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Abstract

As digital video has become a source of information and entertainment to millions
of users, video databases grow at enormous rates, and a need for new efficient
indexing and search strategies has been recognized by research and industry. In
this context, concept detection aims at a machine indexing by automatically linking
video scenes with semantic concepts appearing in them.

Existing concept detection systems rely on manual annotation for concept
learning, and are thus limited by the effort associated with training data acquisi-
tion. To overcome this problem, this thesis describes a concept learning approach
that requires significantly less manual supervision compared to standard meth-
ods. To achieve this, user-tagged web video is employed (as offered by portals
like YouTube). Four contributions are made that greatly enhance our ability to
use this data source for training, regarding its content, label noise, context, and
motion information.

To make use of web video content, this thesis presents a concept detection
system that employs clips downloaded from YouTube as training data, with class
labels being automatically derived from user-generated tags and descriptions. It
is demonstrated on standard datasets from the TRECVID benchmark that the re-
sulting detectors generalize comparably well to novel domains as detectors trained
on manually acquired ground truth. At the same time, the approach offers a much
more scalable and flexible way of concept learning.

To address label noise (i.e., the problem that user-generated tags are coarse,
subjective, and context-dependent), this thesis proposes to adapt the statistical
models underlying concept detection. Web tags are viewed as unreliable indicators
of true label information, which is modeled as a latent random variable and inferred
during concept detector training. This novel approach (called relevance filtering)
is validated to improve concept learning from web video significantly compared
to supervised standard methods, for both a generative and a discriminative base
model.

To make use of context, user-generated category labels are employed, another
valuable feature of web video. It is demonstrated that this information can be used
by combining concept detection with style modeling: a distinct model is learned
per category (or style, respectively) and used for an accurate concept detection.
Test images are mapped to a style using their context (for example, other pictures
taken at the same event). This approach is demonstrated to improve performance



by up to 100% on Flickr photos (n = 32, 000). On the well-known COREL-5K
image annotation benchmark, the proposed method gives a mean recall/precision
of 39%/25%, which is the best result reported to date.

Finally, to make use of motion information, this thesis suggests to improve the
learning and recognition of objects using motion-based segmentation. Two novel
motion segmentation approaches are presented, one based on a globally optimal
branch-and-bound search of parameter space, one on a combination of motion and
color information. These approaches are integrated with a patch-based recognition
method, achieving an improved robustness to clutter. Compared to a baseline
operating on unsegmented images, recognition error improves from 8.1% to 4.4%
(n = 1, 584), and the precision of concept detection from 31% to 41% (MAP,
n = 4, 160).

Altogether, these contributions suggest that web video can form the basis for a
novel way of concept learning beyond the manual acquisition of small training sets
that constitutes the state of the art. With the technology described in this thesis,
we can now build concept detection systems that can learn thousands of concepts
and offer a better support for video search.
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Chapter 1

Introduction

Over the last decade, digital image and video content has become an integral part
of our everyday life — we capture it using cameras and camcorders, we store it on
local hard-drives and share it with friends, we upload it to the internet and view
it on demand. We also use images and video as a source of information, we debate
about it, or we are simply amused and entertained by it.

Correspondingly, more visual content is being produced, published, and con-
sumed than ever before in history: web-based image and video sharing portals like
Flickr1 or YouTube2 are known to millions of people, who upload 65, 000 video
clips [YOU06] and 2.5− 3 mio. pictures [Auc07] each day. It has been estimated
that digital video will account for 91% of all internet traffic in 2013 [Inc09]. In
parallel, Companies like Google use imaging sensors to index the world’s docu-
ments3, maps4, or cityscapes5. Millions of surveillance cameras monitor our ev-
eryday life [BBC06], and large-scale digitization efforts produce video archives
containing decades of TV and radio broadcast [Hig06, SOU09]. All these examples
show that digital images and video have arguably become an essential source of
information and entertainment to a wide community of users.

To employ all this content to its full potential, users must be supported with
an efficient search. For this purpose, several strategies have been proposed, like
“query-by-image” [M. 95], where the user provides a picture and the system returns

1www.flickr.com
2www.youtube.com
3http://books.google.com/
4http://maps.google.com/
5http://maps.google.com/help/maps/streetview/index .html
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visually similar content, or “query-by-text”, where the user enters a few keywords
and retrieves content that is linked with these terms. The focus of this thesis will
be on the latter approach, i.e. on text-based retrieval. This can be considered
standard practice and is realized by services like YouTube or Flickr. However, it
requires an indexing that links the images and videos in a database with descriptive
keywords (or tags). The challenge of creating such an index has been referred to
as the semantic gap [SWSJ00], the discrepancy between low-level content in form
of raw pixel values on the one hand and a viewer’s high-level interpretation on the
other.

Current strategies towards bridging this gap perform an indexing on meta-data
like the filename (such as search engines like Google or Yahoo!) or rely on user-
generated tags and descriptions (as in case of Flickr and YouTube). Both these
strategies are fairly limited: meta-data like descriptive filenames or surrounding
text may simply not be at hand. A manual annotation comes with considerable
effort and is at the same time limited in other ways: first, users tend to use only
the first few words that come to their mind, i.e., tags are incomplete. Second, users
give descriptions with respect to their personal prior knowledge and expectations of
the clip, i.e. tags are subjective. Third, users often simply assign the same words
to complete image groups or to a video clip of several minutes length. These
descriptions do not tell us where exactly specific concepts appear, i.e. they are
inherently coarse. To some extent, these problems might be overcome by a more
careful manual indexing. This however, would be associated with considerably
more effort and is thus simply infeasible in most situations.

This opens the question whether computer systems can automatically link
low-level content with high-level semantics. Over the last few years, a break-
through of such content-based image and video understanding technology has
taken place, and some solutions have already been integrated with commercial
products: Google image search uses a content-based detection of faces, clip art,
and line drawings [GOO09], Picasa employs automatic face recognition for photo
albums [BBC08], and video search engines like Blinkx benefit from speech tran-
script and visual features [BLI09]. Other applications where content poses a useful
information source are the detection of copyright infringement [ANV09] or object-
based retrieval [KOO09, VIP09].

Concept Detection

All these techniques have made their way from research into commercial prod-
ucts over the last years by solving a specific recognition task, like face detection

2



CHAPTER 1. INTRODUCTION

(a) (b) (c) (d)

Figure 1.1: These sample images illustrate for the concept “desert” that concept de-

tection poses a difficult challenge to visual recognition systems. Enormous intra-class

variation occurs due to changes in illumination (a,b), occlusion and perspective changes

(c), and variation in the concept itself (d) (pictures from YouTube).

or the search for visually similar content. This opens the question whether vi-
sual recognition can be applied to a wider range of generic concepts, including
objects (“airplane”) as well as locations (“desert”), programme types (“weather re-
port”), or actions taking place (“interview”). This challenge has been referred as
automatic tagging [DJLW07], image / video annotation [FML04], high-level feature
extraction [KO07], or concept detection [YH08]. Throughout this thesis, the term
concept detection will be adopted.

Given an input picture or video clip, concept detection systems use statis-
tical models over low-level features derived from its content to compute scores,
which indicate the probability for target concepts to appear. Thereby, the num-
ber of target concepts is usually high (i.e., in the range of hundreds / thousands).
This renders the development of specialized techniques (as it has been done for
faces [ZCPR03, YKA02], for example) infeasible, and a generic approach is re-
quired. Also, while other visual recognition systems are applied in restricted en-
vironments, concept detection systems should work on a wide range of domains,
including photos [RvBKB08], consumer video [CEJ+07], TV [SOK06], and web
video [ZMZP08]. This poses strong robustness requirements: first, systems must
cope with well-studied phenomena in computer vision, like changing camera pa-
rameters, illumination variations, clutter, or occlusion. Further, other factors like
coding quality or high intra-class variation of concepts must be taken into account.
Finally, in some cases the presence of a concept may not even be well-defined but
prone to subjectivity. These aspects (which are also illustrated in Figure 1.1) ren-
der concept detection an extraordinarily difficult challenge, and the annotation
quality achieved by state-of-the-art systems is far from the accuracy of a careful
manual annotation.

3



Despite these difficulties, concept detection is of practical interest, as a map-
ping of content to semantics — even if it is unreliable — can help to solve a
variety of tasks. The most important one is image and video search, which is a
vital problem [VID08] as data load has become massive. In this context, concept
detection is applied by first mining image and video databases for a vocabulary of
target concepts. At retrieval time, textual queries made by the user (like “lake”)
are mapped to appropriate concepts in the vocabulary (which might be “water”,
“river”, etc.), and detection results from the corresponding concepts are aggregated.
This way, a text-based search can be realized free of manual indexing on the test
data, which is why concept detection has been attributed potential to become
an integral part of video search technology [SOK06, SWdR+08]. Other applica-
tions include content management tasks, like video feed filtering, content-based
recommendation systems [YMH+07], the personal delivery of image and video di-
gest, and context-sensitive multimedia advertising [MHYL07]. Further, concept
detection can support users with tagging their content (for example, by suggesting
keywords) [SvZ08]. Finally, the detection and blocking of specific concepts (like
pornography or violence) is of interest [DPN08, GY08].

We conclude that if we could apply concept detection in large-scale practical
applications, we could significantly improve the accessability of image and video
data in two ways. First, more efficient search could be granted, as videos could
now be indexed on shot level: imagine a 10-minute YouTube clip showing different
sights of Paris — while a manual annotation of all scenes is time-consuming, con-
cept detection can achieve this automatically and find specific views of, say, Notre
Dame Cathedral. Second, we could access significantly more content, simply be-
cause a manual indexing becomes impractical at a certain scale but is still feasible
if done automatically. Considering the size and — more importantly — the growth
rate of image and video collections [Inc09, Auc07], this is of vital importance.

Unfortunately, a practical large-scale application of concept detection is limited
by a fundamental scalability problem: concept detection systems are usually based
on supervised machine learning techniques [CHL+07, Sno07, WLL+07, YH08] (for
an introduction to the field, please refer to Chapter 2), and these techniques require
training examples for any concept to be learned. Since target concepts can be
visually complex, each one might require hundreds of sample views. So far, this
problem has been overcome to some extent by acquiring ground truth labels in joint
efforts of the research community [AQ08, NST+06]. Yet, such a time-consuming
acquisition restricts concept detection in several ways: first, it limits the number of
concepts that can be learned, such that the size of current detector vocabularies is
a magnitude below the quantities that are probably needed for an accurate video
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search [HYL07]. Second, it has been pointed out that detectors overfit to small
manually acquired training sets and generalize poorly [YH08]. Third, keeping
track of dynamic changes of users’ information needs is infeasible as new concepts
of interest emerge (such as “Barack Obama” or “Olympics 2008”). From this, I
conclude that concept detection suffers from a lack of proper training data and
strategies.

Goal and Outline of this Thesis

To realize a broader applicability of concept detection at a larger scale, the goal
of this thesis is to reduce the annotation effort associated with concept learning
and thus achieve a better scalability and flexibility of concept detection. Thereby,
the focus is on the visual aspects of the problem (which does not pose a strong
limitation, since a combination with other modalities like text and audio is usually
done in subsequent fusion steps).

To achieve this goal, an approach is presented that employs a variety of novel
information sources. These can be used to substitute conventional training data
(such that annotation effort for the user is reduced) or to complement it (such
that concept detection is improved at no — or negligible — extra cost). Such
information can be found at different levels of abstraction in the video stream: on
a low level, motion information can give valuable clues for certain concepts. On
a medium level, the hierarchical structure of video content as a composition of
shots, scenes, or shows can be exploited. Finally, on a high level, novel sources of
training data can be investigated. As a successful and scalable concept detection
should ultimately exploit all information available, the work presented in this thesis
will cover all these levels. While the focus will generally be on aspects that are
characteristic to video content (like motion information), some of the presented
techniques and results apply to images as well. This will be pointed out on a
per-case basis.

More precisely, four strategies are presented for driving concept detection to-
wards less supervision:

1. The use of web video as a novel source of training data

2. The adaptation of concept learning to noisy training labels using relevance
filtering

3. The use of context information by combining concept detection with style
modeling
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4. The use of motion-based segmentation for an improved recognition of
objects.

Each approach will be addressed in one chapter of this thesis, and will previously
be outlined in one of the following subsections.

1.1 Employing Web Video

A first approach to reducing the manual annotation effort associated with concept
learning is to investigate alternative sources of training data. For this purpose,
Chapter 3 of this thesis proposes web video portals like YouTube, MSN Soap-
box, Myspace, etc, from which large quantities of video content can be obtained
automatically together with descriptive user-generated tags. By employing these
tags as class labels, web data can complement manually annotated training sets
or even substitute them completely, such that a concept learning free of man-
ual supervision is performed. This offers vital advantages in terms of scalability
(more concepts can be learned) and flexibility (adaptation to changing and newly
emerging concepts can take place).

On the downside, it is to be expected that web video as a training data source
leads to lower detection rates compared to manually annotated training sets. This
is due to two reasons: first, web video as a domain is complex, including TV content
as well as home video, and potential target domains where concept detectors are
applied may differ significantly from web-based training material. Second, the
label information associated with web video is coarse and subjective, which can
have a severe impact on concept learning.

Chapter 3 investigates whether — despite these problems — visual learning
from web video can be successful. A concept detection system named TubeTag-
ger is presented that employs content downloaded from the portal YouTube for
training. The system integrates several types of visual features, like color, tex-
ture, motion information, and a patch-based description. TubeTagger is the first
concept detection system learning from web video.

An evaluation is presented in which the system is trained on YouTube content
and applied to several target domains, including standard data from the TRECVID
benchmark [SOK06]. It will be shown that web-based concept learning can be
successful in general, and situations will be pointed out in which web video material
should complement or even substitute a manual training.
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1.2 Relevance Filtering

One characteristic of web video is that its tags are context-dependent, subjective,
and coarse, a phenomenon that will be referred to as label noise in the following.
This causes problems for concept learning, as significant amounts of training mate-
rial are not visually related to the target concept. To achieve a higher robustness,
Chapter 4 of this thesis proposes to adapt the statistical models underlying concept
detection such that label noise is explicitly taken into account. This approach will
be referred to as relevance filtering. It models the relevance of training content as a
latent random variable. During training, this variable is inferred, i.e. non-relevant
content is identified and filtered out. In contrast to relevance feedback [RL03]
(which is targeted at a refinement of retrieval results at query time), relevance
filtering is applied at training time and combines the elimination of non-relevant
material with concept learning. This can be used as a wrapper around standard
supervised models, as is demonstrated for a generative approach (kernel densities)
and a discriminative one (Support Vector Machines).

In experiments on web video data, it will be demonstrated that YouTube tags
do in fact show significant label noise (typically, only 20 − 50% of material are
visually related to the target concept). Also, it is shown that the performance of
standard concept detection models based on supervised learning degrades severely
when trained on such data. In contrast to this, relevance filtering extensions show
a higher robustness to label noise, which is achieved by reliably identifying non-
relevant content.

1.3 Style Modeling

A third strategy is based on the observation that pictures and video tend to come
in a context: while current standard approaches apply concept detection individ-
ually on image or shot level, users tend to produce groups of visually correlated
material in practice. Examples for this include multiple snapshots taken over
the same holiday trip or video streams coming in temporal units such as scenes,
movies, or episodes. These image groups share a certain coherence both in terms
of visual appearance and the concepts they show. While this context information
has been widely neglected so far, a well-founded probabilistically motivated way
of employing it is investigated in Chapter 5.

To do so, concept detection is integrated with style modeling from the domain
of optical character recognition [MB02, SN05]. The approach assumes the pictures
or frames in a group to belong to a latent category (or style). To learn these
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styles, I will again turn towards web portals, which offer training content enriched
with category information. Different annotation models are learned from web
categories and serve for an accurate style-specific tagging. Test images can be
mapped reliably to an adequate style using their context – this way, a more accurate
concept detection is achieved by tagging groups of correlated pictures instead of
individual ones.

This novel approach is evaluated on the COREL image dataset and real-world
photo stock downloaded from Flickr. In these experiments, different styles cor-
respond to locations and travel scenarios, i.e. the annotation of personal holiday
snapshots is simulated. It is demonstrated that style modeling helps image anno-
tation to disambiguate and improves the overall tagging performance significantly.
Compared to several baselines that label images individually, relative improve-
ments of up to 100% are reported. Also, the proposed approach achieves the best
result reported to date on the well-known COREL-5K benchmark (mean per-word
precision/recall: 25% / 39%). This is achieved by modeling context, which is not
employed by other methods from the literature.

1.4 Motion-based Segmentation

Motion is investigated as a low-level video-specific feature in Chapter 6. Most
concept detection systems make only limited use of this information source — it is
ignored entirely [CHL+07, WLL+07] or used in form of low-level descriptors [HN07,
Sno07, USKB08a]. Instead, in this thesis a concept detection approach will be
presented that uses motion in a different way, namely as a source of segmentation
information. Such a motion-based segmentation in video can separate objects from
the background, even in situations where color and texture alone are not sufficient.

However, motion segmentation is error-prone, as fundamental assumptions like
pixel constancy or spatial coherence [BA96] are often violated in practice. There-
fore, this thesis first makes two contributions targeted at an improved robustness
of segmentation. First, a novel approach for the estimation of a parametric global
motion (which is usually associated with the background region) is proposed. This
method is based on the RAST algorithm from geometric matching [Bre92], which
performs a branch-and-bound search of transformation space and thus guarantees
a globally optimal solution. Second, an extension of a direct motion segmentation
approach – which estimates motion and region boundaries in a joint process – is
presented, whereas parametric color models are used as additional segmentation
clues. In quantitative experiments on a variety of synthetic motion fields and video
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Style Modeling (Chapter 5)

Relevance Filtering
(Chapter 4)

Motion Segmentation
(Chapter 6)

Web Video Training Data
(Chapter 3)
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Statistical Model
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Figure 1.2: An illustration of the proposed concept detection approach applied for the

concept “elephant”. Web video content is employed for training, non-relevant content is

automatically filtered, and optionally motion-based segmentation can be used to separate

objects from the background. The resulting model is applied in testing (bottom), whereas

a style model achieves an improved annotation by making use of context.

data, both these approaches are demonstrated to give performance improvements
over several baselines.

This motion segmentation technology is finally integrated with a patch-based
recognition approach, leading to a novel approach for concept detection and object
recognition. Motion segmentation serves as a filter, such that only features from
the object region are employed for recognition. It is shown that with this approach
the robustness of object recognition and concept detection with respect to clutter
is significantly improved over the state of the art.

1.5 Framework

Altogether, the aforementioned contributions constitute a novel approach for an
efficient and widely unsupervised visual learning from web content. This frame-
work is illustrated in Figure 1.2: to train a target concept (like “elephant”), the
system acquires image and video data from web portals like YouTube or Flickr.
This can be done fully automatically, or using a refined user query to guarantee a
better quality of material. A web-based training set is obtained and refined using
relevance filtering, which identifies non-relevant content and relabels it. Addition-
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ally, a user can set a flag indicating that a concept corresponds to an object, in
which case motion segmentation can be used to achieve an increasing robustness
to clutter. Finally, different versions of the framework can be instantiated for dif-
ferent categories (which are associated with different visual styles). Given a video
shot to be annotated, context from the same video is used to select an appropriate
style (like “Safari”), and a style-specific model is used for concept detection.
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Chapter 2

An Overview of Concept

Detection in Video

Currently, most commercial video search technology relies on manually gener-
ated descriptions and tags. The problem with such an indexing is that it is
incomplete, subjective, or just not at hand in many practical situations. Also,
its creation becomes increasingly difficult as more and more content is accumu-
lated [Jun09, Sme07] and a manual annotation becomes infeasible. This leads to
the question whether computer systems can create indices automatically by infer-
ring the presence of high-level concepts like objects (“cat”), locations (“beach”), or
activities (“dancing”), from the content of an image or video. This challenge is the
focus of this thesis, and has also been subject to intensive research in content-based
video retrieval (CBVR) over the last years. It has been referred to as concept
detection [NS04], high-level feature extraction [OAKS07], automatic video index-
ing [SW05b, WLL+07], or (for the domain of still images) annotation [LLM03] or
tagging [JM04].

In the following, a compact and general overview of research in the area will
be given, with the focus on the video domain. Other approaches that are more
specifically related to the contributions made in this thesis (including some related
approaches for still images) will be covered in appropriate chapters later. I will
start with a definition of concept detection (Section 2.1), will then address the
most important application areas in Section 2.2, will survey the most frequently
used methods in Section 2.3, and will finally discuss issues related to the manual
supervision required for concept learning in Section 2.4.
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2.1 Problem Statement

The purpose of concept detection is to analyze the audio-visual content of a video
and automatically infer keywords (or tags) indicating the presence of semantic
concepts. So far, we have only stated that these concepts can be associated with
a wide variety of semantics, including objects as well as scene types or activities.
To understand the notion of a “concept” in more detail, let us refer to the term
relevance in information retrieval: we assume that a concept is matched by certain
videos or images that are relevant to it. This means that a concept is ultimately
defined by all its relevant content.

For standardization purposes, concepts have also been described by textual
definitions, like t1 := “one or more people playing soccer” (LSCOM Concept 017,
“soccer” [LSC]). It is important to note that such a textual description is not
sufficient to fully explain a concept. For example, consider the following alternative
definitions:

t2: “shots about soccer”

t3: “shots that User A would label with soccer”

t4: “shots that a YouTube user has labeled with soccer”

Obviously, these concepts are similar to t1 but not identical. First, when comparing
t1 and t2, it becomes clear that concepts need not necessarily refer to a visibility
of certain objects (as t1), but other, subtle relationships may define relevance (for
example, a soccer shoe advertisement or an interview with soccer legend Pelé may
be relevant for t2). Looking at t3, things get even more complicated: the view of a
user may differ from what others consider soccer. Even t3 itself — i.e., the view of
a single user — is not well-defined, as A’s expectations and background knowledge
may change over time (and with it his understanding of a concept).

