ ≈ α gives the best classification results.

amount of incorrectly labeled false positives. For two classes (representing con-
cept presence and absence), random prototypes are drawn from [0,1]2. Samples are
drawn from the surrounding of these prototypes according to kernel densities p1

and p0 with bandwidth h = 0.05, obtaining a training set with 200 noisy positive
samples (which are again compiled of positive and negative content):

x1, ..,x200 ∼ α · p1 +(1−α) · p0.

The fraction of relevant samples is varied such that α ∈ {0.2, 0.6, 1.0}, i.e. we use
one clean training set without false positives (α = 1.0), one with moderate noise
(α = 0.6) and one with lots of noisy samples (α = 0.2). For each training set, neg-
ative training samples are drawn from p0(x) and added. Finally, a test set of equal
size is sampled from the same distribution as the training set. This experiment is
repeated 100 times, whereas for each run the relevance filtering framework is tested
with a relevance prior of α̂ ∈ {0.2,0.6,1.0}. Note that the true relevance fraction is
unknown in practice, which is why we distinguish between the true value α and the
relevance prior we expect (which is denoted with α̂ in the following).

A typical dataset used in this experiment is illustrated in Fig. 5(a). It can be seen
that positive samples (red) concentrate near five prototypes of class 1, but many red
outliers (false positives) occur. The result of relevance filtering is also illustrated:
a relevance map plots the relevance score β over feature space (Fig. 5(b)). It can
be seen that high relevance scores are assigned to samples accumulating near the
five prototypes, while outliers close to negative samples are assigned low relevance
scores. Classification results when applying the kernel density model with relevance
filtering are reported in Table 5(c). Two observations can be made: first – and not
surprisingly – the overall error rate of classification increases with the amount of
noise material in the training set. The second observation is that the actual noise
level and the optimal choice of the relevance prior are correlated, i.e. the lowest
error rate is achieved for α̂ ≈ α . For example, for the clean training set (α = 1) the
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supervised system (α̂ = 1) performs best, while for α = 0.2 the best performance
is achieved for α̂ = 0.2. Generally, this result indicates that relevance filtering can
improve kernel density classification on weakly labeled training sets.

Table 3 Weakly Supervised Discriminative Training: Samples are iteratively refined in a self-
training fashion by learning a discriminative classifier, scoring training content, and relabeling the
samples most likely to be false positives.

1. for i=1,.,n: set βi =
{

1, ỹi = 1
0, ỹi =−1

2. randomly split X = {x1, ., , .xn} into five folds X1, ..,X5
3. until 1

p ∑
p
i=1 βi ≤ α:

• for k = 1, ..,5:
– train a classifier on X \Xk
– apply the classifier to Xk, obtaining scores σ

– for the N f samples xi ∈ Xk with βi = 1 and lowest scores σ(xi):
set βi = 0

4.3 The Discriminative Case: Support Vector Machines

While in the last section a generative technique was adapted for weakly labeled
concept detection, a similar extension will be presented for discriminative models
in the following. The approach can be applied as a wrapper around a variety of
discriminative base classifiers. The only requirement on the base model is that it
delivers a posterior-like score σ . As a sample classifier, SVMs are used (which can
be considered a standard choice for concept detection [45, 49, 51]).

The basic idea of relevance filtering for discriminative methods is similar to a
semi-supervised self-training but works in a filtering fashion instead of an incremen-
tal one: iteratively, the base classifier is trained and used to identify false positives in
the training set. Samples that the classifier identifies as most likely to be false posi-
tives are relabeled (i.e., their relevance scores βi are set from 1 to 0), and training is
repeated. This way, the weakly labeled positive samples are iteratively filtered and
refined. The whole process is repeated until the estimated relevance prior 1

p ∑i βi
(which constantly decreases due to relabeling) reaches the expected relevance prior
α . The whole training procedure is outlined in Table 3 (note that filtering is done in
a cross-validation fashion to avoid overfitting).