An illustration of these problems is given in Figure 2.1 for the concepts “desert”
and “eiffeltower”. In some cases (top row), most users would agree that the con-
cept is present (for example, see the “desert” shots showing sand dunes). In other
cases, different users might have different opinions (for example, a landscape might
be considered “desert” or “prairie”, or the relation between “desert” and the an-
cient Egyptian culture might be taken into account or not). Even for seemingly
well-defined concepts such as objects (like “scenes that show the Eiffel Tower”),
ambiguity occurs: the object may be difficult to recognize, and a user’s assessment
whether the concept is visually present may be different after he/she has visited
Paris and climbed the tower.
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(a) (b)

Figure 2.1: Borderline cases of concept presence are frequent, as illustrated here for

the concepts “desert” (a) and “eiffeltower” (b). In contrast to obvious cases (top row), in

many situations concept presence is difficult to judge (bottom), as concepts are difficult

to recognize or prior knowledge is required (pictures from YouTube).

To some extent, this problem can be overcome by a precise textual description
of what is meant with the concept, as it has been done in concept detection re-
search [NST+06]. An alternative for choosing less ambiguous concepts is indicated
in t4, whose definition is derived from real-world data, and user subjectivity is ad-
dressed by relating concept presence to the tagging behavior of the whole YouTube
community.

Overall, despite the aforementioned difficulties, it is usually assumed in con-
cept detection that concept presence is well-defined, and we will adopt this view
throughout this thesis. Yet, it should be kept in mind that this assumption is not
correct, and that ambiguity is inherent to practical concept definitions.

Definition “Concept Detection” Given the fact that a concept t is ulti-
mately defined by its relevant content, concept detection is the problem of decid-
ing whether a video X is relevant for t. The input of a concept detection system
consists of (1) the video X, which can be a long clip or a single shot (i.e. a scene
not interrupted by any cuts), and (2) a vocabulary of target concepts (or tags)
t1, ..., tn as defined above. The goal of concept detection is to estimate scores
φt1(X), ..., φtn(X) indicating whether each concept appears in X. These scores
may be interpretable as probabilities, but this is not necessarily the case — it
may be sufficient that videos can be ranked by sorting them according to their
score. It is important to note that this multi-class problem is usually divided into
many binary classification problems: the score for each concept is estimated sep-
arately, and correlations between concepts are taken into account in subsequent
postprocessing steps. This approach will be followed throughout this thesis.
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Usually, the mapping φt(.) is modeled using a statistical classification algo-
rithm (e.g., a neural network or a Support Vector Machine). Previous to concept
detection, the parameters of this classifier φt(.) are learned in a training step. For
this purpose, training videos x1, ..., xn are given, with labels y1, ..., yn ∈ {−1, 1}
denoting the presence/absence of t.

2.2 Applications

One fundamental characteristic of concept detection is its generality: concepts can
cover a wide range of semantics, including objects, scenes, activities, etc. On the
one hand, this renders the task a challenging problem with high intra-class variance
and hundreds or thousands of categories involved, and (depending on the concept)
classification accuracy can be low. On the other hand, this generality makes con-
cept detection applicable in a variety of practical use cases, where a linking of
low-level content with high-level semantic descriptions (even if it is inaccurate) is
of interest:

• Video Search: The most prominent application of concept detection is the
text-based search in video databases. For each concept in a predefined vocab-
ulary, a detector returns shots from the database that are most likely relevant
for the concept. Textual queries formulated by users are then mapped to the
concept vocabulary, which can happen manually [CH05], by using concepts
as filters [Sme07], or employing an ontology [SHH+07]. Alternatively, con-
cepts can define a semantic space [TNS07] and form the basis of further
machine learning techniques.

While early studies on the utility of concept detection for retrieval were
rather sceptical [CH05], rapid improvements could be made in terms of map-
ping techniques and vocabulary size. Correspondingly, concept detection
(though not as accurate as a careful manual annotation) is now attributed
potential to become a key building block in modern content-based multime-
dia search systems [HYL07, Sme05, SWdR+08], and several CBVR systems
exploit lexicons of visual concept detectors [SWdR+08].

• Video Content Management: While video search is the main focus of
concept detection, several related use cases exist in a broader video manage-
ment context. These include the content-based personal delivery or recom-
mendation of video digest [YMH+07], or context-sensitive multimedia adver-
tising [MHYL07].
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Figure 2.2: The processing pipeline of a typical concept detection system. An input

video is segmented into shots, from which representative keyframes are extracted. Shots

and keyframes are described by numerical features, which are fed to statistical models

estimating concept scores. These scores are fused over keyframes and over different fea-

ture modalities (intra-concept fusion), and are finally refined using correlations between

concepts (inter-concept fusion).

• Video Annotation: Another application of concept detection is the annota-
tion of video content. Obviously, tags can be derived directly by thresholding
concept scores. Even though the performance of current detectors may not
be sufficient for such a fully automatic keyword assignment, systems can
support users with tagging their videos in a semi-automatic fashion [SvZ08]
(for example, by suggesting keywords).

• Specific Concepts: Finally, the detection and blocking of specific concepts
(like pornography or violence) is of interest to search engines or law enforce-
ment [DPN08, RJB06, GY08].

2.3 Methods

Soon after the development of first practical concept detection systems in the early
2000s [NH01], the TRECVID campaign [Sme05] was established, a video retrieval
benchmark providing researchers with uniform evaluation procedures and stan-
dardized datasets. Research efforts on concept detection focus in TRECVID (with
over 40 research groups participating in the “High-level Features” task [KO08]),
though aside from TRECVID itself other efforts towards standardization and com-
parability are being made by sharing intermediate results like features, annotations,
and trained detectors [SWvG+06, YCKH07].

Figure 2.2 illustrates the processing pipeline of concept detection as it has been
introduced in [ABC+03] and is followed by the majority of systems. Video search
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is usually done on shot level, though other possibilities have been pointed out to be
of practical interest [Sme07] (for example, in a video annotation scenario, concept
detection should operate on video clip level). An input video is first segmented into
shots, i.e. scenes captured by a single camera without any interruptions by cuts
or similar transitions. Afterwards, features describing the content of each shot are
extracted. This can be done by selecting representative keyframes and applying
an image-based feature extraction, or by directly extracting features like motion
patterns from the video stream.

After this, features are fed to a statistical modeling, which estimates scores
indicating the presence of target concepts. Several models and feature types have
been proposed, each giving a different score. These are fused for each concept
(intra-concept fusion). Finally, correlations between concepts are taken into ac-
count in an inter-concept fusion. These steps are discussed in processing order in
the following.

2.3.1 Shot Segmentation

Shot segmentation (or shot boundary detection) is targeted at an automatic tem-
poral segmentation of the video stream. For this purpose, shot transitions need to
be detected, which can be hard cuts, fades, wipes, or similar effects. Usually, shot
boundaries are detected as sudden changes of visual appearance within pairs (or se-
quences) of subsequent frames. Several surveys give overviews of popular features
and decision rules [Han02, Lie01, YWX+07]. The problem is well understood, and
(particularly for the most frequent hard cuts transitions) a high accuracy can be
achieved.

2.3.2 Keyframe Extraction

The goal of keyframe extraction is to select frames that represent the visual content
of a shot well. This step is motivated by two reasons: first, computational cost is
reduced significantly compared to a full usage of all frames in a shot, and second,
video data is reduced to images, for which a basis of well-understood features and
statistical models exists.

Often, very simple keyframe extraction methods are used that extract a sin-
gle keyframe per shot, for example the center frame [Sme07, WCGH99]. More
elaborate techniques have been presented for video summarization, where the se-
lection of proper keyframes is critical for visualization purposes. These methods
use adaptive techniques to extract a number of keyframes per shot. One cate-
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gory of approaches estimates candidates for keyframes at points of strong content
change [ADDK99]. Others use unsupervised learning techniques and return cluster
representatives as keyframes [HM00, HZ99, MRY06].

In the context of concept detection, such adaptive methods are not in the main
focus of research. However, it has been demonstrated before that increasing the
number of keyframes improves concept detection [Yua07, SWG+05, USKB08a].

2.3.3 Feature Extraction

A variety of features has been investigated in concept detection to describe the
content of video frames and serve as discriminative input for statistical modeling.
A full survey of descriptors is far beyond the scope of this thesis (please refer to
overview papers like [DKN08, SWSJ00]). Instead, in the following a characteri-
zation of the most frequently used types of features is given. While the majority
of approaches is based on earlier work for still images, additional video-specific
features will be covered as well, like audio, motion, or overlayed text.

Color Color — a standard feature in image retrieval — is also frequently used in
concept detection. Popular examples are color histograms [WLL+07] or moments
of the RGB color channels [YHC07, YH08].

To include information on the spatial layout of color, features are usually binned
by partitioning frames into grids (or by segmenting them automatically), and fea-
tures for the single partitions or regions are concatenated. This principle applies
to all visual feature categories in the following.

Texture Properties of image texture like coarseness and orientation can be dis-
criminative cues for concept detection. They are represented using histograms
over Tamura features [TMY78], or by filtering with banks of Gabor features
at varying orientation and scale (followed by an aggregation of results via mo-
ments) [YHC07, YH08]. As alternative filters, Haar wavelets have been pro-
posed [CHL+07].

Edges Edges make features that are strongly related to image texture. Descrip-
tors of this category are mostly histograms over the orientation of edges [WLL+07],
which can be extracted using a standard detector (e.g. Canny’s method [Can86]).
A soft version of this feature based on the image gradient is called histogram of ori-
ented gradients (HOG) [DT05], and has also been successfully applied to concept
detection [CHL+07].
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(a) (b) (c)

Figure 2.3: An illustration of a patch-based approach (images from [SREZ05]): given

training images (a,b) showing instances of an object category (here, faces), a patch-based

approach learns the most discriminative local patches (c) for an object class (here, eye

and forehead).

Patches Over the last years, patch-based descriptions have become popular in
computer vision research, which replace global image-level features (like color his-
tograms) with representations based on collections of local image parts. With this,
a higher robustness can be achieved with respect to deformations, clutter, and par-
tial occlusions. An illustration of a typical approach is given in Figure 2.3, where
local patches associated with the concept “face” are displayed. These patches are
learned from unsegmented training images despite significant background clutter.

This development is based on novel feature detectors and descriptors with
strong invariance and robustness properties, which allow to detect and match
similar features even in case of strong changes of scale, illumination, and view-
point [BTvG06, KB01, Lin98, Low04, MCMP02, MS04]. Overviews and quanti-
tative evaluations of local features can be found in the literature [Rot08, Mik03,
SMB00]. Recognition systems that are based on these methods have been stud-
ied intensively in computer vision research over the last decade [BWP00, DKN05,
FFP05, FML04, FPZ03, HL04, MLS06, SZ03, UVNS02].

Outstanding popularity has been achieved by a data-driven discretization of
visual features in a clustering process, which is usually referred to as the bag-
of-visual-words (or bag-of-features) model [FFP05, QMO+07, SREZ05, ZMLS07].
This approach draws an analogy to the well-known bag-of-words representation
from text processing [Lew98]: just like a document is represented by counts of
occurrences of words, a visual document (or image, respectively) is represented
via counts of visual words, i.e. categories of image patches. These categories are
typically estimated using a clustering (an alternative is a supervised training on
patches manually drawn from segmented image regions, as for van Gemert et al.’s
protoconcepts [vGV+06]).
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Models based on the resulting descriptors have demonstrated an excellent per-
formance in object category recognition benchmarks [EZWvG06], and have also
recently been applied successfully to concept detection in video [JNY07, SZB08,
vdSGS08].

Motion While all features above are extracted from static keyframes, some pre-
vious work exists that employs the dynamic content of video in form of motion
features. These are usually extracted from 2-dimensional motion vectors in the
image plane, which can be obtained using a tracking of sparse features [TK91] or
a dense estimation of optical flow [BB96]. For video content, such motion fields
are also directly encoded in the video stream, which can form the basis of fast,
compressed-domain features like motion histograms [ACAB99, MZ03]. Such fea-
tures have also been demonstrated to improve concept detection compared to static
image descriptions [HN07, USKB07, USKB08a, Sno07].

A related idea of capturing dynamic video content is to extend patches [SMB00]
from static images to spatio-temporal ones extracted from the video volume (the
time domain is included as a third dimension). Interest point detectors are used
which are attracted by points in the video volume showing both salient image
features and motion changes. These have been studied in the context of human
action recognition, and Schindler et al. have also tested them for web video tag-
ging [SZB08]. Despite these efforts, the concept of motion has been studied to a
limited extent and is not used to its full potential yet. Its further investigation has
been called a key challenge of content-based video retrieval [Sme07].

Text Another valuable clue is text information in video. It appears in the scene
itself (for example on road signs or T-shirts), it is overlayed during post-production,
it is added as meta-data in form of closed captions, or it appears as spoken lan-
guage in the audio track. In all these forms, text provides a strong feature for
concept detection, even if it is degraded due to weaknesses of speech recognition
or OCR [WCGH99].

The extraction of scene text is currently an active research area of computer
vision [Luc05] and has not reached the maturity of being applicable to concept de-
tection. Key burdens are compression artifacts and strong variation of text scale
and design. In contrast to this, overlayed text can be successfully extracted at rea-
sonable recognition rates using optical character recognition (OCR) [WCGH99].
Spoken language can be extracted to some extent using automatic speech recogni-
tion (ASR), which is also used as a feature in TRECVID [HOdJ07].
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2.3.4 Statistical Models

We use statistical models to make a decision of concept presence based on a video’s
low-level features. Given an input feature vector associated with a keyframe or
shot, a statistical model estimates a numerical score φt indicating the presence of
a target concept t. In a probabilistic setting, these scores can be interpreted as
a posterior of concept presence, but this is not necessarily the case, as scores are
often only used for a ranking of items. Usually, the estimation of φt is treated as a
classification problem with two classes, concept presence and absence. The model
φt is learned from a set of samples x1, ..., xn ∈ Rd with labels y1, ..., yn ∈ {−1, 1}
indicating concept presence. A variety of models has been suggested in the pattern
recognition literature [DHS00]. Since a full survey is far beyond the scope of this
thesis, only the approaches most frequently used in concept detection are briefly
outlined in the following.

• Support Vector Machines (SVMs): Support Vector Machines are one
of the most widely used classification algorithms today. They are also a pop-
ular choice in concept detection, which is empirically motivated by excellent
results obtained in standard benchmarks [KO08].

SVMs are based on two fundamental ideas. The first one is linear maximum-
margin classification, i.e. the decision boundary separating classes is chosen
to be a hyperplane maximizing the distance from the training samples xi.
The second idea addresses the fact that in many practical situations non-
linear decision boundaries are required. This is achieved by mapping samples
xi to a potentially high-dimensional space H using a function Φ : Rd → H.
As only the computation of the inner product K(x, y) := 〈Φ(x),Φ(y)〉 is re-
quired, we can abstract from the space H and only compute the similarity
(or kernel) K, which has been referred to as the kernel trick. An in-depth
introduction to SVMs and their theoretical properties can be found in tuto-
rials [Bur98] and in the literature [SS01].

• Maximum Entropy: Like SVMs, Maximum Entropy follows the idea of
discriminative classification, i.e. the decision boundary between classes is
modeled directly. However, while SVMs choose this decision boundary by
margin maximization, Maximum Entropy follows a different strategy: train-
ing data is used to impose constraints on the class posterior P (c|x), but
P (c|x) is chosen to be as uninformative as possible otherwise. This can lead
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to a posterior of the form:

P (c|x) =
1
Z

exp

(
λ0 +

∑
i

λi · xi

)
.

where x is the input sample, c the class, and λ a parameter vector. An
introduction to the approach can be found in [NLM99]. The method has
been applied to concept detection [ABC+03] and image annotation [JM04].

• Nearest Neighbor (NN): nearest neighbor matching [DHS00] offers a sim-
ple, transparent, and intuitive approach: a sample is classified by finding the
most “similar” training samples and adopting their class labels. More pre-
cisely, if finding K such nearest neighbors x′1, ..., x

′
K with labels y′1, ..., y

′
K ,

the posterior for class c is set to:

P (c|x) ≈
|{x′j |y′j = c}|

K
.

A number of other models has been employed for the annotation of still im-
ages, but has not (or only marginally) been investigated for video to the best of
the author’s knowledge. Examples include generative mixture models [CCMV07],
topic models [FFP05, MGP04], or relevance models [FML04, LLM03].

2.3.5 Intra-Concept Fusion

Different keyframes of a video, features associated with them, and statistical mod-
els provide different concept scores. To combine this information to a global score,
two general strategies exist: First, early fusion, where different features are con-
catenated before classification. While this strategy offers the benefit that all infor-
mation is available to the classifier simultaneously, the combined feature vectors
can be high-dimensional, such that the resulting methods are often inefficient and
prone to overfitting. Late fusion offers a simple alternative by applying keyframe-
or feature-wise classifiers and combining their scores. To do so, several strategies
have been suggested:

• Simple heuristic schemes that set the fused score to the maximum, min-
imum, median, product, or mean of the input scores. Such combinations
are simple and fast to compute. They can be motivated by a probabilistic
interpretation under score independence (for the product rule [LH02]), or by
a high robustness to incorrect outlier scores (for the sum rule [KHDM98]).
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• Re-ranking methods, which do not operate on scores but fuse several
ranked retrieval lists to a final output list. This fusion can be done by
minimizing an average distance with respect to the input lists, or by treating
rank as a score as by Borda’s method and variants [vES00].

• Classifier combination: more generally, intra-concept fusion can be seen as
a combination of classifiers, for which we can refer to a variety of well-known
techniques. For example, Lin and Hauptmann apply standard classification
methods to the input scores [LH02]. Other possibilities are stacking, cascad-
ing, or boosting [DHS00, Ch. 9]. The benefit of these techniques is that —
since they are supervised and employ class labels — irrelevant features can
be identified and given lower influence on the final score.

2.3.6 Inter-Concept Fusion

So far, we have addressed the design of an independent detector for each concept.
In practice, however, the occurrence of tags can be strongly correlated: for exam-
ple, the presence of the concept “car” is heavily related to the presence of “outdoor”
and “street”.

It seems reasonable that concept detection should take this information into
account. As a joint detection of concepts is infeasible due to combinatorial prob-
lems, inter-concept correlation is usually modeled in an additional postprocessing
step referred to as inter-concept fusion [WLL+07]. This can be seen as another
classification problem, where concept-wise scores serve as input features and an
overall score is to be computed. For this purpose, neural networks have been
tested [DZ07], and Jiang et al. [JCL07] propose a probabilistic formulation based
on conditional random fields with potentials over concept pairs.

Overall, it has been demonstrated that concept detection can be improved
significantly using a context-based fusion step. Correspondingly — though it is
not the focus of this thesis and will be omitted in the following — it should be
kept in mind that inter-concept fusion could still be added as a post-processing
step.

2.4 Levels of Supervision

So far, the setup and internal structure of concept detection systems have been
characterized. Particularly, the use of adequate statistical models over content-
based features has been pointed out to be a key component. All statistical mod-
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els outlined so far require training frames x1, ..., xn with associated class labels
y,..., yn ∈ {−1, 1} indicating concept presence. This approach is referred to as
supervised learning.

Note that — as the number of target concepts is large — the effort associated
with acquiring labeled training data is enormous. Therefore, the key question
addressed in this thesis is whether we can acquire alternative information sources
such that concept detector training can be performed with lower annotation effort.
This alternative information might come in form of more samples xi and labels yi.
In this case, we remain in the standard supervised learning setup. However, other
kinds of information might be of interest as well:

• Presence / Absence of Image Segmentation: Often, a concept in an
image or frame is not related to the whole picture, but only to a certain
region in it (like “faces” in a portrait picture). The rest of the image is
background (or clutter) which is weakly related to the concept or not at all.
Note that the standard setup mentioned above does not provide us with the
information where in the image the concept appears, i.e. concept learning
must be robust with respect to clutter.

Alternatively, if training images came with additional segmentation infor-
mation, the learning of concept models could be simplified (as clutter has
no influence) and better concept detectors could be expected. For example,
Snoek et al. [SWG+06] train a small set of generic concepts on segmented
images.

• Presence / Absence of Temporal Segmentation: An analogy to im-
age segmentation can be drawn for the temporal dimension of video. For
training, a concept detection system is usually given a set of frames with
labels indicating for all of them whether the concept appears or not. While
this information can be difficult do provide, alternatively, we might give the
system long video clips and only tell it whether the target concept appears at
some time in a video, but not when exactly. Compared to the supervised sce-
nario above (where each frame needs to be labeled), this setup would require
significantly less annotation effort.

Note that both these definitions take additional structure of video content into
account, namely the fact that frames are composed of pixels, and the fact that
frames come in temporal sequences. This information cannot be modeled using a
plain supervised learning setup with frames as samples and frame-level labels.
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Therefore, one focus of this thesis is to drive concept detection towards less
supervision by employing information beyond keyframe level. Thereby, the under-
standing of “supervision” is a practical one: when referring to weakly supervised
concept detection, I mean that less manual annotation effort is involved in system
training or that concept detection is improved at no extra cost. This does not
necessarily refer to the fact that fewer labels are provided — it can simply mean
that label information is acquired from other sources (Chapter 3), that labels are
coarser (Chapter 4), or that additional segmentation information is inferred auto-
matically (Chapter 6).
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Chapter 3

Concept Learning from Web

Video

The effort associated with the manual acquisition of training examples poses a key
challenge to concept detection. To overcome this problem, this chapter suggests
web video as a novel source of training data, offering a scalable and flexible concept
learning. The main contributions of this chapter are1:

1. A system is presented that learns to detect concepts by automatically down-
loading training material from the video sharing web-site YouTube. This
system performs an autonomous learning, which can scale to thousands of
target concepts and keep track of dynamic changes.

2. It is demonstrated that YouTube-based detectors generalize comparably well
to novel target domains as detectors trained on manually acquired training
sets (a moderate relative performance loss of 11.4% occurs [n = 917, 662]).

3. It is shown that YouTube content can complement manually acquired train-
ing sets and improve generalization capabilities (relative performance im-
provement 11.7% [n = 917, 662]).

From these results, I draw the conclusion that web video cannot only complement
manually acquired training data, but can replace it entirely when generalizing to
new domains. This way, a detection accuracy comparable to the state of the art
can be preserved, and manual annotation effort is overcome.

1This chapter is based on the author’s work in [UKSB08, USKB07, USKB08a, USKB09]
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3.1 Introduction

Several applications in video retrieval — like search or recommendation — are
based on textual representations indicating the presence of semantic concepts,
like objects, persons, locations, and activities. In many practical situations, such a
textual description is not at hand, and a complete manual labeling is infeasible due
to the enormous size of today’s video databases. To overcome this problem, concept
detection (or video tagging) systems have been developed that automatically infer
the presence of concepts directly from the video content.

While concept detection has been implemented in research prototypes [CHL+07,
Yua07, Sno07], it has not been applied in practical large-scale settings yet. A key
reason for this is that state-of-the-art systems are based on supervised machine
learning techniques, and that these techniques require video content labeled with
target concepts for training purposes (an overview of the most frequently used
approaches has been given in Chapter 2). Currently, this training information is
acquired manually, i.e. operators annotate video data according to precise visual
criteria [NST+06]. The quality of the resulting training content is high in the sense
that the annotated concepts are carefully selected with respect to usefulness and
feasibility of detection, that clear, restrictive definitions of concepts are specified,
and that a precise annotation is done on shot level [NST+06].

On the downside, the effort associated with such data acquisition is enormous:
first, each target concept may be visually complex and thus require hundreds of
training samples. Second, the number of tags to be learned is high (in the range of
thousands) [HYL07]. Finally, concept detection systems tend to overfit to training
sets and generalize poorly to video content unseen in training, a problem that
is even more severe if a switch between different video domains takes place (for
example, from news video to home video) [YH08].

While concept detection research has strongly focused on news video so far,
other web-based video collections have emerged over the last years, like YouTube2,
Blinkx3, Myspace4, and many others. These services allow users world-wide to
share all kinds of video, ranging from TV news and documentaries over movie
scenes to home user content, like holiday clips or video blogs. Also, they have set
the platform for entirely new genres like interactive web-based series [Pat08]. For
retrieval purposes, these portals rely on textual descriptions and keywords (tags)
provided by users during video upload.

2http://www.youtube.com
3http://www.blinkx.com
4http://www.myspace.com
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Web video offers a large-scale, publicly available information source enriched
with tags and descriptions, which are provided by a community of millions of users.
The key idea of this chapter is to employ this information for concept learning. A
system is presented that implements this approach and performs a visual learning
from YouTube (correspondingly, the prototype is named TubeTagger). When trig-
gered to learn a concept, the system downloads videos tagged with the concept
and uses them for training. This way, web video can complement other training
sets or substitute them entirely, such that an autonomous concept learning free of
manual annotation effort takes place.

On the downside, training on web video poses a difficult challenge compared to
learning from state-of-the-art datasets specifically acquired for research purposes.
This is due to the enormous diversity of web video material, and due to its coarse
and unreliable label information. Therefore, the key question addressed in this
chapter is whether — using a state-of-the-art concept detection approach — visual
learning from web video can be successful. To answer this question, a quantitative
evaluation is presented in which the TubeTagger prototype is trained and tested
on a variety of video data, including web video as well as standard datasets from
the TRECVID benchmark [SOK06]. In these experiments, it will be demonstrated
that concept learning from web video is feasible, and that YouTube-based detectors
generalize comparably well to different domains as the ones trained on manually
acquired data.

The chapter is organized as follows: First, an overview of standard datasets
and annotations is given, and benefits and limitations of manual training data
acquisition are discussed (Section 3.2). Second, the idea of concept learning from
web video is introduced in more detail (Section 3.3). Related work in the context
of learning from web data is presented in Section 3.4. The TubeTagger prototype
is introduced in Section 3.5, and quantitative experiments are described in Section
3.6. A discussion concludes the chapter (Section 3.7).

3.2 State of the Art

The machine learning techniques underlying concept detection systems require
training sets of video data with labels indicating the presence of target concepts.
The standard approach is to acquire this information manually. As this is a time-
consuming (and thus cost-intensive) process, the research community has estab-
lished joint annotation efforts on standard datasets [NST+06, KO08, AQ08]. This
information is shared for evaluation purposes, which allows a straightforward com-
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parability of results and makes it possible for researchers to participate without the
overhead of manual labeling. Concept detection has made large steps forward due
to this approach, and significant progress on increasingly difficult datasets could
be recorded over the last years [KO05, KO06, KO07, KO08].

3.2.1 Datasets

Standard datasets for concept detection have been acquired for evaluation pur-
poses in the TRECVID benchmark [SOK06] or by related efforts from inside the
research community. The resulting datasets are of a high quality in the sense that
precise shot-level annotations are provided according to relatively clear criteria,
and that concepts are selected with respect to a feasible detection. Fore example,
operators assign labels on shot-level according to definitions like “shots that take
place (outdoors) at night. [...] Excluded are sports events under lights” (concept
“nighttime”, LSCOM dataset [NST+06]).

Since the focus of TRECVID has long been on news video, concepts are often
chosen to be characteristic for this domain [NST+06]. Accordingly, annotations
are provided on news video data, which applies for all of the following datasets:

• TRECVID: TRECVID’s “High-level Feature Extraction” task addresses
concept detection as a building block of video retrieval. Each year, par-
ticipating research groups submit detection results for a small number of
concepts (usually 10−20), which are then manually assessed on video collec-
tions of news or documentary TV. The resulting pool of annotations is made
publicly available5.

• LSCOM: Concept detection researchers do not only use common video data,
but have also designed common vocabularies of semantic concepts to be de-
tected. One such vocabulary called LSCOM (Large-scale Ontology for Multi-
media) has been created in 2005. It consists of 1, 000 concepts enriched with
semantic relations forming a multimedia ontology. Concepts for the lexicon
were manually selected by a consortium from research and industry accord-
ing to the following criteria [NST+06]: (1) utility — concepts should support
typical real-world retrieval use cases (2) coverage — the semantic space of
potential user interest should be covered well (3) feasibility — an automatic
detection of concepts from video content should be possible in general, and
(4) observability — concepts should occur frequently in standard datasets to

5http://www-nlpir.nist.gov/projects/trecvid/trecvid.data.html
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Figure 3.1: Detecting the concept “dog”. (a) Sample pictures showing dogs (left) or

not (right). Strong intra-class variation can be observed. (b) The equal error plotted

against the number of training samples (n = 4, 000, please note the logarithmic x-scale).

Recognition error converges at several hundreds of training samples (pictures taken from

petfinder.com and Flickr).

allow for statistically significant benchmarking results. Annotations on the
TRECVID’05 video data are available for 449 concepts [LSC].

• LSCOM-lite: As an interim result of the LSCOM effort, a smaller test
vocabulary called LSCOM-lite has been published [NKK+05]. 39 concepts
related to news video retrieval were selected in order to cover a diversity
of potential user interest. Concepts include program categories (“weather”),
scene settings (“outdoor”), objects (“airplane”), and activities (“people run-
ning”). Annotations on the TRECVID’05 video data are available [LSC].

• Mediamill: Researchers from Amsterdam University have designed a chal-
lenge problem for a component-based evaluation of video retrieval called
Mediamill Challenge [SWvG+06]. The challenge provides a lexicon of 101
concepts obtained by enriching the 39 LSCOM-lite concepts with further
sample tags. Detectors, baseline results, and extensive annotations are pro-
vided on the TRECVID’05 video collection.
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3.2.2 Limitations

The manual acquisition of datasets like LSCOM can be considered state-of-the-
art in concept detection research, and joint community effort has lead to concept
vocabularies of hundreds of tags. Further, a high comparability of research results
has been achieved and driven the field towards an applicability in practical video
search scenarios. Yet, concept detection remains strongly limited by the cost and
time associated with manual annotation.

This is due to several reasons. First of all, the intra-class variance of many
concepts is high. For example, pictures showing the concept“dog”vary significantly
with background clutter, object pose, camera perspective, and lighting. Further
variation occurs between instances of a concept, like in the case of “dog” between
different breeds. The consequences for concept detection are illustrated in a small
experiment: a training set of images showing dogs was acquired from the web6

and classified against non-dog pictures randomly sampled from Flickr. A state-
of-the-art concept detection approach was applied (visual word features, SVM
classifier — for details, please refer to Section 3.5), and the equal error rate was
measured on a held-out test set of 4, 000 images. Sample pictures and results
are given in Figure 3.1. It can be seen that the error (averaged over 5 runs of
resampling) decreases with a growing number of training samples. For example by
increasing the training set size from 100 to 2000, classification error can be reduced
by 40%. This indicates that — for state-of-the-art methods and semantic concepts
of intermediate complexity — training sets of several hundred positive samples are
required. Annotating datasets of this size is a time-consuming task: estimates for
labeling a single concepts are in the range of 15− 45 hours, as has been reported
in TRECVID’08 annotations7 and confirmed in experiments conducted for this
thesis. For the LSCOM effort (where annotations for a vocabulary of 449 concepts
were acquired) a cost of 6, 000 man hours has been reported [KHN+06].

Further, the number of concepts required for practical applications like video
search is high, as a wide range of potential user queries needs to be covered by
concept detectors. For example, Chang et al. [CHJ+06] reported that increasing
concept lexicon size from 39 to 374 concepts improves the number of queries to
be answered by 50% and the overall retrieval performance by 100%. An outlook
on what numbers of concepts might ultimately be required for practical high-
quality video search is given by Hauptmann et al. [HYL07]. It lies in the range
of 3, 000 − 5, 000 concepts, and has been restricted to the domain of news video.

6http://www.petfinder.com
7http://mrim.imag.fr/tvca/

30



CHAPTER 3. CONCEPT LEARNING FROM WEB VIDEO

While for general-purpose video search a significantly higher number of concepts
is probably beneficial, current prototypes utilize no more than a few hundred
concepts [NST+06, YCKH07] simply because training sets are time-consuming
and cost-intensive to acquire.

When taking these facts into account, it is obvious that — though techniques
for reducing the annotation effort exist based on active learning [AQ07] — an
explicit annotation of training datasets is impractical. Even if we could acquire
annotations for thousands of concepts, significant drawbacks remain. One prob-
lem is that ground truth annotations are always bound to an underlying video
dataset. Current concept detection systems are mostly trained on specific news
TV programmes and only perform well on this data source. It has been demon-
strated that systems tend to learn degenerate nearest neighbor solutions, i.e. they
simply memorize shots and strongly overfit to the datasets they are trained on.
Correspondingly, the generalization capabilities of concept detectors are severely
limited [YH08], even between different news channels. To some extent, this prob-
lem can be overcome using cross-domain techniques [CJYZ07, YYH07], which
adapt classifiers trained on a source dataset using only few annotations on the
target domain. These techniques have been tested when switching between dif-
ferent news channels [YYH07] and different genres like news vs. documentary
programme [CJYZ07]. Yang et al. [YYH07] and Chang et al. [CJYZ07] report
improvements by cross-domain adaptation steps. Yet, generalization capabilities
— and with it the utility of manually acquired training data — remains limited.

Another severe problem is that annotations are static, and so are the concept
detectors trained on them. In contrast to this, the world’s video content and users’
information needs are constantly evolving. New concepts of interest pop up, like“9-
11”, “secondlife”, or “Barack Obama”, and concept detection systems should adapt
accordingly. Keeping track of these changes is infeasible using explicit manual
annotations.

3.3 Web Video as Training Data

In the last section, it has been pointed out that state-of-the-art concept learning
is performed on small-scale sets of manual annotations. The limitations of this
approach with respect to the scalability and flexibility of concept detection have
been discussed.

In the following, a different data source for concept detector training is inves-
tigated, namely web video. Web video is a rapidly growing market, which has
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Figure 3.2: Concept learning from web video: a system autonomously downloads a

set of training videos from portals like YouTube. From these videos, statistical models

for the appearance of semantic concepts are learned, which can then be applied to tag

previously unseen videos.

brought up new forms of interactive, highly dynamic video databases linked with
textual descriptions and discussions. These portals — YouTube, Blinkx, Myspace,
and many others — host content ranging from TV news and documentaries over
movie scenes to home videos, like holiday snapshots or video blogs.

From a video retrieval perspective, web video has only been subject to limited
study. Yet, it is highly interesting both as an application and as an information
source for concept detection. When viewing it as an application, concept detec-
tion could offer an improved keyword search, help to group videos into semantic
categories8, or support users with tagging their videos. As an information pool,
web video offers a large-scale dynamic source of video data, which is enriched with
label information provided by a large community of users.

Surprisingly, web video has not been subject to intensive research so far. Only
a few contributions regarding web video as an application exist [SZB08, ZMZP08],
and as a source of training data it remains unstudied. To fill this gap, this chapter
investigates web video for concept detection. This setup is illustrated in Figure 3.2:
when given a target concept to be learned, the concept detection system acquires
a collection of training videos from web portals like YouTube. Tags associated
with this content can be used as ground truth labels for concept detector training:
if a video clip is labeled with the target concept, it is used as a positive training
sample, otherwise it is used as a negative one. Based on this information, machine
learning techniques build statistical models for the appearance of each target con-
cept. When applying these models to a previously unseen video, scores can be
inferred that indicate the presence of target concepts.

8http://www.scils.rutgers.edu/conferences/mmchallenge/2009/02/02/google-challenge/
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Figure 3.3: Quantity of training material obtained from YouTube for some randomly

selected Mediamill concepts [SWvG+06].

The main characteristic of this setup is that an entirely autonomous concept
learning is performed, and only minimal manual interference is required. This
offers two fundamental benefits:

• Scalability: Concept detection can seamlessly scale up to thousands of con-
cepts if enough processing power is available.

• Flexibility: Web video portals are highly dynamic, with users uploading
20 hours of video every minute [Jun09]. This content is astonishingly up-
to-date: for example, clips of the opening ceremony of the Olympics Games
2008 in Beijing were available a few hours after the event. As web video is
constantly updated by its users, the concept detectors trained on it can keep
track of new interesting concepts.

To realize such a concept learning, a sufficient quantity and quality of training
data must be obtained from web video portals. In the following, a brief discussion
of these two issues will be provided. Experiments presented later in this chap-
ter (Section 3.6) will then provide quantitative results of concept detection when
training on web video.

3.3.1 Quantity of Training Data

Web video portals offer a tremendous, constantly growing amount of video data.
For example, the market leader YouTube hosts 83.4 Mio. videos [YOU], and 65, 000
new clips are uploaded each day [USA06]. However, the distribution of concepts
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present in this material is highly biased towards popular tags (like “funny”, “love”,
or “girl”), and it is not clear a priori whether enough material can be obtained for
the training of certain target concepts.

Therefore, a small experiment was conducted for two standard sets of concepts
(20 concepts from the TRECVID’08 benchmark [KO08], and 101 concepts from
the Mediamill Challenge [SWvG+06]). Each concept was manually assigned a
canonical YouTube category to obtain training data of higher quality. For exam-
ple, the concept “sailing” was restricted to the category “Travel&Places”, such that
erroneous content like the music video by Rod Stewart (category “Music”) was not
downloaded. The YouTube API9 was used to download videos for each combina-
tion of category and concept, obtaining up to 1, 000 video clips per concept (this
upper limit is imposed by YouTube). For the resulting content, the number of
shots per concept was estimated by multiplying the video length with the average
number of shots per minute (4.79, estimated on a set of 2, 200 YouTube videos).
Figure 3.3 plots the estimated number of shots obtained for some random sample
concepts. It can be seen that a fair amount of content can be obtained for most
concepts (9, 031 on average). This quantity is significantly higher than the num-
ber of samples used in the TRECVID’08 and Mediamill datasets themselves (1, 667
annotations). Some outliers occur: for the concepts “two people” (21, 337 shots)
and “meeting” (37, 291) many shots can be obtained, and for the concepts “over-
layed text” (401), “waterscape” (569), “Emile Lahoud” (530), “Duo Anchor” (107),
and “Iyad Allawi” (988), less than 1, 000 shots were found. Generally, this experi-
ment reveals that web video portals offer a sufficient quantity of training content
for typical concepts of interest, and that significantly more training content can be
acquired than currently used in standard benchmarks. When inspecting the results
on a per-concept basis, it also becomes clear that the amount of available material
is strongly correlated with user interest. YouTube users tend to upload videos
that they find interesting, surprising, funny, or worth presenting otherwise. This
can cause problems for certain concepts. For example, the tag “overlayed text” is
given infrequently – though overlayed text appears very often, the tag is simply
not used. Other concepts like “waterscape” may not be found interesting enough
for filming, editing and uploading videos about them.

3.3.2 Quality of Training Data

While the last section provided a purely quantitative analysis of web video content,
it did not address the question whether its quality allows a successful concept

9http://youtube.com/dev
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learning. In the following, an informal discussion on this issue is provided based
on a visual inspection of web video content, and key problems for concept learning
are pointed out.

The first and most prominent observation is that web video shows a high vari-
ability of production style. Portals like YouTube host almost all kinds of video,
ranging from TV snippets to home video. The purpose of this content may be to
entertain, to inform, to educate, or even to shock. The target audience can range
from a few close friends to a broad world-wide community. Correspondingly, the
budget and time invested into the production of a clip may vary significantly, as
well as other important parameters such as camera and coding quality. Doubtlessly,
all this affects the visual appearance of a video, and with it the concept detectors
trained on it.

Second, web tags are coarse: users only provide tags information on clip level,
and no shot-accurate label information is given. For example, imagine a user
producing a video of his latest sailing trip. Though the video is labeled “sailing”,
it may also show content that is not visually related to sailing, like trips to towns
and nightly parties.

Third, tags are subjective and context-dependent: while standard datasets are
annotated according to precise visual criteria, the motivation with which YouTube
users assign tags to their clips can be very subtle. For example, a YouTube
search for videos tagged with “airplane” returns many shots of airplanes, but also
videoblogs about airplane safety, instructions to build paper airplanes, and views
from inside an airplane cockpit. Inferring the presence of the concept “airplane”
from this visual content may require extra knowledge or may simply be impossible.
Obviously, these characteristics of web video content have an influence on concept
detectors. Accordingly, web-based concept learning can be characterized as...

• ...A Weakly Supervised Learning Problem: While the strong annota-
tions used for current concept detection systems guarantee that a concept ap-
pears in a shot, web tags are subject to label noise. This is illustrated in Fig-
ures 3.4 for the concept“boat ship”: compared to sample frames from a stan-
dard dataset (TRECVID’08), training material downloaded from YouTube
contains significant amounts of non-relevant content. We will address the
issue of weak labels more explicitly later (Chapter 4).

• ...A Cross-domain Learning Problem: Another problem is that web
video may differ significantly from the material that concept detection is
applied to. For example, concept detectors resulting from training could
be applied to news video. In contrast to this target domain, web video
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(a) (b) (c)

Figure 3.4: Concept learning from web video as a weakly supervised learning problem

and as a cross-domain learning problem: illustrations of training samples for the concept

“boat ship” are given when (a) using a standard training set (TRECVID’07), and (b)

using web videos downloaded from YouTube. The web video training set shows significant

label noise. (c) Filtered frames from YouTube that have been manually assessed to show

the concept. Domain differences between the standard dataset ((a), mostly ships) and

YouTube ((c), mostly rafting) can be observed.

is a mixture of several video sources, including news video as well as home
video, documentaries, etc, and is has been reported previously that significant
performance loss is to be expected when generalizing from one domain to
another [YH08].

Due to these two reasons, concept learning from web video content can be
considered a challenge of significantly higher difficulty than training on manual
annotations. Yet, web-based concept detection is appealing due to its benefits
regarding scalability and flexibility. Therefore, this chapter will address the ques-
tion how much performance degredation is to be expected by replacing expensive
high-quality datasets with weakly annotated web video content.

3.4 Related Work - Concept Learning

from Web Data

Related work on web-based data sources has been targeted at images, video, and
also text. For all these modalities, web data provides content at a large scale
and interesting application areas — tasks like image and video search, recom-
mender systems, and content filtering could benefit from the automatic infer-
ence of semantics. Finally, web data can also be viewed as real-world and un-
biased: for example, earlier object recognition benchmarks (which have been criti-
cized as overly simplifying [PBE+06]) have been replaced with data acquired from
Flickr [EZWvG06, PBE+06].
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Overall, though web-based data has not been exploited to its full potential so
far, the research community has recognized the benefits, and visual recognition
on web content is an emerging field10. First approaches have been developed for
visual learning from noisy datasets of web images. For this purpose, topic models
have been suggested [FFFPZ05, LWFF07], which identify visual aspects related
to objects and separate them from the ones associated with non-relevant images.
A similar approach by Yanai and Barnard [YB05] uses Gaussian mixture models
over segmented image regions. Pictures acquired from Flickr or image search en-
gines have also been used to complement manually annotated training data for
the video domain [CHJ+08], and it has been studied under which conditions this
can be successful [KCK06] (for example, if a low number of manually annotated
training samples is available). This chapter will demonstrate that a similar use of
web video is possible. Beyond this, it will also be shown that we cannot only sup-
plement manually acquired data, but that we should drop a cost-intensive manual
annotation for cross-domain concept detection.

Researchers have also investigated the textual annotations of web video and
images as a knowledge source. Negoescu and Gatica-Perez [NGP08] applied topic
models to image tags to analyze photo groups at Flickr. Based on their model, a
keyword search for groups can be realized. Haubold and Natsev [HN08] employed
web-based text corpuses for an improved semantic reasoning.

Web video — which is the focus of this chapter — is just beginning to attract
researchers’ attention. Zelnik-Manor et al. [ZMZP08] and Schindler et al. [SZB08]
presented studies on shot boundary detection and categorization of web video
content, and emphasized the difficulty of the domain due to enormous content
variance and weakness of labels. Chang et al. [CEJ+07] presented a study targeted
at consumer video, which also included material downloaded from the web. Yang
et al. have presented a multi-modal recommender system for web video [YMH+07].
All this work is targeted at web video as an application domain for video retrieval.
This chapter includes similar results for concept detection, but addresses web video
not only as an application field but more generally as an information source for
concept learning.