Let us compare the approach with the generative relevance filtering from the last
section. Generally, both techniques follow the same idea, namely to estimate the
relevance of training content using the distribution in feature space and a relevance
prior. However, two key differences can be identified. First, while the generative
approach relied entirely on the distribution of content in feature space, the discrim-
inative technique involves a classification method, such that the quality of filtering
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results is inherently bound to the classifier used. Second, the discriminative rele-
vance filtering approach is not probabilistic: the scores σ used for filtering may be
interpretable as relevance posteriors but do not necessarily have to be. Also, no soft
assignment is used (as for kernel densities), but a complete relabeling of samples
from the positive to the negative class takes place.

5 Experiments with Automatic Relevance Filtering

In the last section, relevance filtering has been proposed as a strategy to overcome
label unreliability in concept detection training sets, and based on this idea exten-
sions of two standard techniques (kernel densities and SVMs) have been presented.
In practice, however, such an automatic filtering – which is entirely based on the
distribution of content in feature space – is not 100% accurate. Therefore, we need
to investigate how well relevant content be separated from non-relevant one, and
whether the performance of concept detection can be improved this way. In the
following, it is demonstrated that the filtering of non-relevant content is possible
(though far from perfect), and performance improvements of up to 9% compared
with an equivalent supervised system are validated when false positives are drawn
from an overall “world” distribution (Sect. 5.1). After this, the relevance filtering
framework is trained on raw web video content downloaded from YouTube (where
non-relevant material is correlated with the concept), and it is shown that relevance
filtering still gives performance improvements in the range of 2− 5% over the su-
pervised case (Sect. 5.2).

5.1 Controlled Setup

The purpose of this experiment is to study relevance filtering in a controlled sce-
nario with known relevance fraction α . The setup is almost identical to the one used
in Sect. 3: the same randomly sampled training sets and test sets are used, results
are averaged over 5 runs, the feature representation remains the same (visual words,
followed by a dimensionality reduction using PLSA), and the same statistical mod-
els are tested (namely kernel density estimation and Support Vector Machines). The
only difference is that – besides the control runs used in Sect. 3.2 – additional re-
sults for relevance filtering extensions are presented. The following approaches are
tested:

1. ground truth: the control run from Sect. 3.2 trained on ground truth labels.
2. weak labels: supervised learning from Sect. 3.2 trained on weak labels.
3. relevance filtering – kernel densities: the relevance filtering extension of the

generative kernel density approach from Sect. 4.2. The number of training iter-
ations is set to 100. The relevance prior is set to the correct fraction of relevant



20 Adrian Ulges and Damian Borth and Thomas M. Breuel

basketball desert cats

relevant
(high β )

non-relevant
(low β )

soccer eiffeltower helicopter

relevant
(high β )

non-relevant
(low β )

Fig. 6 Results of relevance filtering (using the generative approach): for six concept, the frames
are displayed that the relevance filtering approach learns to be most relevant (top) and least relevant
(bottom). Relevance filtering works in general, and non-relevant content – though labeled with the
concept – can be identified. However, the quality of filtering seems strongly related to concept
difficulty: for example, compare “cats” (top right) with “soccer” (bottom left).

material, i.e. α̂ := α (the behavior when varying this parameter will be studied
later). The run appears in Figs. 7(a) and 7(b).

4. relevance filtering – SVMs: the relevance filtering extension of the discrimina-
tive approach from Sect. 4.3 using SVMs as base classifiers. Ten false positives
are filtered in each training iteration. The same smoothness parameter σ = 25
and cost parameter C = 5 are used as in Sect. 3. The run appears in Fig. 7(c).
Again, we set α̂ := α .

We first visualize the effects of relevance filtering in Fig. 6 to find out what con-
tent is actually identified as non-relevant by the system. Positive training frames are
ranked by their score βi, and the images with highest scores and lowest scores are
displayed in Fig. 6 (a training set with α = 0.3 was used, a bandwidth of 0.275,
and a relevance prior of 0.3). At the top, we see the content identified to be most
relevant, i.e. the highest scores β were assigned. Below this, material is illustrated
that was labeled with the concept but was identified to be non-relevant by our sys-
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Fig. 7 Results of relevance filtering for kernel densities (a,b) and SVMs (c). Performance is plotted
against the relevance fraction α . It can be seen that relevance filtering (blue) – though not achieving
the performance of a hypothetical perfect relevance filter (green) – gives significant improvements
over its standard supervised equivalent (red).

tem. Obviously, the content identified as relevant is in fact very likely to be visually
related to the concept, and non-relevant material – though labeled with the target
concept – tends to be identified successfully.