10IEEE Workshop on Internet Vision, ICME Workshop on Internet Multimedia Search and

Mining

37



3.5. THE TUBETAGGER PROTOTYPE

  

training data 
acquisition

keyframe
extraction

feature
extraction

statistical
modeling

[0, 17,  -2, ...]
[0,   8, 15, ...]
...

videos+
annotations

shots keyframes features
statistical 
models

shot
segmentation

keyframe
extraction

feature
extraction

statistical
modeling fusion

[0, 17,  -2, ...]
[0,   8, 15, ...]
...

video shot keyframes features concept scores concept
score

“sun”

target 
concept

shot
segmentation

sun:
40%

sun:
40%

4 feature pipelines training

4 feature pipelines testing

Manual
annotation

Figure 3.5: The TubeTagger prototype: using training material downloaded from

YouTube, models of concept appearance are learned in several feature pipelines. These

models are then applied to previously unseen videos, obtaining concept-specific scores.

3.5 The TubeTagger Prototype

This section describes a prototype that implements the idea of concept learning
from web video. The system learns to tag videos by autonomously training on con-
tent downloaded from the portal YouTube and has thus been called TubeTagger.
The key novelty of the approach lies in the data used for concept learning (Tube-
Tagger is the first concept detection system learning from YouTube). Regarding
aspects of system architecture, feature representations, and statistical models, best
practice in concept detection is followed closely. The system pipeline is illustrated
in Figure 3.5. TubeTagger can be run in two modes, one for training concept
detection models and one for applying them to previously unseen videos. In train-
ing, the system is given a semantic concept by the user and downloads training
videos from YouTube (alternatively a conventional manual data acquisition is pos-
sible). These videos are preprocessed, i.e. shot boundary detection is performed
and keyframes are selected. Keyframes and shots are fed to four feature pipelines,
each employing visual features of a certain type (for example, color histograms).
In each feature pipeline, a supervised classifier is trained, whereas keyframes from
videos tagged with the target concept serve as positive samples and frames from
all other videos as negative ones.

To detect a target concept in previously unseen videos, the same preprocessing
and feature extraction are conducted. Feature-specific scores indicating concept
presence are obtained from all keyframes and feature pipelines, and are fused to
obtain the final concept score. The system components are described in the order
of processing in the following.
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3.5.1 Training Data Acquisition

TubeTagger can be run in two modes of training data acquisition: first, the user can
provide video data with manually acquired annotations, similar to other concept
detection systems. This setup will be used for quantitative comparisons in later
experiments.

Alternatively, TubeTagger can contact YouTube for training material and de-
rive class labels from user-generated tags. In this case, only a textual description of
the target concept must be provided. Optionally, the quality of training material
can be improved using the fact that videos at YouTube are organized in categories
such as “Sports”, “Travel&Places”, or “People&Blogs”. This is done by restricting
video downloads to a certain category.

3.5.2 Shot Segmentation and Keyframe Extraction

Each input video is segmented into shots, and for each shot representative keyframes
are extracted. This reduces data load significantly but also causes a certain infor-
mation loss. Correspondingly, keyframe selection should adapt to the content of
a video: for long shots containing strong scene activity, multiple keyframes might
be appropriate, while short or static scenes can be represented by a single frame.

For this purpose, an adaptive two-step procedure is used. First, the video is
segmented into shots by thresholding differences of MPEG-7 color layout descrip-
tors (CLDs) [MOVY01]. Second, for each of the resulting shots, a clustering is
applied similar to the one by Hammoud and Mohr [HM00]: a Gaussian mixture
model is fitted using a K-Means clustering over frames. For each mixture compo-
nent, the frame next to the cluster center is extracted as a keyframe. The optimal
number of components is determined using the Bayesian Information Criterion
(BIC) [Sch78]. The resulting method gives 1−5 frames per shot depending on the
visual content (an average of 1.75 was estimated on a set of 2, 200 video clips).

3.5.3 Feature Pipelines

Like most concept detection systems [WLL+07, YCKH07, Sno07], TubeTagger
employs several visual features and statistical models. Four types of features and
models are integrated in feature pipelines F1, ..., F4. Each feature pipeline Fj rep-
resents a type of visual feature (like color histograms) and gives a specific score
PFj (t|xi) for each keyframe xi. The feature pipelines are outlined in the following:

39



3.5. THE TUBETAGGER PROTOTYPE

Pipeline 1 - Visual Words (SIFT)+SVM This patch-based approach uses
the popular bag-of-visual-words representation [DKN05, FFFPZ05, SZ03], which
clusters local features according to their appearance into patch categories called
visual words. From an input image I, a set of local patches is sampled using an
interest point detector [SMB00] or random or regular sampling [NJT06]. Patch
are represented by local descriptors f1, ..., fK , which are matched with a codebook
of representative patch prototypes f ′1, ..., f

′
m obtained from a clustering of patch

descriptors. This gives a sequence of patch category entries (so-called visual words)
c1, ..., cK :

ck = arg min
j=1,...,m

||fk − f ′j ||2

The frequency with which visual words appear in I is stored in a histogram
x1, ..., xm, the so-called bag-of-visual-words feature:

xj =
n∑
i=1

δ (j, ci)

The model draws an analogy to the well-known bag-of-words model from text
retrieval [Lew98]. It provides a good tradeoff between a robust description on the
one hand and computational feasibility on the other. Some sample visual words
are illustrated in Figure 3.6(a): it can be seen that the patches belonging to a
visual word share a common appearance, and sometimes also coherent semantics:
for example, some visual words tend to contain parts of faces (line 4) or facets
of the horizon (line 5). Obviously, their presence in an image is an indicator of
semantic concepts such as “interview” or “outdoor”.

By combining bag-of-visual-words features with SVMs [SS01] as a statisti-
cal model, recognition systems have been very successful in a variety of visual
recognition tasks, like object category recognition [EVGW+07], scene categoriza-
tion [LSP06, QMO+07], or the filtering of pornography [DPN08]. The method has
also given excellent results on a standard concept detection benchmark [vdSGS08].

This bag-of-visual-words approach is also adopted in the TubeTagger frame-
work. Since it has been demonstrated that performance is strongly correlated with
the number of patches per image [NJT06], a dense regular sampling at several
scales is done that gives a large number of 3, 600 patches per frame. Each patch
is described by its 128-dimensional SIFT representation [Low04], which consists
of localized gradient direction histograms over the patch area. Optionally, SIFT
descriptors can also achieve rotation invariance by normalizing patches to a canon-
ical angle. However, this normalization is omitted here as many concepts tend to
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(a)

dog dog mountain mountain

X dog  soccer X mountain  bridge
(b)

Figure 3.6: (a) Visual words from a codebook of visual words (sample patches in a line

belong to the same cluster). Some clusters can be associated with certain semantics (for

example, they tend to contain parts of faces or of the horizon). (b) Sample results of

nearest neighbor matching: two matches for the concepts “dog” and “mountain”. Query

frames are in the top row, nearest neighbors in the bottom one (pictures from YouTube).

come with a characteristic angle and additional invariance reduces the discrimina-
tive power of features. The resulting patches are mapped to a 2, 000-dimensional
codebook previously trained using a K-Means clustering.

For each target concept, a two-class SVM is trained using the libsvm implemen-
tation [CL01]. As a kernel function, the χ2 kernel is used, which has empirically
been demonstrated to be a good choice for visual word features [ZMLS07]:

K(x, y) = e
−
d
χ2 (x,y)2

γ2 .

The scale parameter γ is estimated using cross-validation. dχ2 is the χ2 distance
between visual word histograms x and y:

dχ2(x, y) =
m∑
i=1

(xi − yi)2

xi + yi

Pipeline 2 - Light-weight Visual Words (DCT) + SVM Like the first
pipeline, this one uses a bag-of-visual-words approach. However, since the ex-
traction of a high number of SIFT features is time-consuming (the standard im-
plementation11 requires about 15 seconds per frame), a light-weight alternative is
investigated based on DCT coefficients associated with video macroblocks. This in-
formation is fast to compute (and is alternatively available in the compressed video

11http://www.robots.ox.ac.uk/ vgg/research/affine/
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Figure 3.7: An illustration of motion features: frames are divided into tiles. For each

tile, a histogram of MPEG-4 motion vectors is stored, and all histograms are concatenated

to a motion descriptor. Two histograms are illustrated: one captures the bottom-left

motion of the airplane, one the absence of motion in a background tile.

stream, such that only a partial decompression is required). Patches of size 16×16
pixels are sampled at regular steps of size 16, which gives 234 patches per frame.
These are described by low-frequency Discrete Cosine Transform (DCT) coeffi-
cients in YUV color space. A motivation for this description is given in [K0̈3], where
DCT base functions are demonstrated to show an strong resemblance with princi-
pal components learned from natural images. The DCT representation can thus be
interpreted as an approximation to Principal Component Analysis (PCA) [DHS00]
without requiring an additional training step. 78 coefficients are extracted for each
block in a zigzag pattern, 36 for the intensity and 21 for each chroma component.
Like in Pipeline 1, a vocabulary of 2, 000 visual words is learned using K-Means,
and SVMs with a χ2 kernel are used as a statistical model.

Pipeline 3 - Color and Texture (“CT”) This feature pipeline uses global
frame-level descriptors based on color and texture. Color is represented by RGB
histograms with 83 bins, and texture by similar histograms over the Tamura tex-
ture properties coarseness, contrast, and directionality [TMY78]. Both features are
combined using early fusion (i.e. concatenated), obtaining a joint 1024-dimensional
feature vector. As a statistical model, nearest neighbor matching is used as illus-
trated in Figure 3.6: given a keyframe xi and a training set of labeled keyframes
Y , we find the nearest neighbor x′i := argminy∈Y ||y − xi||2, and the score for a
concept t equals a vote for the tag of this neighbor. To realize fast matching, an
approximate search with a kd-tree is used [PPC01]:

PF3(t|xi) := δ(t, t(x′i))
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Pipeline 4 - MPEG Motion Vector Histograms (“Motion”): For some
concepts, motion can be a more appropriate representation than color or texture.
For example, while the appearance of frames showing the concept “interview” may
vary strongly, interviews may be characterized well by the fact that the interviewee
in the frame center makes occasional gestures, while the background remains static.
A simple feature of MPEG-4 block motion vectors extracted by the codec XViD12

is used to describe what motion occurs as well as where it occurs. The spatial
domain is divided into 4× 3 regular tiles, and for each tile a two-dimensional 7× 7
histogram is computed over the 2D components of all motion vectors in the tile
(vectors are clipped to [−20, 20]× [−20, 20]). By concatenating those histograms,
a 588-dimensional descriptor is extracted on shot level. For an illustration, see
Figure 3.7. Like for color and texture, nearest neighbor matching is used as a
statistical model.

3.5.4 Fusion

From several keyframes and feature pipelines, weak pieces of evidence are obtained
indicating the presence of semantic concepts. These are fused in two steps to obtain
the final concept score P (t|X). First, a fusion over the keyframes x1, ..., xn of a
video X is done using the well-known sum rule from classifier combination:

PFj (t|X) =
1
n

n∑
i=1

PFj (t|xi)

This approach outperformed other standard fusion methods (like the max, prod-
uct, and min rule) in previous tests, which confirms earlier theoretical results that
claim a good robustness with respect to noise in the input scores [KHDM98]. Such
robustness is crucial in the context of web video tagging, since many keyframes
may not be visually related to the target concept and thus give misleading scores.

Second, to combine scores obtained from several feature pipelines, a range
normalization of all scores to [0, 1] is applied [NNT05], and the normalized scores
are combined using a weighted sum fusion:

P (t|X) =
4∑
j=1

wjPFj (t|X). (3.1)

The feature weights (w1, w2, w3, w4) ∈ [0, 1]4 are learned by a grid search opti-
mization on a validation set (the same weights were used for all concepts).

12www.xvid.org
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Table 3.1: The 22 concepts of the Youtube-22Concepts dataset. Each concept is assigned

a canonical YouTube category to refine the downloaded material.
concept youtube category concept youtube category

basketball Sports hiking Travel&Places

beach Travel&Places interview News&Politics

cats Pets&Animals race Autos&Vehicles

concert Music riot News&Politics

crash Autos&Vehicles sailing Travel&Places

dancing People&Blogs secondlife Gadgets&Games

desert Travel&Places soccer Sports

eiffeltower Travel&Places swimming Sports

explosion How-to&Do-it-yourself talkshow People&Blogs

golf Sports tank Autos&Vehicles

helicopter Autos&Vehicles videoblog People&Blogs

3.6 Experiments

In this section, experiments with the TubeTagger prototype are presented in which
the challenge of concept learning from web video is addressed. Two experiments
are conducted in which TubeTagger is trained on YouTube material:

1. Testing on Web Videos: First, TubeTagger is both trained on and applied
to web video content. When used in this scenario, concept detection can
support an automatic content-based indexing and search for web video.

2. Testing on Other Domains: This experiment addresses the question
whether concept detection systems trained on web video can be applied suc-
cessfully to different domains. Here, the system trained on YouTube is tested
on news video and documentary TV, and comparisons with systems trained
on manually annotated standard datasets are provided.

3.6.1 Experiment 1 - Web Video

In a first experiment, the TubeTagger prototype is both trained on and applied to
web video content. The purpose of this experiment is to give a first impression of
the performance that can be achieved when learning concepts from web videos, and
to provide a quantitative comparison of several types of visual features. Tests are
performed on a dataset of real-world web videos downloaded from YouTube, which
is described first. After this, the experimental setup is outlined, and quantitative
results are presented.
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Figure 3.8: Youtube users produce series of videos sharing a common production style.

These keyframes are sampled from different clips but show the same actors and similar

overlayed text. The fact that concept detection systems overfit to such redundant material

leads to biased benchmarking results (pictures from YouTube).

The Youtube-22Concepts Dataset A web video dataset was collected by
downloading YouTube clips for 22 semantic concepts. The concepts were manually
chosen, and no standard concept list like LSCOM or Mediamill was used as a
basis (comparisons with such standard concepts will be outlined in Section 3.6.2).
The following standard criteria [NST+06] were taken into account when selecting
concepts: (1) feasibility — the semantic concepts should be inferable from the
visual video content. Abstract terms like “love” or “humor” were excluded. (2)
coverage — a variety of concepts should be included, like locations (e.g., “desert”,
“beach”), activities (e.g., “hiking”, “interview”), objects (e.g., “cat”, “eiffeltower”),
and sports (e.g., “swimming”, “soccer”). (3) availability — visually related content
should be available, which was briefly checked by inspecting the first pages of a
YouTube search result. Each tag was assigned to a canonical YouTube category
to improve the quality of downloaded material. See Table 3.1 for a complete list
of all 22 concepts and categories.

The dataset was downloaded in summer 2007. The top 100 videos were down-
loaded for each tag, obtaining a database of 2, 200 clips with a total length of
about 194 hours. The whole set was separated into a training set (50 videos per
concept), validation set, and test set (both 25 videos per concept). This dataset
is referred to as the Youtube-22Concepts dataset in the following. It has been
made available on request13 to support research on web video retrieval (including
video data, YouTube URLs, and all meta-data available).

The Role of Redundancy Videos at YouTube contain lots of redundant con-
tent uploaded multiple times. While some forms of redundancy are easy to identify

13http://tagmyvids.com/project.html
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(like duplicate videos), others are subtle and difficult to uncover automatically.
Four levels of redundancy can be identified, listed in the order of an increasingly
difficult automatic detection:

• Exact Duplicates: Videos that have been uploaded multiple times, whereas
slight differences of coding quality may occur.

• Near-duplicates: Users upload the same video but modify it slightly (for
example by adding or replacing title strips).

• Shot Re-use: Users recompile popular video scenes, which appear multi-
ple times in collections like “Funniest Soccer Moves” or “Best Harry Potter
Moments”. Here, redundant content appears in different combinations and
compositions.

• Series: Like TV, YouTube hosts actual series of video clips sharing a homo-
geneous production style (for an example, see Figure 3.8).

Obviously, such redundancy has an influence on benchmarking results: if the
same content appears in both training and testing, a concept detection system
having learned the training version can easily assign the correct tag to the test
version. Note that in some scenarios, this influence is wanted: for example, if
tagging a users’ individual video collection, it seems reasonable to exploit redun-
dancy for a personalized tagging. When targeted at measuring the performance
of general-purpose concept detection systems, however, evaluation results may be
biased by the influence of redundancy, and duplicates should be removed as far as
possible. While this issue is not taken into account in the TRECVID campaign,
at least the first two kinds of redundant material were eliminated here. For this
purpose, a two-step procedure was used. First, duplicates were identified automat-
ically by matching clip signatures of color and motion with an edit distance [ZT06].
Second, near-duplicates were identified as they typically caused suspiciously good
concept scores, i.e. top-ranked clips were compared with their nearest neighbors in
the dataset and were eliminated manually if appropriate (on average, ca. 5 videos
per concept were removed this way).

Performance Measure As a performance measure, average precision (AP) is
used, which is standard practice in concept detection research [KO08]. Videos are
sorted by descending concept score, obtaining a ranked retrieval list x1, ..., xn with
ground truth labels y1, ..., yn ∈ {−1, 1}. If this list is thresholded at rank T , the
retrieval system only returns videos x1, ..., xT . In this set of retrieved items, we
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Figure 3.9: Quantitative results of YouTube tagging. A patch-based approach using

SIFT features achieves a high performance, which can be improved further using addi-

tional pipelines such as color+texture and motion.

assume to have rT relevant items, and N relevant items in the whole collection.
Then recall RT and precision PT are defined as quality measures of a retrieval
result:

PT = rT /T

RT = rT /N

Recall measures the coverage of the system’s feedback, whereas precision measures
its purity. Ideally, PT = RT = 1. By thresholding at all positions of the ranked
retrieval list corresponding to relevant items, the recall-precision curve is obtained.
The average precision (AP) corresponds to the area under this curve:

AP =
1
N

∑
T :yT=1

PT (3.2)

The average precision measures the quality of the retrieval result for a single
concept. To obtain an overall performance measure, the mean average precision
(MAP) over all concepts is used.
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Figure 3.10: Detecting the difficult concept “beach”. Top: YouTube clips that give the

highest scores. Bottom: false negatives, i.e. beach clips with the lowest scores. Only one

clip is visually related to the target concept (pictures from YouTube).

System Parameters The TubeTagger system was run for all four pipelines de-
scribed in Section 3.5: SIFT visual words with SVMs (SIFT), their light-weight
DCT equivalent (DCT), as well as motion (M) and color+texture (CT) with near-
est neighbor matching. SVM training requires the estimation of the parameter
γ (Equation (3.5.3)), and of a cost parameter C associated with training sample
misclassification (please refer to [SS01] for more information). Both parameters
were estimated using a grid search maximizing the cross-validated average preci-
sion [HCL03]. A practical problem is that the training sets in concept detection are
often extremely imbalanced, i.e. the number of negative samples usually outnum-
bers the number of positive ones by far. This causes difficulties for many classifiers,
including SVMs [AKJ04]. To overcome this problem, the dominant class was sub-
sampled to obtain a roughly balanced training set, with the number of negative
samples fixed to 6, 000.

Results Quantitative results in Figure 3.9 reveal that concept detection in web
video is challenging but feasible in general. A mean average precision of 52.2%
(n = 12, 100) is achieved for a system that combines all four feature pipelines,
which is a 11.6-fold improvement over a random sorting of the ranked retrieval list
(4.5%). An inspection of the single feature pipelines reveals a dominance of the
SIFT+SVM approach, which outperforms light-weight DCT visual words signifi-
cantly and gives a mean average precision of 48.7% (DCT by itself gives 26.1%).
Adding other features leads to further performance improvements (1.1% for mo-
tion, 1.9% for color and texture, 0.5% for DCT visual words), which are moderate
but significant according to a sign test over the rank improvement of positive items
(level 99%). Overall, this confirms earlier results, which report an excellent perfor-
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Figure 3.11: The concept detection performance (MAP) of TubeTagger plotted against

the weights for SIFT+SVM and Motion. Similar performance can be observed on the

validation set (a) and on the test set (b), which indicates that feature weights can be

learned reliably.

mance for visual word approaches for the domain of news video [vdSGS08] — ob-
viously, similar observations hold for web video content. Exceptions are some con-
cepts for which the color+texture pipeline improves performance strongly. These
are mostly sports concepts, like “golf”, “basketball”, and “swimming”, for which
color is obviously a strong clue. Also, sports-related concepts reach the highest
overall performance, obviously because they come with a static global frame layout
and low intra-concept variance (an average precision of up to 86.5% [“soccer”] is
reached). In contrast to this, for the most difficult concept “beach” only 15.9%
are achieved. A closer look at this concept is taken in Figure 3.10, including the
5 “beach” videos with the lowest scores (false negatives). Only one of these false
negatives is visually related to the tag “beach”, while the others show videoblogs
tagged with “beach” and nightly parties in Miami Beach. Obviously, the reason
for system failure in these cases is that the relation between a clip and its tags is
subtle and extraordinarily difficult to infer from the visual content only.

To test whether the feature weights w1, ..., w4 (Equation (3.1)) can be learned
reliably on the validation set, performance is plotted in Figure 3.11, both for the
validation set and the test set (note that DCT features were left out, and that the
weight of the C+T pipeline adds up to 1). Though the performance is lower on the
test set, a similar behavior of tagging performance can be observed for validation
and testing, which indicates that feature weights can be learned reliably.
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Table 3.2: The concepts used in Experiment 2. These are 19 of the 20 concepts used in

the TRECVID’08 benchmark. Columns 2,3,5, and 6 provide details on how information

was downloaded from YouTube.
concept YouTube

query

YouTube

category

concept YouTube

query

YouTube

category

Classroom classroom &

school -secret

- Telephone phone & de-

vice

-

Bridge bridge

-crossing

-ship

Travel&Places Street street & paved -

Em. Vehicle emergency &

vehicle -driver

-ride

Autos&Vehicles Demonstr. protesting -

Dog dog Pets&Animals Hand hand & daft -

Kitchen kitchen -knife

-remodel

Howto&Style Mountain mountain

&panorama

Travel&Places

Airplane fl. airplane & fly-

ing -jefferson

-indoor -school

-kids

Autos&Vehicles Nighttime by & night Travel&Places

Bus bus -van -suv

-vw -ride

Autos&Vehicles Boat Ship ship & (queen

| freedom |
royal)

Autos&Vehicles

Driver car & vehi-

cle & driver

-simulator

Autos&Vehicles Flower flower & ( bou-

quet | bloom )

-

Cityscape cityscape

-slideshow

-emakina

Travel&Places Singing singing &

(gospel |
choire)

-

Harbor harbor & in-

dustry & ship

-

3.6.2 Experiment 2 - Other Domains

In Experiment 1, the TubeTagger prototype has been both trained on and ap-
plied to web video content downloaded from the portal YouTube, and the general
feasibility of concept learning from web video has been demonstrated. Yet, a fun-
damental key question remains unanswered, namely how taggers trained on web
video perform on other domains.

To answer this questions, the following experiment provides performance com-
parisons for the TubeTagger prototype when training and testing on web video
material as well as standard datasets of news and documentary TV from the
TRECVID benchmark. This experiment requires video data and corresponding
concept annotations, which are available for several video sources and concepts
from joint efforts of the research community. In the following, these datasets are
described:
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mountain

cityscape

singing

telephone

Figure 3.12: The top 5 detections of the YouTube-based system for several concepts on

the TRECVID’07 dataset. While the system works well for some concepts (“mountain”,

“cityscape”), it suffers from a mismatch between YouTube and the target domain for

others (“telephone”).

Concepts Since for some of the concepts from the Youtube-22Concepts dataset
no publicly available annotations exist, a different set was used, namely 19 of the
20 concepts used in the TRECVID’08 benchmark (the concept “two people” was
omitted, as one of the video datasets used lacked publicly available annotations).
These concepts stem from the LSCOM ontology for multimedia retrieval and can
thus be considered a standard test case. The full list of concepts can be found in
Table 3.2. For detailed descriptions, please refer to the LSCOM website [LSC].

Video Data and Annotations Three video datasets were used in this exper-
iment, whereas corresponding annotations were acquired from publicly available
standard datasets or from YouTube:

1. TV05: This dataset, used in the TRECVID’05 “High-level Feature Extrac-
tion” task, is the most frequently used test dataset for concept detection,
and extensive manual annotations are available [KHN+06, SWvG+06]. The
dataset contains video data from 13 news programmes, including US, Chi-
nese, and Arabic broadcast [OIKS05]. It consists of a predefined development
set of 86 hours and test set of 85 hours. Annotations for the 19 test concepts
were downloaded from the LSCOM website [LSC]. As these cover only the
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development set, the test set was neglected, and the development set was
split into a training set and test set of equal size (the split was done between
different broadcast dates). Keyframes were extracted using the adaptive ap-
proach described in Section 3.5. To reduce data load, only one keyframe per
shot was kept, which gave a total of 75, 000.

2. TV07: In 2007, TRECVID’s “High-level Feature Extraction” task used data
provided by the Netherlands Institute of Sound and Vision [KO07]. This
dataset contains news magazines, science news, news reports, documen-
taries, educational programming, and archival video, in a development set
and test set of 50 hours each. Annotations have been acquired at the Chinese
Academy of Sciences and were used by participants in TRECVID’08. The
adaptive keyframe extraction approach described in Section 3.5 was used,
which resulted in about 113, 000 keyframes.

3. YOUTUBE: Like in the previous experiment, a dataset of videos down-
loaded from YouTube was used. 100 clips were acquired for each concept.
Only short videos of up to 3 minutes length were used to reduce data load.
Queries were also manually refined to guarantee a certain quality of the re-
sulting content (for example, the query “classroom” was replaced with “class-
room+school”to obtain content that is closer to the description of the original
TRECVID feature). This refinement was done without knowledge of concept
appearance in the TRECVID video data. Like in the first YouTube exper-
iment, YouTube search results were also filtered by category. A full list of
the YouTube queries used can be found in Table 3.2. The dataset has a total
length of about 42 hours, which corresponds to 36, 000 keyframes extracted
using the adaptive approach from Section 3.5. To get a broader coverage of
negative samples, 30, 000 frames from the Youtube-22Concepts dataset were
added, obtaining an overall of 66, 000 frames.

Setup The results of Experiment 1 indicate that a visual words approach pro-
vides a high performance, and that by fusing it with other features moderate
performance improvement can be achieved. For the sake of computational effi-
ciency — and since the focus of this experiment is on the relative performance
when training on different data sources — in this experiment only the best feature
pipeline (SIFT visual words) was used. Also, SIFT descriptors were replaced with
128-dimensional SURF features [BTvG06], a faster approximation. Again, a fixed
number of samples was used for the negative class to roughly balance the training
set — for the TRECVID’07 and TRECVID’05 datasets with fewer annotations
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Table 3.3: Concept detection performance when training and testing on YouTube

and two TRECVID datasets (TV05 and TV07). The detectors trained on the tar-

get domain outperform the others significantly (n = 573, 154 [TV05], 344, 508 [TV07],

11, 913 [YOUTUBE]).
MAP[%]

training / testing TV05 TV07 YOUTUBE

TV05 18.40 3.82 14.68

TV07 3.32 9.65 16.49

YOUTUBE 2.83 3.51 31.33

(median: 291/273 annotations, minimum: 22 for “airplane” / 51 for “kitchen”),
the number of negative samples was set to 1, 500. For the youtube data (median:
1332, minimum 374 for “mountain”), it was set to 6, 000.

Results The TubeTagger engine was trained on all three training sets, obtaining
three different statistical models for each of the 19 target concepts: two standard
models trained on the manually annotated TV05 and TV07 training sets, and
one trained on videos downloaded from YouTube. Each of the three models was
applied to all three test sets, obtaining 9 concept detection runs. These were
evaluated to investigate (1) which model performs best for concept detection in
web video, (2) which training sets lead to the best performance on the TV05
and TV07 standard test sets, and (3) how the YouTube-based tagger compares to
state-of-the-art detectors when generalizing to a domain unseen in training.

Some sample results of YouTube-based detectors on the TV07 test set are
illustrated in Figure 3.12. It can be seen that the system works well for some
concepts (like “mountain”), while for others (like “telephone”) no hits are found.
An in-depth inspection revealed that this difference is caused by a strong variation
of the quality of YouTube training material: while for“mountain” lots of panoramic
mountain views were obtained, the “telephone” training set tends to show close-
ups of the latest smartphone gadgets, and correspondingly computer screens and
similar structures are detected. This leads to a poor result, as “telephone” scenes
in the TV07 test set show mostly phones on office desks.

Quantitative results are provided in Figure 3.14, and the mean average precision
for all runs is also given in Table 3.3. Let us first study concept detection on the
YouTube test set. Here, it can be seen that the YouTube-based system outperforms
the two standard detectors (MAP 31.33% compared to 14.68% and 16.49%). This
indicates that for tagging YouTube videos, YouTube as a training set, as could be
expected, outperforms standard datasets.
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“airplane”[TV05] “dogs”[TV07] “flower”[YOUTUBE]
test shot match test shot match test shot match

Figure 3.13: Specialized detectors trained on the target domain significantly outperform

all others. One reason for this are duplicates in the datasets: these keyframes are from

the shots giving the highest scores for the top-rated concepts in TV05 (“airplane”), TV07

(“dogs”), and YOUTUBE (“flower”), together with nearest neighbors from the training

set. For all these test frames, a (near-) duplicate is found in the training set (note that

“airplane” shot no. 4 shows the object only at a very small scale).

More generally, it can be seen that each detector performs best on the data
source it was trained on, i.e. on TV05 and TV07 the YouTube-based tagger is sig-
nificantly outperformed by the“specialized”detectors trained on the corresponding
training sets. This indicates that the acquisition of manual annotations on the tar-
get domain improves performance significantly. An in-depth analysis reveals that
one reason for this dominance of the specialized detectors is redundancy. This is
illustrated in Figure 3.13 for the concepts achieving the best performance on each
of the test sets. In all cases, the 4 shots achieving highest scores are illustrated
on the left, and their nearest neighbors from the training set on the right. Obvi-
ously, all concept detectors implicitly match test content with (near-) duplicates
in the training set: for “airplane” in TV05, matches include very small airplanes
in the background that could probably not be detected without redundancy. For
“dogs” in TV08, the system overfits to a single shot including a street sign and a
dog. For “flower” in YOUTUBE, the system makes use of two series about flower
arrangements. It is obvious that redundancy leads to biased and overly positive
benchmarking results. Yet, it should also be noted that — if duplicates are not
filtered — this effect cannot be separated from other factors like production style.

Finally, the YouTube-based detector is compared with standard ones (TV05 /
TV07) when testing both on a third, novel data source (TV07 / TV05). We can
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observe that all systems generalize poorly to domains not seen in training, which
confirms earlier results by Yang and Hauptmann indicating that concept detectors
strongly overfit to the domain they are trained on [YH08]. Also, results reveal that
the YouTube-based detector generalizes only slightly worse to novel domains than
the standard detectors. On the TV07 test set, a performance of 3.51% is achieved
compared to 3.82% (training on TV05). On the TV05 test set, 2.83% are achieved
compared to 3.32% (training on TV07). This corresponds to a moderate relative
performance loss of 11.4% compared to a cost-intensive manual annotations.

The conclusion I draw from this experiment is that if annotations on the target
domain are available, they definitely help to increase performance. However, if
this is not the case, concept detectors perform poorly for any training sets, i.e.
also if using manual annotations. Here, training on YouTube (which can be done
without any manual annotation effort) offers an appealing alternative.

In a final test, the question is addressed whether enriching standard training
sets with material downloaded from YouTube leads to an improved generalization
of concept detection. Therefore, the TV05 and TV07 training data were combined
with YOUTUBE samples. The concept detectors trained on these joint train-
ing sets were then applied to third domain unseen in training (TV05 in case of
TV07+YOUTUBE, TV07 in case of TV05+YOUTUBE). The average precision
achieved in both cases is plotted in Figure 3.15: by adding YouTube data to the
training set, in one case (when testing on TV05), only a minor improvement from
3.32 to 3.36% is achieved. In the other case (when testing on TV07), mean average
precision is improved from 3.82% to 4.67%. On average, this corresponds to a rel-
ative performance improvement of 11.7%, which is significant according to a sign
test over the rank improvement (level 99%). This shows that additional training
data from YouTube can help concept detection systems to generalize better to
novel domains.

3.7 Discussion

The effort associated with the manual acquisition of training annotations is a
key problem with respect to the practical application of concept detection, as it
limits the size of detector vocabularies and the adaptation to changes in users’
information needs. To overcome this problem, it has been proposed in this chapter
to learn concepts from user-tagged web video. This setup allows a scalable and
flexible concept learning, as class labels can be derived automatically from user-
generated tags.
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Figure 3.14: Quantitative results of concept detection when (a) testing on YOUTUBE,

(b) testing on TV07, and (c) testing on TV05. All detectors perform best on the domain

they are trained on, and generalize poorly to different datasets. On domains unseen

in training, the YouTube-based tagger performs comparable to a training on manually

annotated standard data.
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Figure 3.15: Quantitative results of cross-domain concept detection. By enriching

standard training sets with material from YouTube, the generalization performance of

concept detectors can be increased.

A concept detection prototype named TubeTagger has been presented, which
is capable of using YouTube data directly as training material. Our experimental
results with the system have first shown that the resulting detectors work well
when applied on the same domain as they were trained on (i.e., YouTube). This
shows that visual learning from web video is possible in general. We have then
applied TubeTagger to datasets from the TRECVID campaign. It could be seen
that, on these different domains, YouTube-based detectors are outperformed by
“specialized” systems trained directly on the target domain. Though this was
to some extent caused by the presence of duplicate material in the benchmark
datasets, the result suggests that – if manually acquired ground truth on the
target domain is available – it is to be preferred over YouTube-based training.
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However, the situation was found to be different when generalizing to domains
unseen in training. Here, significant overfitting was a key problem for all systems,
and surprisingly detectors trained on web video performed about as well as the ones
trained on strongly annotated data. Also, detection rates could be improved in
this situation by supplementing conventional training sets with YouTube content.

Overall, these results demonstrate that web video is a highly interesting data
source for concept detector training. With large-scale readily annotated data of-
fered by services like YouTube, concept detection systems can be trained under
less supervision, can scale up to more concepts, and thus provide better support
for video search. Compared to the proposed web-based concept learning, a man-
ual annotation of training sets may not really be worth the effort, as it only gives
improvements on the restricted training domain. For a practical application in
which a concept detector is applied to video sources unseen in training, it seems
preferable to automatically bootstrap detection from web video and then perform a
light-weight manual refinement on the target domain, for example using relevance
feedback [RL03].
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Chapter 4

Relevance Filtering for

Weakly Labeled Video

In this chapter, the idea of concept learning from web video is pursued further. The
problem of label noise is addressed, which refers to the fact that user-generated
tags are subjective and coarse, such that training examples contain non-relevant
material. To overcome this problem, a novel approach called relevance filtering
is suggested, which views web tags as weak indicators of true, latent class labels.
During concept learning, these labels are inferred, and non-relevant training con-
tent is discarded. The key contributions of this chapter are1:

1. It is demonstrated that web video training sets show significant label noise
— typically, only 20 − 50% of training content downloaded from YouTube
do actually show the target concept (n = 89, 500).

2. Also, it is shown that this label noise degrades the performance of detectors
severely, with a relative performance loss of up to 33% (n = 100, 000).

3. A novel approach called relevance filtering is suggested, which combines con-
cept learning with an elimination of non-relevant training content. This
approach can be integrated with a variety of supervised learning techniques,
as is demonstrated for kernel densities and Support Vector Machines.

4. Relevance filtering is shown to improve the robustness of concept learning
with respect to label noise. In several experiments on YouTube content,

1This chapter is based on the author’s work in [BUB09, UBB09, USB08, USKB08b]
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relative performance improvements of up to 17% are reached compared to
standard supervised learning (n = 100, 000).

4.1 Introduction

Recent technological developments like high-speed internet and increasing storage
capacity have made it possible for private users to generate, publish, and share
large amounts of digital video [Sme07, USA06]. To realize efficient data access,
the most frequently used strategy is a text-based search on the basis of keywords.
This, however, requires an indexing that links the video content in a database with
semantic concepts (or tags) appearing in it, like objects (“airplane”), scene types
(“cityscape”), and activities taking place (“interview”). The current approach of
constructing such an index — as followed by most video-sharing portals — is based
on filenames, user-generated tags, and other meta-information. The problem with
this is that meta-data is often not at hand, and manual annotations are subjective,
incomplete, coarse, or too time-consuming to acquire.

This opens the question whether an automatic indexing at a large scale can
be bootstrapped from a limited amount of manual annotations. This strategy
is followed by concept detection systems, which use content-based features and
supervised machine learning techniques to construct statistical models for the ap-
pearance of concepts. Afterwards, these models are used to infer the presence of
concepts automatically in previously unseen content [CHL+07, Sno07, WLL+07,
YCKH07]. Though such detectors do not reach an accuracy comparable to a care-
ful manual annotation, they have been demonstrated to be very useful in a video
search context [SWdR+08].

Yet, an application of concept detection in practical large-scale settings has not
been realized. A key problem lies in the manual annotation effort associated with
training data acquisition: the number of potential target concepts is high (usually
in the range of thousands), and new concepts of interest emerge constantly (like
“financial crisis” or “olympics 2008”). In contrast to this, current prototypes utilize
only a few hundred static concepts [NST+06, YCKH07] simply because the manual
acquisition of training information is time-consuming and cost-intensive.

In Chapter 3, we have already studied an interesting option to overcome this
scalability problem: web video was investigated as a novel information source for
concept learning, and explicit manual annotations — which are precise but diffi-
cult to acquire — were substituted with label information automatically derived
from user-generated tags. It was demonstrated that a more scalable and flexible
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concept learning can be realized this way, and that the resulting detectors gener-
alize comparably well to new domains as the ones trained on manually acquired
standard data. This suggests a novel way of bootstrapping concept detection from
web video.

In this chapter, I will elaborate on this idea further. The goal is to learn
concepts in which certain objects or scene types are visually present, like “Eiffel
Tower” (“scenes showing the Eiffel Tower”) or “desert” (“scenes showing desert
landscape”). To achieve this, content with corresponding tags is downloaded from
YouTube and serves as training material.

To improve such concept learning, I will address the fact that web-based content
comes with significant label noise, i.e. material annotated with a target concept
may show it but does not necessarily do so. This is due to several reasons: first
of all, tags are coarse and indicate that a concept appears in a video clip, but not
when it appears. Imagine a YouTube clip of Paris that shows a shot of the “Eiffel
Tower” (and is correspondingly tagged with this concept), but also lots of other
sights. Second, YouTube tags do not necessarily indicate that an object is visually
present: an example for this is a portrait showing the constructor of the Eiffel
Tower, Gustave Eiffel: while the tag “Eiffel Tower” is appropriate to a certain user
with specific background knowledge and expectations, the object “Eiffel Tower” is
not visible, and correspondingly to many users the concept is absent.

An illustration of typical web video content for the concept“basketball” is given
in Figure 4.1. It can be seen that — while the concept is present in some frames
— others are not visually related to it at all. We will refer to the first kind of
frames as relevant, while calling the latter non-relevant. Overall, we will refer to
web video as a weakly labeled data source with significant label noise, meaning that
the associated tags are only weak indicators of concept presence.

Let us consider what influence label noise has on concept detector training.
Typically, for each target concept a binary classification problem is formulated of
differentiating concept presence from concept absence. Correctly and accurately
labeled training content is assumed to be given: for example, only the top frames
in Figure 4.1 are used as positive training samples for the concept “basketball”.
However, in case of label noise, positive training samples also contain non-relevant
content (like the bottom frames in Figure 4.1). If using standard supervised learn-
ing, the resulting detectors tend to detect content similar to this non-relevant
content. Consequently, it is to be expected (and will be demonstrated later) that
concept detection performance degrades with an increasing amount of non-relevant
training content.
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Figure 4.1: Keyframes from YouTube clips tagged with“basketball”. While some frames

do show basketball (top), other non-relevant content is not visually related to the concept

(bottom). Pictures from YouTube.

While several studies regarding web image content have been presented previ-
ously (they will be discussed together with other related work in Section 4.2), the
work presented here is the first one addressing weak labels for the video domain,
with experiments conducted on a YouTube-based dataset of 22, 000 web video clips.
We will first see that significant amounts of noise material (typically, 50 − 80%)
have to be expected, and that this degrades the performance of standard detectors
severely (Section 4.3).

This opens the question whether the robustness of concept detection with re-
spect to label noise can be improved. For this purpose, an approach called rele-
vance filtering is proposed. This method is based on a extension of the statistical
models underlying concept detection such that non-relevant material is identified
and filtered in a process that interleaves outlier elimination and model learning.
Note that this approach has parallels with relevance feedback in information re-
trieval [RL03]: in both cases, we want to identify and discard content that is
non-relevant for a query (in case of relevance feedback) or for a concept (in case
of relevance filtering). However, while relevance feedback is used for a reranking
at retrieval time, the filtering proposed here is coupled with system training, and
the ultimate goal is an improved accuracy of the resulting concept detectors.

It will be shown that relevance filtering can be used as a wrapper around
well-known supervised learning techniques, for generative models (kernel density
estimation) as well as for discriminative ones (Support Vector Machines). In quan-
titative experiments (Section 4.5), it is shown that — without any manual supervi-
sion — relevance filtering is capable of identifying relevant content and filtering out
non-relevant one. Further, detectors trained with relevance filtering are demon-
strated to outperform their supervised counterparts.
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4.2 Related Work

In this section, research related to visual learning under label noise is outlined.
A review of conventional supervised concept detection (which can be found in
Chapter 2) will be omitted here, and instead the focus will be on the aspect of
weak label information. This setup is viewed from two different perspectives.

The first view is domain independent: it addresses the problem of weak labels
from a machine learning perspective and proposes statistical models and learning
algorithms that require less information compared to fully supervised techniques.
These methods have been subsumed under the term semi-supervised learning (Sec-
tion 4.2.1). The second perspective is domain-specific and addresses learning from
weakly labeled image and video content. One setup in this field is learning from
web images, a challenge that has started to attract researchers’ attention over the
last years. (Section 4.2.2). Also, a few contributions have been made for weakly
labeled videos, which will be outlined in Section 4.2.3.

4.2.1 Semi-supervised Learning

This section discusses semi-supervised learning, a class of machine learning tech-
niques for dealing with incomplete label information. One frequently studied setup
in this area [CSZ06] assumes a (usually small) set of samples XL = {x1, ..., xl}
with class labels y1, ..., yl to be given. A second (usually large) set of samples
XU = {xl+1, ..., xN} is available as well, but the associated labels are unknown (or
latent). This setup can be seen as a borderline case between supervised learning
(where all training data is labeled, i.e. XU = ∅) and unsupervised learning (where
no labels are given at all, i.e. XL = ∅). While supervised methods can only
use XL, semi-supervised learning can exploit XU as well (which can be viewed as
evidence on the sample distribution p(x)).

To do so, a variety of strategies has been proposed [CSZ06, Zhu05]. One ap-
proach is to infer labels for samples in XU and then treat them in a fully supervised
framework. In its simplest form, this self-training approach is an iterative wrapper
around a base classifier, in which samples are iteratively classified and the train-
ing set is expanded with a selection of the newly labeled data (usually the ones
for which the classifier is most confident). As an extension, co-training [BM98]
has been suggested, where multiple classifiers are trained on different features and
“teach” each other.

Another approach formulates semi-supervised learning as a parameter estima-
tion problem under missing data. A marginalization over latent class labels is
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done, and parameters θ are estimated by maximizing the likelihood. For opti-
mization, the Expectation Maximization (EM) algorithm [Del02, DLR77] is used,
which alternates two steps in a local search: first, label posteriors P (yi|xi, θt) for
samples in XU are estimates from the current parameter estimate θt (“E”-step).
Based on this information, the system parameters are updated to a new version
θt+1 (“M”-Step).

Other techniques include Transductive Support Vector Machines [Joa99], which
integrate unlabeled samples in a margin maximization framework, and graph-based
methods, which propagate label information throughout a graph with samples as
nodes and similarity-weighted edges [CSZ06, Ch. 11].

While the above formulation of semi-supervised learning has experienced a
boost of research over the last years, a similar setup called adaptation has been
studied even earlier in the domain of optical character recognition (OCR). Imagine
a multi-font character recognizer being applied to a test document. This setup
resembles semi-supervised learning in the sense that labeled training samples are
complemented with unlabeled ones, namely letters from the test document. As the
distribution of this target set may be different from the training data (for example,
showing a specific font), it seems reasonable to make use of the unlabeled data,
i.e. to adapt the classifier. This makes the problem similar to the semi-supervised
learning formulation above, and in fact related methods have been proposed: for
example, Baird and Nagy [BN94] follow a self-training approach: a base classifier
trained on multiple fonts is applied to the target document, and classification
results are used as labeled samples for additional training iterations.