Quantitative results of the experiment are illustrated in Figs. 7(a) and 7(b) (for
the generative model) and in Fig. 7(c) (for the discriminative one). Performance is
plotted against the label precision α in a similar fashion as in Sect. 3. In contrast to
earlier results, however, relevance filtering is included.

One first observation is that for α = 1 all methods perform equally well (which
can be observed both for kernel densities and SVMs). This is trivial as the systems
are all trained on the same labels – no false positives exist and no filtering takes
place. However, with decreasing α – i.e. with increasing non-relevant content in
the training set – differences can be observed. It can be seen that relevance filtering
(though not reaching the performance of the oracle-based control run) significantly
outperforms standard supervised learning. For example, for a bandwidth h = 0.25
and a relevance fraction of α = 0.3, relevance filtering gives an improvement from
44% to 51%. For a higher bandwidth of 0.3 this improvement is lower, which can
be explained by the fact that the supervised baseline is more competitive due to a
stronger smoothing.

When comparing the results for kernel densities with the ones for the SVM ap-
proach, similar observations can be made for the discriminative model: due to in-
herent errors of filtering, relevance filtering does not reach the performance of the
oracle-based control run, but it significantly outperforms its standard supervised
counterparts.

Finally, the experiment also indicates for which label precisions relevance filter-
ing is the most promising. If the training set is extremely noisy (α ≤ 10%), a fully
automatic relevance filtering becomes difficult. This can be observed in Fig. 7(c),
where for the leftmost point (α = 10%) the improvement by relevance filtering is
only weak. On the other hand, for high values of α the supervised baseline is already
quite competitive. For moderate values of 0.2 ≤ α ≤ 0.5, the benefits of relevance
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Fig. 8 Non-relevant content from web videos labeled with “Eiffel Tower”, which indicate that
noise content in real-world training sets is correlated with the target concept. This renders a fully
automatic relevance filtering based only on the distribution in feature space a difficult challenge.

filtering are most prominent. According to this result, relevance filtering is of par-
ticular interest for web content, which comes with noise ratios in the same range.
Here, performance improvements in the range of 3−9% are achieved.

5.2 Raw Web Video Content

The purpose of the last experiment was to give a proof-of-concept for relevance fil-
tering in a controlled setup, where the ratio of relevant material is known. In this
case, relevance filtering was demonstrated to outperform supervised models signifi-
cantly.

In the following, we test relevance filtering on training sets of real-world web
video content. In contrast to the controlled setup studied in the last section, there are
two key differences. First, the fraction of relevant content is not known a priori when
downloading raw material from YouTube. A simple workaround for this is to set α̂

to a “reasonable” value like 0.5, which will be demonstrated to give comparable re-
sults to using the true relevance prior. The second issue is related to the non-relevant
samples themselves: while the proposed approach assumes such false positives to
be drawn from an overall “world” distribution, non-relevant content in practice de-
pends strongly on the concept. For example, non-relevant material in “basketball”
videos tends to show scenes of a cheering crowd, while non-relevant material for
the concept “eiffeltower” contains many urban scenes of Paris (a few typical false
positives from “Eiffel Tower” videos are displayed in Fig. 8). Note that – since rel-
evance filtering is entirely based on the fact that relevant content forms peaks in
feature space – non-relevant material forming similar peaks (for example “shots of
Paris”) may be difficult to separate from truly relevant content.

We use a similar setup as in previous experiments, i.e. training sets of known
noise ratios are randomly compiled (the same sample numbers are used as described
in the last section). The key difference is that false positives – which were previ-
ously sampled from videos not labeled with the concepts – are now drawn from
clips tagged with the concept (but are still non-relevant according to manual an-
notation). Correspondingly, negative test samples now consist of 500 frames from
videos tagged with the concept and 1,000 frames from other videos.

Figure 9 also tackles the question how to estimate the relevance prior α . It sug-
gests a very simple solution, namely to set it to a “reasonable” choice such as 0.5
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Fig. 9 Comparing relevance filtering on raw web video training sets when using the correct rele-
vance prior (α̂ = α , dark blue) with a default choice of α̂ = 0.5 (light blue). It can be seen that a
simple choice of α̂ = 0.5 leads to comparable results.