Another adaptation approach is based on a classification by clustering [Bre01a,
Bre01b]: characters in the test document are clustered to coherent groups, which
are then reliably mapped to class labels using results of a multi-font base classi-
fier [Bre01b]. The resulting decision boundaries coincide with cluster boundaries
— i.e., like in semi-supervised learning unlabeled samples are employed to adapt
the classifier.

A look at work on OCR adaptation also makes clear that the understanding
of semi-supervised learning should not necessarily be limited to the presence or
absence of labels. Instead, other kinds of information may be exploited to im-
prove recognition further: some of these have already been pointed out for the
video domain, like segmentation information (Section 2.4). In the case of OCR,
test samples share certain characteristics (for example, letters within a document
usually show consistent fonts and degradations). This is referred to as style, and
adaptation can exploit style coherence as an additional information source. One
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such approach has been proposed by Sarkar and Nagy [SN05]. It models the
style of the test document as a latent random variable, which is inferred using a
maximum-likelihood approach. Then, a pre-trained style-specific classifier is used
for an accurate recognition. Another model has been proposed by Mathis and
Breuel [MB02] based on Hierarchical Bayesian methods, where style is modeled as
a continuous parameter guiding the sample generation process.

Style modeling will be of interest in the context of concept detection in Chapter
5 of this thesis. Correspondingly, an in-depth discussion of the topic will be omitted
here and provided later instead (Section 5.2). For now, it should only be kept in
mind that semi-supervised learning is not necessarily limited to learning from a
partially labeled training set, as is demonstrated by work on OCR adaptation.

4.2.2 Web Images

Visual learning from web image content, which can be acquired via text-based
search engines as offered by Google or Yahoo!, has entered the focus of computer
vision research over the last years. The data source is similar to web video in the
sense that label information is weak and that large parts of the retrieved training
data may be junk: for example, a text-based query for “airplane” to Google or
Yahoo! image search also returns content not visually related to airplanes. Fergus
et al. [FFFPZ05] have reported label precisions between 18% and 77% for Google
Image Search, Schroff et al. [SCZ07] an average precision of 39%.

A variety of approaches has been suggested for acquiring sets of training im-
ages for object recognition from the web [BF06, SCZ07, SSTK08, YB05]. These
methods are targeted at a content-based refinement of raw image sets obtained by
text-based search. Usually, a three-step procedure is applied. First, a raw set of
images is downloaded. Second, a subset of “good” candidate images for concept
presence is selected, which can be done using manual annotation [BF06] or an
analysis of text and meta-data surrounding the image [SCZ07, YB05]. Finally,
a statistical model of concept presence (a Support Vector Machine [SCZ07], a
region-level annotation model [BDF+03], or a mining procedure based on a heuris-
tic saliency measure [SSTK08]) is trained on the refined image set and used to
re-rank the web content. These approaches are related to the work in this chapter
as they are targeted at a refinement of training sets. Yet, they are limited in the
sense that they do not cover the actual learning of concept models (though this
happens inherently in some filtering approaches). Instead, this chapter is targeted
at a joint training set refinement and model learning, and the focus is on the
performance of the resulting detectors.
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Other related work follows a more similar approach to the one presented here
and combines training data refinement with model learning. Fergus et al. [FFFPZ05]
learn visual models of object categories from Google’s image search. The method
uses a topic model (or extensions that take the spatial arrangement of local patches
in the image into account) to cluster an image collection. The idea behind this
is that images showing the target object accumulate in a single relevant cluster,
which is then used for classification. The system has been tested by training on
web images and applying the resulting classifiers to standard benchmarks, where
results are significantly better than random guessing but do not reach the accu-
racy of training on the target domain. A clear limitation of the approach is the
assumption of a single relevant topic.

In contrast to Fergus’ approach [FFFPZ05], the OPTIMOL system by Li et
al. [LWFF07] follows an incremental strategy, i.e. a training set is agglomerated
and an object model is learned in parallel. The approach works in a self-training
fashion, starting from an initial, highly accurate set of sample images. Iteratively,
a topic model is trained, and the pool of training data is expanded using a Bayesian
decision. The approach has been demonstrated to outperform Fergus’ system. Yet,
a problem remains in the initialization with good training samples, which has been
reported to be a crucial factor for a similar system [MPN08].

Finally, another approach is to perform a filtering similar to the one presented
in this chapter [WS08, LSW08]. A nearest neighbor analysis of training images
is done, and images or tags are rejected if they are “strange”, i.e. if no nearest
neighbors with similar tags are found. Using the resulting filtered training sets,
improved recognition performance is demonstrated on the Caltech-101 benchmark
and on web-based training sets.

4.2.3 Weakly Labeled Videos

Only a few contributions in the literature address the fact that video data may
come with label noise. Gargi and Yagnik [GY08] point out that label information
in videos may be coarse, which they refer to as the label resolution problem. They
rely on a feature selection using AdaBoost to achieve a higher robustness. Gu et
al. [GMH+07] cast concept detection as a multiple instance problem and propose
to adapt the kernel function in an SVM framework. Both methods, however,
correspond to mere feature fusions and do not model label weakness explicitly.

A contribution closer to the one presented here has been made by Wang et
al. [WHS+06], who study concept detection in a semi-supervised setup (where
only a few labeled samples are given initially). A kernel density model is extended
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such that the contribution of each training sample is weighted by its class pos-
terior, and an iterative fitting algorithm is proposed to match unlabeled content
to classes. Performance improvements over supervised learning from only a few
labeled samples are demonstrated. A similar model will be a part of the study
presented in this chapter (Section 4.4.2), but beyond this the framework proposed
here is also integrated with other, discriminative models.

Overall, the effects of label noise — regarding label precision, its effects on
concept detectors, and ways to overcome it — are not fully understood, though
a variety of promising techniques for filtering non-relevant content has been pro-
posed. In this chapter, we will build on these techniques and investigate in detail
how and to which extent they can help to overcome the label noise problem.

4.3 Experiments using Standard Methods

In previous sections, we have introduced web video as a weakly labeled information
source for concept detector training. It has been outlined that significant label
noise is to be expected, as the tags coming with web video are coarse, subjective,
and context-dependent. Correspondingly, significant amounts of content are to to
be considered non-relevant with respect to target concepts to be learned. This
assumption will be validated in Section 4.3.1. Also, we will study what effect label
noise has on concept learning when using standard techniques, and it will be shown
that the performance of concept detectors degrades significantly (Section 4.3.2).

4.3.1 Label Noise in Web Tags

While standard training sets for supervised learning are assumed to come with
accurate labels, positive training samples in web video datasets contain only a
certain fraction of relevant samples. This relevance fraction is denoted with α in
the following:

α :=
number of training samples showing the target concept

number of all training samples labeled with the target concept

α can be seen as a measure of label noise. For accurate annotations, we expect
it to be close to 100%. For web video, it is unknown a priori what percentage of
training material is in fact related to a target concept. Further, this fraction may
differ between concepts: while for some concepts high-quality training sets may be
obtained, others may be used as tags often but appear only infrequently.
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To get a deeper insight into the label noise of YouTube-based training material,
a manual assessment for 10 test concepts was done (“basketball”, “beach”, “cats”,
“desert”, “eiffeltower”, “helicopter”, “sailing”, “soccer”, “swimming”, and “tank”).
These concepts were chosen from the YouTube-22concepts dataset used in Chapter
3 with respect to a good coverage of concepts, including various objects, locations,
and sports. For each concept, a canonical definition was formulated (Appendix A).
These definitions were chosen such that the concept should be directly visible and
recognizable, and no particular context or prior knowledge should be required.
For example, the concept “basketball” applies to scenes showing a basketball or
streetball game, but not to scenes of a cheering crowd. YouTube material was
manually assessed according to these definitions. For each of the 10 test concepts,
400 clips were acquired from YouTube, and only the first 7 Megabytes (ca. 2.5
minutes) per video were used. The motivation for this was that material within
a clip can be strongly redundant, such that a higher diversity of material can be
achieved by using small samples from many videos. For the same reason, we did not
download more than a single video per YouTube user (users often produce series of
similar clips, which would have reduced diversity significantly). The overall length
of the dataset is about 100 hours.

Two kinds of queries were used to download videos from YouTube:

1. Raw Queries: The query only consists of a single tag describing the concept,
like “beach”. This corresponds to a fully automatic setup, in which a concept
detection system is just given a vocabulary of tags and YouTube is crawled
fully automatically for training material.

2. Refined Queries: Querying the YouTube API with a single tag must be
expected to give very noisy results. For example, the query “beach” does not
only return scenes of beaches, but also music videos by the “Beach Boys” and
parties in Daytona Beach City. While these may be valid annotations to the
video owner, they must be considered distracting when it comes to learning
a visual concept (like “scenes showing a beach”). To improve the quality of
downloaded material, two refinements were made. First, the fact was used
that videos at YouTube are organized in categories like “Pets&Animals” or
“Autos&Vehicles”. The download was restricted to a canonical category (like
“Travel&Places” for “beach”, which excludes most music videos). Second,
queries were refined according to a brief analysis of the first YouTube results
page. For example, the query “beach” was replaced with “walk on the beach”,
which filtered out city names. The exact list of final queries is given in
Appendix A.
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Table 4.1: A manual annotation of training material downloaded from YouTube shows

that significant label noise occurs. Only a certain fraction α of web video training sets

(in most cases below 50%) does in fact show the target concept.

fraction of relevant training content α (%)
concept raw query refined concept raw query refined

basketball 20.5 40.6 helicopter 14.6 38.1
beach 15.6 44.3 sailing 16.4 26.2
cats 47.6 50.1 soccer 25.3 43.7
desert 11.4 19.0 swimming 23.4 60.0
eiffeltower 21.4 39.7 tank 14.5 24.3

average 21.1 38.6

For both kinds of queries, material was downloaded and keyframes were ex-
tracted using a simple change detection: frames were scaled to 28 × 21 pixels,
and a new keyframe was sampled when the sum of its pixel differences to the last
keyframe exceeded a manually set threshold t = 49. To control the number of
keyframes, the minimum time interval allowed between two successive keyframes
was set to 4 seconds and the maximal one to 300. Manual assessments were done
for at least 1, 000 frames per concept, with an overall number of 89, 500 annota-
tions.

Results of the annotation process are given in Table 4.1. They indicate that
significant label noise is to be expected when learning concepts from YouTube
clips. The downloaded content contains significant fractions (in most cases more
than 50%) of non-relevant material. This is not necessarily because tags are in-
correct: often, there is a subtle connection between the content and a given tag.
For example, it is reasonable to a specific user to label a report about Gustave
Eiffel with “Eiffel Tower”. Yet, according to the target concept definition (“scenes
showing the Eiffel Tower”), the concept is not visually present in this scene. It can
be seen that α is particularly low for raw queries (21.1% on average), and that a
manual query refinement leads to better results (38.6%). Further, the percentage
of relevant material varies between concepts: for example, the fraction of material
found to be relevant varies between 19.0% (“desert”) and 60% (“swimming”) for
refined queries.

These results confirm similar observations made previously for the image do-
main: for datasets based on image search, precisions of 39% have been reported for
object category recognition [SCZ07]. For Flickr images, Kennedy et al. [KCK06]
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relevant samples non-relevant samples negative samples

ground
truth ++ ++ ++ -- -- -- -- --

weak
labels ++ ++ ++ -- -- --++ ++

Figure 4.2: Sampling a training set for the concept “desert” and α = 60%. Non-desert

content models the background class (right). Positive samples are mixed of 60% desert

frames and 40% non-desert frames (which are incorrectly labeled as relevant). This weakly

labeled setup (top) is compared with learning from correct labels (bottom).

have observed an accuracy of 50% for New York sights. Since for video data the
coarseness of labels is an additional problem, it may seem surprising that the qual-
ity of YouTube material is not much lower compared to image datasets. Possible
explanations for this are that video contains less graphical material (as logos or
clip arts, which are typically found in web search results) and shows more “reg-
ular” content (many Flickr images are to be considered artwork, for which the
connection to a tag can be very subtle).

4.3.2 How Label Noise Affects Concept Learning

In the last section, significant label noise for YouTube content has been reported.
The next question is how this influences concept detection if using standard meth-
ods. Usually, the machine learning techniques underlying concept detection con-
sider all positively labeled training content to truly show the concept. Intuitively,
it can be expected that this approach — if trained on weakly labeled content —
will lead to an inaccurate detection.

In this experiment, we validate this hypothesis and quantify performance degra-
dation. The annotations described in the last section serve as ground truth labels.
According to them, content is randomly compiled into training sets of varying rel-
evance fraction α, and the resulting concept detectors are evaluated on a held-out
test set.

Setup The same 10 test concepts, frames, and annotations as in Section 4.3.1
were used. For each frame, a bag-of-visual-words feature (see Section 3.5) was
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extracted by a grid sampling of ca. 3, 600 patches at several scales, which were de-
scribed with SIFT features [Low99]. These were matched with a 2, 000-dimensional
visual codebook learned previously on a large dataset of 81 concepts. Finally, di-
mensionality reduction was applied using PLSA [Hof01], obtaining a 64-dimensional
feature vector per frame. This dimensionality reduction was done for efficiency
purposes and has previously been validated to give comparable results to the full
visual word histograms.

Random datasets were sampled for different levels of label noise α ∈ {0.1, 0.2,
0.3, 0.4, 0.5, 0.7, 1.0} (as typical values for web video lie between 20% and 50%, a
stronger focus was put on this range). This sampling is illustrated for the concept
“desert” and α = 60% in Figure 4.2: negative samples — which can be obtained
easily from videos not tagged with the concept — represent the background class.
Positive samples consist of 60% true positives (which are manually assessed to
show the target concept) and 40% non-relevant frames (false positives), which are
again drawn randomly from YouTube videos not tagged with the concept. Further,
correctly annotated test sets were sampled:

for α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0}:

1. sample training set

– sample 1, 000 non-relevant frames with label −1
– sample α · 500 relevant frames with label 1 (“true positives”)
– sample (1− α) · 500 non-relevant frames label 1 (“false positives”)

2. sample test set

– sample 500 relevant frames with label 1
– sample 1, 500 non-relevant frames with label −1

It was made sure during sampling that no material from the same video clip was
assigned to both training set and test set. Also, it should be noted that only the
training set is weakly labeled, while the test set uses ground truth to assure a pre-
cise evaluation. Five random datasets were resampled, and results were averaged
over these runs. As a performance measure, average precision was used, which is a
standard choice for concept detector evaluation [KO07] and has already been used
in Chapter 3. Tests were run for two standard supervised learning approaches:
a generative model (kernel densities) [DHS00] and a discriminative one (Support
Vector Machines) [SS01].

Kernel Densities: Given training samples x1, ..., xn with labels y1, ..., yn ∈
{−1, 1}, kernel densities model class-conditional densities of concept presence, p1,
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and absence, p0 (Z and Z ′ are normalization factors):

p1(x) =
1
Z

∑
i:yi=1

Kh(x;xi), (4.1)

p0(x) =
1
Z ′

∑
i:yi=−1

Kh(x;xi),

and a test frame x is scored using Bayes’ rule (the class prior — which does not
influence the ranking of test items — is assumed to be uniform):

P (y = 1|x) =
p1(x)

p1(x) + p0(x)

As a kernel function, the well-known Epanechnikov kernel with Euclidean distance
function is used:

Kh(x;x′) =
3
4
·
(

1− ||x− x
′||2

h2

)
· 1(||x−x′||≤h)

This choice was made for efficiency reasons: since the Epanechnikov kernel has
local support, it can be combined with fast nearest neighbor search [PPC01]. The
kernel bandwidth h is a free parameter of the system. It has been reported to
have a strong influence on the resulting kernel densities [Tur93], as high values
of h lead to a smoother density in feature space. For the experiment presented
here, several choices of h ∈ {0.225, 0.25, 0.275, 0.3, 0.325} were tested. The
optimal performance was achieved for h = 0.275. However, to illustrate the effects
of different bandwidths more clearly, results are reported for a low value (h = 0.25)
and a high one (h = 0.3).

Support Vector Machines (SVMs): As a representative discriminative
approach, SVMs [SS01] were tested. A Radial Basis Function (RBF) kernel was
used, and the smoothness and cost parameters σ and C [SS01] were evaluated in a
grid search maximizing the cross-validated mean average precision. For efficiency
reasons, no complete search was done for each run, but the values C = 5 and
σ = 25 were validated to give stable good results over different concepts. SVM
scores were mapped to class posterior estimates using the standard approach by
Wu et al. [WLW04].

Both systems — kernel densities and SVMs — were tested in two setups:

• Weak Labels: Only a fraction α of positive training samples does truly
show the concept, which corresponds to the practical situation of learning
from web video.
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Figure 4.3: Comparing concept detection when trained on ground truth labels and on

weak labels (n = 100, 000). The mean average precision over all 10 test concepts is

plotted against the fraction of truly relevant training samples α. The two results on the

left represent the kernel density system for bandwidths 0.25 (a) and 0.3 (b), the result

on the right is for SVMs (c).

• Ground Truth: All training samples are given their correct class label,
indicating how concept detection might work if noise content was filtered
out.

Results Quantitative results are illustrated in Figure 4.3, where the system per-
formance on the test data is plotted against α. A first observation is that the
influence of label noise on the ground truth control run is negligible, as perfor-
mance remains almost constant when varying α. This is intuitively correct, since
noise samples (which become more frequent with lower values of α) are assigned
their correct negative labels. A performance decrease for low relevance fractions of
α ≈ 10% can be attributed to a low absolute number of positive training samples.

In contrast to this, the system trained on weakly labeled data suffers a sig-
nificant performance loss. In the absence of noise (α = 1), both systems give
the same performance (which is trivial, because no non-relevant content occurs).
When decreasing α, the percentage of noise in the training set increases and sys-
tem performance degrades. For example, for training sets with 70% non-relevant
content (α = 0.3) and a bandwidth of 0.25, kernel density estimation trained on
weakly labeled data gives a performance of 43.7%, while training on the correct
labels gives 54.1%. The more noise in the training data, the stronger is the gap
between the weakly supervised run and the control run. This observation can
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be made for the generative model (Figures 4.3(a) and 4.3(b)) as well as for the
discriminative one (Figure 4.3(c)).

We can now match these results with the observations made in the last section,
which indicated that typical relevance fractions of web video data are in the range
of 20−50%. This range is highlighted in yellow in all plots. If we focus on this area,
we see that performance differences between the oracle-based control run and the
standard detector range from 4% to 19%. Over the whole range, this difference is
significant (sign test over rank improvement of positive samples, level 99%). This
indicates that concept detection could be improved distinctly if we were able to
filter out non-relevant content in the training set. This strategy will be followed
by an approach called relevance filtering proposed in this chapter.

Finally, another interesting observation is that — when comparing the two
bandwidths h = 0.25 and h = 0.3 — for the higher bandwidth, the difference
between the standard detector and the control run is lower. For example, for
a relevance prior of 50%, the difference is 7.1% for h = 0.25 but only 4.3% for
h = 0.3. Obviously, a simple way to increase system robustness with respect
to non-relevant training samples is to increase the bandwidth (which leads to
smoother density representations in feature space). This draws an analogy to well-
known techniques in signal processing, where smoothing filters are a common way
to reduce outlier influence [GW02, Ch.5]. Note, however, that this overcomes label
weakness only to a limited extent. The best overall performance is achieved for
a moderate bandwidth of h = 0.275, which gives an appropriate balance between
smoothing and relevance filtering. When increasing the bandwidth further, system
performance degrades.

4.4 Relevance Filtering

In this section, the question is addressed whether the influence of label noise on
concept learning can be reduced. To achieve such robustness, a novel approach is
presented that explicitly takes non-relevant training material into account. This
material is identified and filtered during concept detector training.

The approach will be referred to as relevance filtering. It is explicitly designed
to cope with weakly labeled training videos, i.e. content annotated with a target
concept is assumed likely to show the concept, but does not necessarily do so. The
key idea is that relevant content appears frequently and forms clusters in feature
space, while non-relevant material comes as outliers that can be identified and
relabeled. This approach can be combined with a variety of well-known techniques
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Table 4.2: An overview of the basic notation and concepts used in Section 4.4.

x feature vector representing a test keyframe
y ∈ {−1, 1} absence/presence of target concept in x

P (y = 1|x) keyframe score (to be estimated)
x1, ..., xn feature vectors representing training frames
ỹ1, ..., ỹn ∈ {−1, 1} weak labels of concept presence in training frames

(observed)
y1, ..., yn ∈ {−1, 1} actual absence/presence of target concept in training

frames (unknown)
βi := P (yi = 1|xi, ỹi) relevance score: the probability of a training frame

to be relevant
α := P (yi = 1|ỹi = 1) relevance prior: fraction of actually relevant training

frames among potentially relevant ones (given)

from supervised learning. Two such extensions are presented in detail, one for
a generative approach (kernel density estimation) and one for a discriminative
technique (Support Vector Machines).

4.4.1 Basic Concepts

A video is represented via keyframes, and concept detection is effectively conducted
on keyframe level in the following. Each frame is associated with a feature vector
x ∈ Rd. The presence of the target concept is denoted with a label y such that
y = 1 indicates concept presence and y = −1 concept absence. The goal of
concept detection is to estimate a score P (y = 1|x). Training data is represented
by keyframes (or associated features) x1, ..., xn ∈ Rd. For each training frame
xi, an indicator of concept presence is given that tells us whether the concept
may appear in the frame. This information is derived from user-generated tags
in practice, and is denoted with a weak label ỹi ∈ {−1, 1}. The actual presence
of the target concept, however, is latent. It is denoted with yi ∈ {−1, 1}. For
each concept, a binary classification problem is cast according to the following
definition:

Definition: Weakly Labeled Classification Problem

Given training data in form of samples x1, ..., xn ∈ Rd with labels
ỹ1, ..., ỹn ∈ {−1, 1}, learn a scoring function φ : Rd → [0, 1] such that
φ(x) ≈ P (y = 1|x). Thereby, training labels are assumed to be weak
indicators of true labels y1, ..., yn such that:
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• If the weak label is negative (ỹi = −1), the true label is negative
as well (yi = −1).