(which corresponds to a typical value for web-based training sets as shown in Sect.
3). Figure 9 compares relevance filtering when using the true prior α̂ = α and when
using α̂ = 0.5. It can be seen that by simply setting α̂ = 0.5 (i.e. by filtering half
of all positive training samples) a stable performance can be obtained that is com-
parable to the true relevance fraction, at least for the range of α = 0.2−0.5 typical
for web video. For the SVM approach and very noisy training sets (α < 0.2 in Fig.
9(c)), this choice even outperforms a more aggressive filtering as for α̂ = α .

6 Relevance Filtering with Active Learning

In previous experiments, it was shown that automatic relevance filtering improves
concept detection performance by up to 9% for real-world web video material when
run in an controlled setup. When trained on raw web video content as downloaded
from YouTube, it was shown again that automatic relevance filtering gives perfor-
mance improvements. These improvements, however, are lower than for the con-
trolled setup, which can be explained by the fact that non-relevant content tends to
be concept-dependent in practice (for example, noise material tagged with “Eiffel
Tower” tends to show urban scenes of Paris, as illustrated in Fig. 8). Such content
forms clusters in feature space similar to relevant material and cannot be separated
easily.

This raises the question whether a better filtering could be achieved using a lit-
tle manual supervision, i.e. by requiring human operators to provide a few selected
labels. Here, active learning techniques – where the system selects informative ex-
amples for the user to annotate [32] – is an interesting extension to the current
relevance filtering framework.

The approach has already proven to be successful in the large-scale concept de-
tection evaluation TRECVID [2], where training examples for a concept of interest
are accumulated from a completely unknown video database. This setup (which
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usually starts from few reliable initial labels [1, 2, 10]) differs from the one studied
in this chapter, as we focus on a refinement of large and only partly non-relevant
training sets. Despite this difference, however, such an extension fits quite elegantly
into the proposed learning framework: whenever a user annotates a training sample
xi, the relevance score βi is adapted and fixed to the given label, and learning is
re-iterated.

In this section, an active learning extension to relevance filtering is presented.
Also, we compare several active learning sample selection strategies in an experi-
ment and show that the approach – if integrated with the kernel density version of
relevance filtering – leads to significant improvements of concept learning from web
video at moderate annotation effort.

6.1 Basic Concepts

In Sect. 4.2, a generative approach using kernel density estimation has been ex-
tended such that relevance scores βi capture the uncertainty of the given label in-
formation. To reduce this uncertainty, we propose an iterative manual refinement of
selected samples and successive retraining. Such a relevance feedback mechanism
can be placed as a wrapper around automatic relevance filtering. The procedure is
illustrated in Table 4: iteratively, relevance filtering training is applied, obtaining
relevance scores β . Based on these scores, the most informative weakly labeled
sample is selected for manual annotation (note that – as according to Definition 1
only positive labels are unreliable – we focus on the positive samples). After man-
ual labeling of the selected sample s∗, we can fix β

j
s∗ to either 0 or 1 depending

on the received label. This new information is used for retraining relevance filter-
ing, providing new relevance scores β

j+1
i for the next iteration of sample selection.

With increasing iterations of such active learning, the procedure separates relevant
content from non-relevant one more reliably.

Table 4 Active Learning Extension: Wrapped around relevance filtering, active learning selects
informative samples for refinement by a human operator. Once the label is given, its relevance score
is set to either 0 or 1, the system is re-trained, and the remaining relevance scores are adapted.

1. for j = 1, .,m do:

• train relevance filtering and get relevance scores β j = {β j
i }

• select sample s∗ according to an active learning criterion Q:

s∗ := argmax
i:ỹi=1

Q(β j
i )

• annotate manually, obtaining the true label ys∗

• fix the relevance score β
j+1,..,m

s∗ =
{

1, ys∗ = 1
0, ys∗ =−1
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6.2 Active Learning Methods

Different sample selection strategies for active learning have been proposed in the
literature (see [1, 10, 41] for work in the video retrieval domain and [32] for a
more complete survey). We test a few of the most popular ones in combination with
relevance learning. These strategies select samples based on their a class posterior
(which in our case corresponds to the relevance score β ).

1. random sampling: samples are selected randomly (serves as a baseline).
2. most relevant sampling: samples are selected which are most likely to be rel-

evant and are therefore associated with a maximum relevance score β . This ap-
proach was first introduces in information retrieval [29] but has also been proven
to be a good option in a concept detection setup [1, 2]:

QREL(β ) := β

3. uncertainty sampling: samples are selected for which the relevance filtering
method is most inconfident, i.e. β ≈ 0.5 [23]:

QUNC(β ) := 1−|β −0.5|

6.3 Experiments with Active Relevance Filtering

In the following, we run an experiment on raw web video similar to Sect. 5.2 and
apply the active learning extension to relevance filtering with the goal to improve
concept detection performance further.

The dataset used is equal to the one in Sect. 5.2. The kernel bandwidth is fixed
to h = 0.275. The key difference to Sect. 5.2 is that the relevance fraction is fixed
at α = 0.2, which poses a difficult challenge to automatic relevance filtering as the
majority of content is non-relevant.

Results averaged over 5 runs are illustrated in Fig. 10. In contrast to the previous
experiments, performance is plotted against the number of manually annotated sam-
ples (α = 0.2). Also, the results from previous experiments in Sect. 5.2 can be found
in the plot as horizontal lines: no relevance filtering, automatic relevance filtering,
and ground truth training.

Now, we study how concept detection performance increases if we iteratively
replace weak labels – potentially associated with false positives – with true labels
provided by human annotations. As seen in Fig. 10 the performance of the differ-
ent active learning methods lies within a corridor bounded by automatic relevance
filtering (bottom) and the ground truth run (top). Starting with no refined samples,
the performance equals the one of automatic relevance filtering. With more manual
annotations, performance increases and finally converges to the ground truth case.

When comparing the different active learning strategies, it can be seen that they
both outperform random sampling significantly, and that the best performance is
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Fig. 10 Results of active learning for relevance filtering with generative kernel densities. The label
precision α is fixed at 0.2. Performance is plotted against the number of manually annotated train-
ing samples. It can be seen that – if using a proper sample selection – it is sufficient to annotate
only 30−40 weakly positive training samples to achieve a significant performance improvement.

achieved by most relevant sampling, which mines the dataset for truly relevant sam-
ples. This can be explained by the fact that relevance filtering relies strongly on
correct relevance weights. Consider the example of “eiffeltower” and assume that
the illustrated false positives in Fig. 8 all belong to the same cluster. If the sys-
tem misleadingly assigns high relevance score to this cluster, one of the samples
will be selected early for manual refinement. The false positives will be identified,
corrected, and further iterations of relevance filtering will propagate this new infor-
mation among the cluster in giving neighboring samples lower relevance scores.

Overall, it can be seen that with active learning we can improve performance
at moderate annotation cost. For example, with as few as 40 annotations, a per-
formance increase of about 4% is achieved. When continuing with annotation, we
can see that concept detection performance converges to the ground truth case at
100− 150 iterations (which corresponds to only 25− 30% of the overall dataset).
Concluding, relevance filtering – if combined with appropriate active learning strate-
gies – can improve concept learning on the difficult domain of raw web video con-
tent.

7 Conclusions

In this chapter, the visual learning of concept detectors from weakly labeled videos
has been addressed. Such data offers a scalable alternative to the conventional man-
ual acquisition of training data, as label information can be acquired without manual
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overhead. On the other hand, class information becomes unreliable, and labels are
only weak indicators of concept presence. We have demonstrated for the domain
of web video that typical training sets include significant amounts of non-relevant
noise material, with a resulting performance degradation of up to 20%.

To overcome this problem without additional manual overhead, a framework
called relevance filtering has been proposed. A binary classification problem is cast
for each target concept, whereas true (latent) concept presence is inferred during sys-
tem training. Based on this idea, two relevance filtering extensions of well-known
supervised techniques were presented, one for a generative approach (kernel den-
sities) and one for a discriminative one (Support Vector Machines). In experiments
on real-world web video material, it was demonstrated that relevant content can be
separated from non-relevant one in general, and that the performance of concept
detection can be improved by up to 9% in a controlled setup. When trained on raw
web video content as downloaded from YouTube, relevance filtering still improves
over the supervised case though by a lower margin, which is because non-relevant
content shows a tendency to be concept-dependent. To handle such conditions, an
extension to relevance filtering was introduced, where minimal manual supervision
adapts the scores of the weakly labeled training samples. In particular, by utilizing
active learning methods for sample selection, the system could improve by up to 8%
by refining only 25−30% of weak positive labels from the training set.