• If the weak label is positive (ỹi = 1), the sample may belong to
the positive class, but does not necessarily do so, i.e. the true
label yi is unknown.

Further, a prior for weakly labeled samples to be truly positive is as-
sumed to be given. It is denoted with α := P (yi = 1|ỹi = 1).

The key characteristic of this formulation is that true latent class labels are sepa-
rated from given ones. The setup is regulated by the relevance fraction α, which
tells us how many of the positively labeled samples do show the target concept.
In practice, this information is not available, as it requires knowledge of the latent
true labels yi (we will discuss options to address this problem later).

Finally, it should also be noted that — while we model false positives (i.e. it
is possible that ỹi = 1 and yi = −1) — false negatives (ỹi = −1 and yi = 1) are
not taken into account. This means that if a frame is not labeled with the target
concept, the concept is assumed to be absent. Strictly speaking, this is not true
(for example, there might be web videos clips showing basketball that the user has
simply forgotten to label with the concept). According to observations we made
on web video, however, the amount of these false negatives is negligible.

Let us compare the weakly labeled classification problem above with other
learning setups. When compared with standard supervised learning, two key dif-
ferences can be observed: first, labels for the positive class are only weak indicators
of the true labels. Second, an additional assumption is made (in form of α) on
how much of the weakly labeled material does in fact show the target concept.

Compared with the semi-supervised learning setup as defined by Chapelle et
al. [CSZ06], the above definition can be seen as a degenerate special case: the
weakly labeled samples {xi : ỹi = 1} can be viewed as unlabeled, as their true
label yi is not known. This leads to an extremely imbalanced problem: while
semi-supervised learning usually assumes a few labeled samples of either class
to be given, in our setup we are confronted with many samples from class −1
(simply because content not labeled with a concept can be obtained easily) but no
sample of class 1 (since indicators of concept presence are weak). This renders a
straightforward application of many semi-supervised algorithms impossible.

Finally, the weakly labeled learning setup strongly resembles the visual learning
from noisy image sources like Google’s image search [FFFPZ05, LWFF07, WS08].
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The work in this chapter follows a similar strategy to these approaches (particularly
to the ones by Wnuk and Soatto [WS08] and Li et al. [LSW08], who also propose a
distribution-based filtering of training sets). Yet, several differences remain. First
(and obviously), the web video domain addressed here differs from images delivered
by web search engines. Video comes with an additional temporal structure, and the
models proposed here take this structure into account (Section 4.4.4). Second (and
more importantly), we do not cover a single statistical model, but view relevance
filtering as a wrapper than can be applied around a variety of supervised learning
techniques. For both a generative and a discriminative base model, relevance
filtering extensions will be presented in the following.

4.4.2 Generative Case: Kernel Density Estimation

In this section, a first relevance filtering extension of a generative base model is
presented, namely kernel density estimation [DHS00]. The relevance of training
content is modeled as a latent random variable that is inferred during the learning
procedure.

Class-conditional Densities and Scoring

Class-conditional densities of relevant and non-relevant content are modeled by the
following weighted kernel densities p1

β (concept presence) and p0
β (concept absence):

p1
β(x) =

1
Z
·
n∑
i=1

βi ·Kh(x;xi)

p0
β(x) =

1
Z ′
·
n∑
i=1

(1− βi) ·Kh(x;xi),

(4.2)

where Z =
∑
i βi and Z ′ = n − Z are normalization constants. Compared to

the fully supervised setup from Equation (4.1), the key difference is that p1 and
p0 are now parameterized by a vector β = (β1, ..., βn). This vector consists of
relevance scores βi := P (yi = 1|ỹi, xi), which means that each training sample is
weighted according to its probability of being relevant: if a training sample is likely
to truly show the concept, it has a strong influence on the distribution of relevant
samples p1

β but low influence on p0
β . This way, the uncertainty of label information

is taken into account (a similar model has been used in a semi-supervised setup
before [WHS+06]). Note that if we set the relevance scores according to the weak
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labels:

βi =
{

1, ỹi = 1
0, ỹi = −1,

the system degenerates to the standard supervised case (Equation (4.1)), in which
all positive samples are assumed to be relevant. This approach has already been
tested in Section 4.3 and will again serve as a baseline in later experiments.

Training

To compute the class-conditional densities p1
β and p0

β , the vector of relevance scores
β must be inferred in system training, which takes features x1, ..., xn, weak labels
ỹ1, ..., ỹn, and the relevance prior α as input. For each training frame xi, the true
label yi is to be estimated (or more precisely, the associated probability βi). Three
situations may occur:

1. ỹi = −1 (negative sample): If a frame xi is not labeled with the concept, it
is assumed to be non-relevant, i.e. βi = 0.

2. ỹi = yi = 1 (true positive): A frame xi is labeled with the concept and is in
fact relevant. Accordingly, βi should be high.

3. ỹi = 1, yi = −1 (false positive): A frame is labeled with the concept but is
not relevant. Such samples appear due to label noise. For them, βi should
be low.

Let us assume that p training samples are weakly labeled with the concept, and
that training samples are sorted such that ỹ1 = .. = ỹp = 1 and ỹp+1 = .. = ỹn =
−1. While we know that βp+1 = .. = βn = 0, the relevance scores β1, ., , βp need
to be estimated, i.e. training must divide potentially relevant frames into actually
relevant ones and non-relevant ones. The key idea is to make this decision based
on the distribution of training features: relevant content is assumed to cluster in
certain regions of feature space, while outliers or samples close to negative content
are considered non-relevant. Based on this assumption, two training procedures
are suggested, a simple fixpoint iteration scheme and a Maximum a posteriori
parameter estimation using Markov Chain Monte Carlo (MCMC) optimization.

Training 1: Fixpoint Iteration

In the following, the parameter vector β is restricted to the non-zero entries β =
(β1, ..., βp) (we know that βp+1 = .. = βn = 0). One strategy to estimate β
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is based on a fixpoint iteration in parameter space. First, relevance scores are
initialized with the relevance prior: β0 = (α, ..., α). Then, the parameter vector
βk is iteratively updated to a new version βk+1 by plugging the current parameter
estimate βk into the class-conditional densities p1

βk and p0
βk (Equation (4.2)). From

these densities, new estimates of relevance scores can be obtained using Bayes’ rule:

βk+1
i := P (yi = 1|xi, ỹi = 1)

=
p(yi = 1, xi|ỹi = 1)

p(yi = 1, xi|ỹi = 1) + p(yi = −1, xi|ỹi = 1)

≈ P (yi = 1|ỹi = 1) · p(xi|yi = 1)
P (yi = 1|ỹi = 1) · p(xi|yi = 1) + P (yi = −1|ỹi = 1) · p(xi|yi = −1)

≈
α · p1

βk(xi)

α · p1
βk

(xi) + (1− α) · p0
βk

(xi)

This process is repeated for a fixed number of iterations. Intuitively, the algorithm
identifies regions in feature space where positively labeled frames concentrate and
assigns high relevance scores to them, while outliers similar to negative content are
given low relevance scores. The approach also resembles the well-known Expec-
tation Maximization (EM) scheme [DLR77], which maximizes the data likelihood
by alternating so-called “E” steps (in which posteriors for latent variables are esti-
mated) and“M”steps (in which the parameters are updated according to estimates
in the “E” step). If we compare the EM scheme to the fixpoint iteration used here,
the relevance scores βi resemble posteriors for latent variables in the EM scenario
(namely, the true labels yi). However, since the parameters of the class-conditional
densities are equal to the relevance scores β and the framework is non-parametric
otherwise, no “M” step is required.

The approach is also similar to the procedure used by Wang et al. [WHS+06],
but the system is constrained in a different way. While Wang et al. addressed
a strictly semi-supervised setup — where initial reliable training samples for all
classes are available — we cannot rely on such information in our weakly supervised
setup. Instead, we constrain the system with a certain prior of expected relevant
material α. It should also be noted that if we choose the relevance prior to be
α = 1, it follows that β1 = β2 = .. = βp = 1, such that the model degenerates to
the supervised case (Equation (4.2)).
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Training 2: MAP Parameter Estimation using MCMC Sampling

An alternative strategy to estimate the parameter vector β = (β1, ..., βp) follows
Maximum a posteriori (MAP) parameter estimation [DHS00, Ch. 3], i.e. the pa-
rameter vector with maximum posterior probability given the training data is
chosen. The relevance prior α becomes part of a prior term in the target function:

β̂ = arg max
β

p(β |x1, ..., xn, ỹ1, ..., ỹn, α) (4.3)

= arg max
β

p(x1, ..., xn | ỹ1, ..., ỹn, β) · p(β | ỹ1, ..., ỹn, α)︸ ︷︷ ︸
Q(β)

The target functionQ(β) consists of a data likelihood term p(x1, ..., xn | ỹ1, ..., ỹn, β)
and a prior term p(β | ỹ1, ..., ỹn, α). To estimate the former, samples are assumed to
be independent and identically distributed, and for each frame xi a marginalization
over the latent label yi is performed:

p(x1, ..., xn | ỹ1, ..., ỹn, β) ≈
n∏
i=1

p(xi | ỹi, β)

=
n∏
i=1

[ p(xi, yi = 1 | ỹi, β) + p(xi, yi = −1 | ỹi, β) ]

≈
n∏
i=1

[ p(xi | yi = 1, β) · P (yi = 1 | ỹi, β)

+ p(xi | yi = −1, β) · P (yi = −1 | ỹi, β) ]

=
n∏
i=1

[ α̃ · p1
β(xi) + (1− α̃) · p0

β(xi) ],

where an estimate of the relevance prior from the relevance scores is used: α̃ =
1
p

∑p
i=1 βi.

The prior term p(β | ỹ1, ..., ỹn, α) is chosen according to two criteria: first, the
concept cannot be present in frames with negative labels, i.e. βp+1 = .. = βn = 0.
For the remaining relevance scores, we make use of the relevance fraction α, i.e.
we enforce that α̃ ≈ α. Therefore, the prior p(β | ỹ1, ..., ỹn, α) is modeled as a beta
distribution:

p(β | ỹ1, ..., ỹn, α) =
1
Z
· α̃α·M · (1− α̃)(1−α)·M (4.4)

where Z is a normalization constant. The parameter M ∈ N regulates the influence
of the prior. A sample illustration with different choices of M and α can be found
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Figure 4.4: (a) The prior p(β|ỹ1, ..., ỹn, α) is always peaked at α and thus biases the

estimate α̃ towards the true relevance prior α. (b) Simulated annealing for different

choices of the cooling rate δ. While a slow cooling is inefficient and a greedy cooling gets

caught in a suboptimal local maximum, a moderate cooling rate of δ = 10−5 offers a good

tradeoff.

in Figure 4.4(a), which demonstrates that the prior is always peaked at α, and
that this peak grows stronger with increasing M .

To optimize the target function Q from Equation (4.3), a stochastic simulated
annealing procedure from the class of Markov-Chain Monte Carlo (MCMC) al-
gorithms is used [AdFDJ03]. The general strategy of such optimizers is to draw
samples from the target function using random walks. If applied to the relevance
estimation scenario studied here, we obtain the following procedure: starting from
an initial parameter vector β0 = (α, ..., α), a random walk β0, β1, ... in parameter
space is generated. A new parameter vector βk+1 is computed from βk in two
steps: first, an randomized update function q suggests a new version β∗ = q(βk).
If β∗ improves Q compared to βk, this change is accepted, i.e. βk+1 = β∗. Oth-
erwise, β∗ is only accepted with a probability of Q1/T (β∗)

Q1/T (βk)
, and in case of rejection

the old version is kept (βk+1 = βk). A temperature parameter T influences the
strictness of rejection. This approach can be demonstrated to optimize the target
function Q [AdFDJ03].

Design choices need to be made regarding the update strategy q and tempera-
ture T . Here, q is kept very simple: two random training samples 1 ≤ j1 < j2 ≤ p
are picked, and a random amount of relevance mass ε ∼ U[0,0.1] is shifted from one
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sample to the other:

q(βk) = (βk1 , .., β
k
j1 − ε, .., β

k
j2 + ε, .., βkn)

All other relevance scores remain unchanged, such that the update does not affect
α̃ and can be computed efficiently. To change the overall relevance fraction, a
more time-consuming update step is conducted occasionally (every 250 iterations)
that changes all relevance scores simultaneously according to a change coefficient
γ ∼ U[0.8,1.2]:

q(βk) = (γ · βk1 , ..., γ · βkn)

A sensitive parameter is the temperature T . The lower T , the stricter updates
are rejected that do not improve Q, and the greedier optimization approaches
a local maximum. According to standard practice [AdFDJ03], we choose the
temperature T to decrease with increasing iterations at a “cooling rate” δ: T =
e−δ·k. The effects of different choices of δ are illustrated in Figure 4.4 for a weakly
labeled “soccer” training set. The improvement of the target function Q (relative
to the starting value) is plotted over the number of training iterations for different
choices of δ. For low cooling rates, optimization is inefficient and progresses slowly.
For high cooling rates, optimization is greedy and converges to a suboptimal local
maximum. A moderate cooling rate of 10−5 offers a good tradeoff and converges
to a better solution in a reasonable number of iterations.

A Sample Problem

An illustration of relevance filtering for kernel densities is given in a small experi-
ment. A 2-dimensional weakly labeled dataset is generated such that samples from
the positive class contain a certain amount of incorrectly labeled false positives.
For two classes (representing concept presence and absence), random prototypes
are drawn from [0, 1]2. For class 1, five prototypes are used, and for the negative
class 50 prototypes. Samples are drawn from the surrounding of these prototypes
according to kernel densities p1 and p0 with bandwidth h = 0.05. First, a training
set of n = 200 noisy positive samples is generated:

x1, ..., xn ∼ α∗ · p1 + (1− α∗) · p0.

The fraction of relevant samples is varied such that α∗ ∈ {0.2, 0.6, 1}, i.e. we
use one clean training set (α∗ = 1.0), one with moderate label noise (α∗ = 0.6)
and one with lots of non-relevant samples (α∗ = 0.2). For each training set,
negative training samples drawn from p0(x) are added. A typical dataset used
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Figure 4.5: (a) A 2D sample training set. Positive samples concentrate in 5 peaks, but

contain 40% outliers. (b) A learned relevance map identifies relevant content near the

correct five peaks. (c) Bag classification error rates for an experiment on synthetic data,

whereas the true relevance fraction α∗ and the assumed relevance prior α are varied. A

choice of α = α∗ gives the best classification results (n = 400, 000).

in this experiment is illustrated in Figure 4.5(a) — it can be seen that positive
(red) samples concentrate near the five prototypes of class 1, but many outliers
occur. Finally, a test set of equal size was sampled. This experiment was repeated
100 times, whereas for each run the relevance filtering framework was tested with
fixpoint iteration training and a relevance prior of α̂ ∈ {0.2, 0.6, 1.0}. Note that
we distinguish between the true relevance fraction α∗ and the relevance prior we
expect, α.

The result of relevance filtering is illustrated in Figure 4.5(b), where a relevance
map plots the relevance score β over feature space. It can be seen that high
relevance scores are assigned to samples accumulating near the five prototypes,
while outliers close to negative samples are identified as non-relevant. Classification
results when applying the kernel density model with relevance filtering are reported
in Table 4.5(c). Two observations can be made: first — and not surprisingly — the
overall error rate of classification increases with the amount of noise material in
the training set. The second observation is that the noise level α∗ and the optimal
choice of the relevance prior α are correlated, i.e. the lowest error rate is achieved
for α = α∗. For example, for the clean training set (α∗ = 1) the supervised
system (α = 1) — which corresponds to a plain kernel density system assuming
all positive training content to be relevant — performs best, while the weakly
supervised systems (α = 0.2, 0.6) incorrectly identify some content as non-relevant
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Algorithm 1 Discriminative relevance filtering: samples are iteratively re-
fined by training a base classifier, scoring training content, and relabeling the
samples most likely to be false positives.

for i = 1, ..., n: set βi = 1 (if ỹi = 1) or βi = 0 (otherwise).
randomly split X = {x1, ., , .xn} into five folds X1, ..., X5

while 1
p

∑p
i=1 βi > α do

for k = 1, ..., 5 do
train a classifier on X \Xk

apply the classifier to Xk, obtaining scores σ
for the Nf samples xi ∈ Xk with βi = 1 and lowest scores σ(xi) do

set βi = 0
end for

end for
end while

and thus ignore valuable training information. On the other hand, if α∗ = 0.2, the
best performance is achieved for α = 0.2, and error is reduced by 7.8% compared
to the supervised case. Generally, this result indicates that relevance filtering can
improve classification on weakly labeled training sets.

4.4.3 Discriminative Case: Support Vector Machines

While a generative technique was integrated with relevance filtering in the last
section, a similar extension will be presented for discriminative models in the
following. The approach can be applied as a wrapper around a variety of base
classifiers, with the only requirement that these deliver a class posterior estimate
(or score, respectively). As a sample classifier, SVMs are used, which can be
considered a standard choice for concept detection [vdSGS08, YCKH07, YH08].

The basic idea of relevance filtering for discriminative methods is similar to a
semi-supervised self-training, but works in a filtering fashion instead of an incre-
mental one. Iteratively, the base classifier is trained and used to identify potential
false positives in the training set. Their relevance scores βi are set from 1 to 0
(i.e., they count as negative samples in later iterations). This way, the weakly la-
beled positive samples are iteratively filtered and the model is refined. The whole
process is repeated until the estimated relevance prior 1

p

∑
i βi — which constantly

decreases due to relabeling — reaches the expected relevance prior α. The whole
training procedure is outlined in Algorithm 1 (note that filtering is done in a cross-
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validation fashion to avoid overfitting). Also, an illustration is given in Figure 4.6:
before relevance filtering, the decision boundary of the underlying classifier is sub-
optimal due to a false positive in the training set. This is identified based on
its score during the learning procedure, and after relabeling it, a better decision
boundary is achieved.

Let us compare the approach with the generative version from the last section.
Generally, both approaches follow the same idea, namely to estimate the relevance
of training content using the distribution in feature space and a relevance prior.
However, two key differences can be identified. First, while the generative approach
relies entirely on the distribution of content in feature space, the discriminative
technique is inherently bound to the base classifier used. Second, the discrimina-
tive relevance filtering approach is not probabilistic. The scores used for filtering
may be interpretable as relevance posteriors, but do not necessarily have to be.
Also, no uncertainty is allowed regarding the relevance of a sample, but only a
complete relabeling from the positive to the negative class takes place. Instead,
the generative approach allows a soft assignment of samples to classes.

4.4.4 Temporal Neighborhood Suppression

As introduced so far, relevance filtering can be equally applied to image and video
content (if represented by keyframes). In this section, an extension is presented
that is specific to video content, which is known to come with an additional tempo-
ral structure. More precisely, the problem is addressed that video content appear-
ing at about the same time (for example, keyframes sampled from the same shot)
tends to be visually related. This can lead to inherent concentrations in feature
space that compete with concentrations due to relevance. For example, imagine a
very long YouTube clip showing an interview about basketball. Though the video
is not visually related to the concept, it is marked as positive with a weak label.
As the keyframes of the video are all similar, they form a cluster in feature space
and boost each other to an incorrect high relevance score.

Obviously, the occurrence of such sample concentrations is related to keyframe
selection, and one solution might be to enhance keyframe extraction such that
clusters of keyframes are identified and boiled down to a single representative. On
the downside, this comes with an inherent loss of information, and it is difficult to
achieve cluster suppression while at the same time preserving a sufficient richness
of content. Instead, a different strategy is outlined in the following that defines
a temporal neighborhood N T (xi) ⊂ {x1, ..., xn} around each training sample xi.
For example, NT (xi) might be all other training samples from the same YouTube
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Figure 4.6: An illustration of discriminative relevance filtering on a dataset including

a false positive. Before filtering, this sample degrades the model. During filtering, it

is identified as potentially non-relevant material and relabeled, which leads to a better

decision boundary.

clip as xi. Then xi should be marked relevant only if other potentially relevant
content outside this temporal neighborhood is found to support xi’s relevance.
This approach is referred to as temporal neighborhood suppression (TNS) in the
following, and it is described for both the generative and the discriminative version
of relevance filtering.

Generative TNS Temporal neighborhood suppression in the generative setting
can be achieved by a slight modification. Basically, whenever the class-conditional
densities (Equation (4.2)) are computed during training, content from the temporal
neighborhood is skipped.

p1
β(xi) =

1
Z(i)

·
∑

xj /∈NT (xi)

βj ·Kh(xi;xj),

p0
β(xi) =

1
Z ′(i)

·
∑

xj /∈NT (xi)

(1− βj) ·Kh(xi;xj),

Note that this also requires a change of the normalization factors Z and Z ′, which
now depend on the training sample xi.

Discriminative TNS According to temporal neighborhood suppression, the rel-
evance score of a sample should not be influenced by samples from its temporal
neighborhood. For the discriminative setup, this means that samples from N T (xi)
should not be trained on when scoring xi. This can be achieved by simply re-
placing the random split into folds (Step 2 in Algorithm 1) with one that assigns
temporally related content to the same fold.
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4.5 Experiments using Relevance Filtering

In the last section, relevance filtering has been proposed as a strategy to overcome
label noise in concept detection training sets, and extensions of two standard tech-
niques (kernel densities and SVMs) have been presented. In practice, however, such
an automatic filtering — which is entirely based on the distribution of content in
feature space — is not 100% accurate. Therefore, it is investigated in the following
how well relevant content can be separated from non-relevant one, and whether
the performance of concept detection can be improved this way. A similar setup
to the one from Section 4.3 is used, i.e. training sets with known, varying noise
level are randomly compiled. It is demonstrated that the filtering of non-relevant
content is possible (though far from perfect), and performance improvements are
achieved compared to an equivalent supervised system.