As the approach in this chapter focuses entirely on a visual learning of concepts,
one interesting extension of the framework would be the additional use of tag in-
formation coming with web video clips for relevance filtering. While we currently
make only very limited use of such meta information, we envision our future system
to use tag information directly in the refinement process. Particularly, deep tagging
– where users provide detailed tags at certain time stamps in a video – might be an
interesting clue to overcome the label coarseness problem.

Acknowledgements This work was supported by the German Research Foundation (DFG),
project MOONVID (BR 2517/1-1).

Appendix

This section gives a description of the concepts used in our experiments. We have
defined canonical definitions of each concept and performed a manual annotation of
web-based material. Table 5 provides the definitions as well as information on how
video data was downloaded from YouTube.
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Table 5 Meta Information regarding the 10 test concepts used in the experiments

Concept Description YT Query∗ YT Category∗

basketball Scenes showing people playing basketball. Includes
streetball if recognizable as such.

basketball
basketball nba
basketball dunking
basketball best moves
basketball dunks

sports

beach Scenes showing a beach. Water does not have to be vis-
ible (if anything else qualifies the scene as showing a
beach). Shots from a distance qualify as well, but only if
the coastline is clearly a beach.

walk on the beach
beach sunbath
beach hawaii
beach panorama
beach malibu day

travel&places

cats Scenes showing one or multiple cats. Closeups qualify
as well as full body shots.

cats
cats funny
cats pets animals
cats playing
cats eating

pets&animals

desert Scenes showing desert landscape. Panoramic shots in-
volving significant amounts of sky are allowed (as long
as some desert landscape is visible at the bottom).
Things like plants, rocks, canyons, cars, etc. are allowed,
but the landscape should show desert.

desert egypt
driving through desert
desert panorama
desert sahara
desert trip

travel&places

eiffeltower Scenes showing the Eiffel Tower. Views from top of the
tower qualify only if you see a part of tower (like parts
of the steel construction). Night shots qualify. Closeups
showing only parts of the steel construction qualify (if
the tower can be identified) as well as panoramic shots
from the distance. Shots with people in the foreground
and the tower in the background count as well.

tour eiffel,
eiffel tower,
eiff.t. paris france,
eiffelturm paris

travel&places

helicopter Scenes showing a helicopter (airborne or on the ground).
Views from inside the helicopter are allowed if they can
be identified as such. Only instruments or the pilot are
not sufficient. Shots of toy helicopters qualify as well.

helicopter,
helicoptero,
helicopter flying,
helicopter landing

autos&vehicles

sailing Scenes showing sailing ships/boats on the water/in the
harbor. Panoramic views from onside a boat qualify if
you see a part of the boat (like sails). Catamarans qual-
ify as sailing ships, but surf boards or tankers do not
(generally, everything with a sail qualifies).

sailing,
sailing trip,
sailing boat,
sailing holiday,
sailing mediterranean

travel&places

soccer Shots showing a soccer match. Actions only distantly
related to soccer do not qualify (like people doing soccer
tricks in the street). Close-ups of players are allowed as
well as global shots (if clearly identifiable as soccer).
Soccer fields without action qualify as well. Shots of a
cheering crowd do not qualify.

soccer bundesliga,
soccer goals,
soccer match,
soccer game outdoor,
fussball spiel

sports

swimming Scenes showing somebody swimming. A swimming
pool counts too (even if nobody is swimming inside it).
Also includes swimming objects (fish, bottles).

swimming,
swimming pool -clean,
swimming technique,
sw. competition,
swimming olympics,
sw. championship

sports

tank Scenes showing a tank, i.e. a heavily armored vehi-
cle. Any scene qualifies if a part of the tank is visible
such that the tank is identifiable. Other sorts of military
ground vehicles qualify.

tanques,
tank,
tank battle,
panzer,
tank fire -flashpoint

autos&vehicles

∗ Values used for YouTube API calls
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