4.5.1 Controlled Setup

The setup of this experiment is almost identical to the one used in Section 4.3: the
same randomly sampled training sets and test sets are used. Also, the same feature
representation (visual words, followed by a dimensionality reduction using PLSA)
and statistical models (kernel density estimation and Support Vector Machines) are
employed. It should be noted that in this setup, false positives are drawn from an
overall “world distribution” of non-relevant content (which has been denoted with
p0). This corresponds to the modeling assumption made by relevance filtering.
However, we will see later that this is not necessarily true in practice, and will
provide experimental results on raw web video data. Besides the control runs used
in Section 4.3.2, additional results for relevance filtering extensions are presented:

1. Ground Truth: The control run from Section 4.3.2 trained on ground truth
labels. The system can be viewed as a perfect relevance filtering, where
all non-relevant content is correctly relabeled while all relevant samples are
preserved.

2. Weak Labels: The run from Section 4.3.2, i.e. standard supervised learning
trained on weak labels. This can be interpreted as a special case of relevance
filtering, with the relevance prior set to 100%.

3. Relevance Filtering — Fixpoint Iteration: The relevance filtering ex-
tension of the generative kernel density approach from Section 4.4.2, using
training variant 1 (fixpoint iteration). The number of training iterations
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is set to 100. The relevance prior is set to the correct fraction of relevant
material (the behavior when varying this parameter will be studied later).

4. Relevance Filtering — MCMC: The relevance filtering extension of the
generative kernel density approach from Section 4.4.2, using training variant
2 (MCMC sampling). The cooling schedule of training is set to δ = 10−5.
The parameter M (which regulates the influence of the beta prior) is set to
half the training set size. The relevance prior α is set to the correct fraction
of relevant material.

5. Relevance Filtering — SVM Self-training: The relevance filtering ex-
tension of the discriminative approach from Section 4.4.3 using SVMs as base
classifiers. 10 false positives are filtered in each training iteration. The same
smoothness parameter σ = 25 and cost parameter C = 5 are used as in
Section 4.3. The relevance prior α is set to the correct fraction of relevant
material.

We first visualize the effects of relevance filtering and illustrate what content is
identified as non-relevant by the system. Training content is ranked by its score βi,
and the images with highest scores and lowest scores are displayed in Figure 4.7 (a
training set with α = 0.3 was used, and relevance filtering was run with fixpoint
iteration optimization, a bandwidth of 0.275, and a relevance prior of 0.3). For
each concept, we see the content that the system identifies to be most relevant
(i.e. with the highest scores β) at the top. Below this, material is illustrated that
was labeled with the concept but was identified to be non-relevant. Obviously,
the content identified as relevant is in fact very likely to be visually related to the
concept, and non-relevant material — though labeled with the target concept —
tends to be identified successfully. Yet, the quality of filtering is far from perfect,
and is also related to the difficulty of the concept: for example, the filtering results
for “swimming” are far more accurate than the ones for the challenging concept
“cats”.

Quantitative results are illustrated in Figures 4.8(a) and 4.8(b) (for the gener-
ative model) and in Figure 4.8(c) (for the discriminative one). With decreasing α
— i.e. with increasing label noise in the training set — the quality of all detectors
(except for the one trained on ground truth labels) degrades significantly, as was
already observed for the supervised setup in Figure 4.3. We now examine how
relevance filtering performs for the generative kernel density model (Figures 4.8(a)
and 4.8(b)). When comparing the two training strategies — fixpoint iteration and
MCMC sampling — the fixpoint iteration scheme performs clearly better:
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basketball beach cats
relevant
(high β)

non-relevant
(low β)

desert eiffeltower helicopter
relevant
(high β)

non-relevant
(low β)

soccer swimming tank
relevant
(high β)

non-relevant
(low β)

Figure 4.7: Results of relevance filtering: for nine concepts, the frames are displayed

that the approach learns to be most relevant (top) and least relevant (bottom). Relevance

filtering works in general, though the quality of filtering is strongly related to concept

difficulty, as can be observed when comparing“cats” (top right) with“swimming”(bottom

center). Pictures from YouTube.
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Figure 4.8: Results of relevance filtering for kernel densities (a,b) and SVMs (c). The

performance is plotted against the relevance fraction α (n = 100, 000). It can be seen

that relevance filtering — though not achieving the performance of a hypothetical perfect

filter — gives significant improvements over its supervised equivalent.

while MCMC gives only minor (h = 0.25) or no improvements (h = 0.3) over
the supervised case, training with fixpoint iteration improves results significantly.
For example, for a bandwidth h = 0.25 and a relevance fraction of α = 0.3,
relevance filtering leads to an improvement from 44% to 51%. When comparing the
two kernel bandwidths, we see that relevance filtering gives stronger improvements
for the lower bandwidth of 0.25. This can be explained by the fact that the
supervised baseline is more competitive due to a stronger smoothing.

For the discriminative SVM approach, similar observations can be made as for
kernel densities: relevance filtering does not reach the performance of the oracle-
based control run on ground truth labels. Yet, it outperforms standard supervised
learning approaches distinctly. Overall, the improvements by relevance filtering
in the range of α ∈ [0.2, 0.5] are significant for all methods (sign test over rank
improvement, level 99%).

Finally, the experiment also indicates for which noise levels relevance filtering
is the most promising. On the one hand, if the training set is already accurately
labeled (α ≈ 1), standard supervised learning performs quite well, and only mi-
nor improvements by relevance filtering are observed. On the other hand, if the
training set is extremely noisy (α ≤ 10%), relevance filtering becomes difficult.
This can be observed in Figure 4.8(c), where for the leftmost point (α = 10%) the
improvement of relevance filtering is only weak. Obviously, for moderate values
of 0.2 ≤ α ≤ 0.5, the benefits of relevance filtering are most prominent, which
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Figure 4.9: Non-relevant content from web videos labeled with “Eiffel Tower” does not

show the concept, but is obviously correlated it. This renders a fully automatic relevance

filtering based only on the frequency in feature space a difficult challenge (pictures from

YouTube).

makes relevance filtering particularly interesting for web video. Here, relative per-
formance improvements of up to 17.3% are achieved.

4.5.2 Concept-related Noise Content

In the last experiment, we have seen that relevance filtering can successfully iden-
tify non-relevant content, filter it, and thus improve concept learning under label
noise. Yet, the experimental setup was restricted in two ways. First, the fraction
of relevant content, though not known in practice, was assumed to be given. A
simple workaround for this is to set the relevance prior to a “reasonable” value
like 0.5, which will be demonstrated to give comparable results to using the true
relevance prior.

The second issue is related to the non-relevant samples themselves. While the
proposed approach assumes such false positives to be drawn from an overall“world”
distribution, non-relevant content depends strongly on the concept in practice.
For example, non-relevant material in “basketball” videos tends to show scenes of
a cheering crowd, while non-relevant “eiffeltower” material includes urban scenes
of Paris (samples “Eiffel Tower” are displayed in Figure 4.9). Note that — as
relevance filtering is entirely based on the fact that relevant content forms clusters
in feature space — non-relevant material forming similar clusters (like “shots of
Paris”) may be difficult to separate from truly relevant content. Therefore, this
experiment will use concept-related noise content as it occurs in real-world web
videos.

Setup We use a similar setup as in previous experiments, i.e. training sets of the
same size are randomly compiled for different noise levels. The key difference is
that false positives — which were previously sampled from videos not labeled with
the target concept — are now drawn from clips tagged with the concept, but were
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Figure 4.10: Results on raw web video content, where non-relevant material is correlated

with the target concept (n = 100, 000). Relevance filtering still outperforms supervised

learning, though by a lower margin.

assessed manually to be non-relevant. Similarly, the test set was adapted, i.e. 500
concept-related non-relevant frames were included. Again, the same feature rep-
resentation (visual words and PLSA) and statistical models (kernel densities and
SVMs) were tested. Fixpoint iteration — which was found to clearly outperform
MCMC previously — was used to train generative relevance filtering.

Results Like in previous sections, results are reported in terms of mean average
precision plotted against the relevance fraction α (Figures 4.10 and 4.11). The first
— and most important — observation is that relevance filtering still outperforms
supervised learning significantly (sign test, level 99%), but by a lower margin com-
pared to previous experiments. While relative improvements by relevance filtering
reached up to 17.3% (compare Figure 4.8), they are now below 11.8%, and for
SVMs an aggressive filtering at high noise ratios (α = 0.1) even gives a lower per-
formance than supervised learning (Figure 4.10(c)). This is because false positives,
which are now correlated with the target concept, are more difficult to identify and
filter.

Figure 4.10 also illustrates the effect of temporal neighborhood suppression
(TNS). It can be seen that using this video-specific approach to suppress evidence
from temporally close content, improvements in the range of 1% can be achieved
for the generative case compared to a plain image-based system. This improve-
ment is minor but statistically significant (sign test, level 99%).
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Figure 4.11: Comparing relevance filtering on raw web video training sets when using

the correct relevance prior (dark blue) with using α = 50% (light blue). It can be seen

that the latter choice leads to comparable results.

Finally, we address the question how to estimate the relevance prior α. A
simple solution is proposed, namely to set it to a “reasonable” value of 0.5 (which is
typical for web-based training sets as shown in Section 4.3). Figure 4.11 compares
relevance filtering (with temporal neighborhood suppression switched on) when
using the true prior and when using α = 0.5. It can be seen that setting α = 0.5 (i.e.
by filtering half of all positive training samples) gives a performance comparable
to the true value, at least for the range of α = 0.2 − 0.5 that is typical for web
video. For SVMs and very noisy training sets, this choice even outperforms an
aggressive filtering.

4.6 Discussion

In this chapter, relevance filtering has been presented, a novel approach for concept
learning from user-tagged video. This method addresses the fact that web video
tags are coarse, subjective, and context-dependent, such that significant amounts
of training material do not show the target concept to be learned. This degrades
the performance of standard concept detectors.

To address this problem, relevance filtering views web tags as weak indicators
of true, latent concept labels and infers these during training. This approach can
be used as a wrapper around generative base models (as demonstrated for kernel
densities) as well as discriminative ones (as shown for SVMs).
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We have tested relevance filtering in two setups. In the first one, non-relevant
content was – according to the modeling assumptions – drawn from an overall world
distribution. Here, relevance filtering systems were able to identify non-relevant
content reliably and give strong improvements over their supervised counterparts.
In the second setup, the system was trained on raw web video content, where non-
relevant material is often correlated with the target concept (for example, noise
material tagged with “Eiffel Tower” tends to show urban scenes of Paris). Here,
relevance filtering still gave improvements, though by a lower margin. This can be
explained by the fact that correlated noise content forms clusters in feature space
similar to relevant material, and is thus difficult to identify.

On the one hand, these results indicate that the problem of label noise in web
data can be overcome to some extent, as the proposed relevance filtering gives im-
provements over standard supervised learning. On the other hand, systems trained
on ground truth labels still perform significantly better. This indicates that — if
we were able to do a better filtering — we could improve concept detection on
weakly labeled training data even further. Correspondingly, a promising direction
of future work is to integrate the current (fully automatic) approach with mod-
erate manual supervision. This way, a better filtering is to be expected: more
reliable label information can be achieved this way, as well as better estimates
for the relevance fraction α. Particularly, active learning techniques — where the
system selects informative examples for the user to label [AQ08, Set09] — might
be investigated. Such an extension fits quite elegantly into the proposed frame-
work: whenever a user annotates a training sample xi, the relevance score βi is
adapted accordingly, and learning is re-iterated. Also, relevance scores βi can di-
rectly be used as a criterion for selecting query samples for manual labeling, using
uncertainty sampling [LG94] or related strategies. First experiments conducted by
the author of this thesis already demonstrate significant improvements using such
active relevance filtering.

Another interesting extension to the current approach might be to make better
use of the temporal structure of video. This is currently done by a suppression of
the temporal neighborhood, i.e. content appearing at about the same time / in the
same clip is ignored when judging relevance. On the other hand, this content also
tends to be similarly relevant, such that scores might be enforced to be smooth over
time. This is ignored by the current approach, and an extension that uses temporal
correlation might be an interesting direction to improve relevance filtering.
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Chapter 5

Style Modeling for Concept

Detection

In this chapter, the proposed framework for concept learning from user-tagged web
content is extended further, based on the fact that users at portals like Flickr and
YouTube organize material in categories. This information is used to integrate
concept detection with style modeling: a distinct annotation model is learned per
category (or style, respectively). To use these models for annotation, test images
are assumed to come in style-coherent groups, and pictures are mapped to a style
using their context (i.e. other images from the same batch).

The key contributions of this chapter are1:

1. A novel algorithm for image and video annotation is proposed which makes
use of category information in web portals, and is the first one that combines
autoannotation with style modeling.

2. It is shown that context information — if available and used as proposed
— improves concept detection significantly. In experiments on the COREL
dataset and Flickr photos, relative performance improvements of up to 100%
are reached compared to an annotation of individual images (n = 32, 000).

3. On the COREL-5K standard benchmark, the approach achieves a competi-
tive performance (mean per word precision/recall: 25% / 39%).

1This chapter is based on the author’s work in [DUBW09]
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5.1 Introduction

Concept detection (or autoannotation, respectively) is concerned with automati-
cally detecting the presence of objects, scene types, activities, etc in images and
videos. The task poses an extraordinarily difficult challenge to computer vision
systems, because hundreds or thousands of concepts are to be distinguished, and
because intra-class variation is enormous — for example, views of a concept like
“dog” may vary with changes of object pose, camera perspective, illumination, and
finally with inherent variation of object instances themselves. Yet, though the per-
formance of concept detectors remains far from human accuracy, the approach is
attributed a high potential for image and video retrieval [SWdR+08] and has been
realized in a variety of prototypes [CHL+07, LW08, SvZ08, Sno07, WZLM08].

A key problem with autoannotation is that the effort associated with training
data acquisition is high, as the number of classes to be learned may be in the
range of thousands. This opens the question whether novel sources of information
that are freely available can be employed to improve the performance of detectors
or to reduce the manual annotation effort associated with training. One such
information source is the web, which offers vast databases of visual content enriched
with user-generated textual descriptions. For the domain of images, Flickr2 and
text-based image search engines have been pointed out as interesting information
sources, and a variety of approaches [FFFPZ05, LWFF07, WZLM08] have been
suggested to employ them for visual learning. For the video domain, portals like
YouTube offer similar possibilities, and it has been demonstrated in Chapter 3
that web video offers a scalable, flexible, and efficient way of concept learning.

While the aforementioned methods focus on web-based data as additional train-
ing content, portals such as YouTube or Flickr also offer information of a structural
kind. This is because users do not only enrich their images and videos with de-
scriptive tags, but also assign them to semantic classes: content at YouTube is
organized in 15 categories such as “Travel&Events” or “Sports”. Similarly, images
at Flickr are assigned to thousands of groups dealing with topics like “New York
City” or “Macro Photography” [NGP08]. This is not limited to web content: as
the desire to categorize and organize is deeply human, users also create folders
on their local harddrives and place pictures in them that “belong together”. Like
Flickr groups, these batches of images may be associated with certain events or
locations, being captured over the latest holiday trip or containing photos of a
new-born baby. Similarly, personal video content is compiled to clips, which may
show a friend’s wedding or a soccer game. Even more generally, video digest of

2www.flickr.com
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forest park

(a)

monologue interview

(b)

Figure 5.1: Context information improves image and video annotation: in both cases,

an automatic tagging is difficult when only looking at an individual item. For an image

showing an outdoor scene (a), potential tags might be “forest” or “park”. A head shot

scene in a video (b) might be labeled “monologue” or “interview”. By taking context into

account, these conflicts can be disambiguated: since other pictures in the same group

show mostly urban scenes, the correct tag “park” is inferred. The video scene in question

appears in a news context, such that the preferable tag turns out to be “interview”.

Pictures from Flickr/YouTube/ZDF.

all kinds comes in temporal units. On a low level, these are frames and shots, but
there are also units on a higher level, like scenes, shows, clips, and films. What we
learn from these examples is that — in a variety of practical situations — visual
content comes in groups and categories.

The key hypothesis of this chapter is that this information can be used for an
improved concept detection. Thereby, other images from the same group serve
as context for an item to be annotated. This idea is illustrated in Figure 5.1 for
both photos and video: for the image case, a group of pictures is shown from
a weekend trip to Rome. Consider the image at the bottom right showing an
outdoor scene with trees and greenery. Using evidence from this single image only,
a concept detection system might confuse the tags “forest” and “park”. However,
if further taking into account that the image belongs to a group showing mostly
urban scenes, this ambiguity can be resolved, and the correct tag “park” can be
inferred. The same holds for the video content displayed: a frame is highlighted
which — if viewed individually — might be labeled both as an “interview” or a
“monologue”. If viewed in a “news” context, however, the preferred tag turns out
to be “interview”. Both examples indicate that context information might help to
improve concept detection.
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“7”

“1”

“park”

“forest”

Figure 5.2: Illustrating parallels between image annotation (left) and handwriting recog-

nition (right): in both cases local ambiguity may occur (boxes in the center), i.e. individ-

ual samples are difficult to classify (on the left an image might be labeled with “forest”

or “park”, on the right a digit might be a “1” or a “7”). This ambiguity can be resolved

using context information: for the picture in question, the fact that other images in the

batch show mostly urban scenes helps to infer the tag “park”. In the case of handwriting,

alternative versions of 1s and 7s are found (pictures from Flickr/MNIST handwritten

digits).

Unfortunately, context information has been widely neglected by image and
video annotation so far: most methods assume images and keyframes to be inde-
pendent and identically distributed (which is incorrect) and label them one by one
using the same statistical model [CCMV07, DBdFF02, FML04, LMJ04, LW08,
WZLM08]. This approach is limited in the sense that the context of an item to be
annotated is not taken into account at all.

To overcome this restriction, the goal of this chapter is to improve autoanno-
tation by employing additional context information. Therefore, we turn towards
solutions developed in other domains, namely handwriting recognition and optical
character recognition (OCR). There are strong parallels between concept detection
and character recognition: similar to pictures or frames (which have been pointed
out above to come in correlated batches), written glyphs form coherent groups,
like sentences, pages, or documents. Correspondingly, context plays a similar role
in both domains, as is illustrated in Figure 5.2: in the box on the left side, the
ambiguous image from Figure 5.1 is displayed again, and it can be seen that dif-
ferent tags would be appropriate if viewed in a “City” context (namely, “park”) or
in a “Nature” context (namely, “forest”). On the right, a “difficult” handprinted
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digit is displayed (a decision based only on the digit itself is highly ambiguous
and might be either “1” or “7”). Taking into account context information drawn
from the complete document, this ambiguity can be resolved. Different versions
of “1”s and “7”s are found, such that obviously the upper row corresponds to an
American-style writer (where the letter in question is to be interpreted as a “7”),
while the lower one has been written in European style (and the letter is a “1”).
In both domains, context resolves local ambiguity.

In OCR, context has successfully been exploited by style modeling approaches
[MB02, SN05]. These methods assume the glyphs within a document to be drawn
from a common latent source (or style). A style is defined as a category of sam-
ples sharing a coherent appearance — in case of OCR, this corresponds to all
glyphs written by a certain person or printed in a certain font. Given this style
information, classification is performed in three steps. First, for each style a spe-
cific annotation model learned, using training samples drawn from the style only.
Second, to perform recognition of a test document, context information is used
to reliably infer the style of the whole document. Third, for each character the
same style-specific classifier is used for a highly accurate recognition. Using this
approach, it has been demonstrated for handwriting that style information can
improve recognition significantly [MB02, SN05].

It seems reasonable that the same might be possible for the domain of concept
detection. Therefore, this chapter adopts style modeling for image and video an-
notation. Similar to the OCR domain, different styles will be defined as categories
of samples (here, images) sharing a distinctive visual appearance. This common
appearance may be due to various reasons — we can use styles associated with
certain holiday trips (like “Sightseeing” or “Safari”), objects of interest (like “Por-
trait” or “Landscape Photography”), or photographic or dramatic categories (like
“Macro Photography” or “Action Movies”). All these examples define categories of
images/frames sharing a coherent appearance.

It should be noted that this definition of styles as generic image categories is
different from previous understandings in the multimedia literature, which refer to
style as the product of an authoring process (for more information, please refer to
Snoek et al.’s work [SWG+06]). It should also be kept in mind that styles are not
identical to annotations. Though there may be strong relations between both (for
example, the tag “portrait” might be a good choice for pictures from a “Portrait”
style), this does not necessarily have to be the case. Images in a style may be
associated with very different annotations — for example, a “Safari” style might
show close-ups of animals as well as panoramic views.
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Let us now address the practical realization of style modeling for concept detec-
tion. One particular problem is that a learning of annotation models for different
styles requires style-specific training images, i.e. the overall training set must come
with additional “style labels”. To acquire this information, we turn towards web
content again. Here, portals like YouTube or Flickr do not only offer tags and de-
scriptions (which we employ to train annotation models), but pictures and videos
are also organized in semantic categories (which we will use to infer style labels).
Particularly, Flickr offers thousands of groups, which cover a rich space of spe-
cific semantics [NGP08], ranging from geographical/event groups (“Switzerland”,
“Live Music”) over content groups (“Leaves”, “Cats”) to visual style groups (“Life
in Black and White”, “Macro Photography”). We will use such groups as equiv-
alents to styles, which allows us to acquire style-specific training data by simply
downloading it.

This constitutes a novel approach towards web-based autoannotation, which
achieves an improved annotation accuracy using style modeling. The approach
comprises of three steps:

• Learning: A number of style-specific image annotation models is learned
from web categories. For example, for tagging users’ holiday snapshots, styles
like “Sailing Trip” or “Safari” are learned.

• Style Inference: Given a group of previously unseen images, a style decision
is made based on the whole batch. For example, the system infers that
pictures match the “Sightseeing” style.

• Style-specific Annotation: The style-specific model (here, “Sightseeing”)
is applied to each image within the group, obtaining an accurate annotation.

As already mentioned, Flickr provides an excellent data source for applying this
framework, as it offers rich group annotations for learning a wide range of specific
styles. Therefore, the remainder of this chapter will focus on the domain of still
images, with style information provided by Flickr. Similarly, notation is adopted
for the rest of this chapter: pictures and video frames will both be referred to as
“content”, “samples”, or — for the sake of simplicity — “images”.

The proposed framework will be evaluated on the COREL dataset and real-
world photo stock downloaded from Flickr. In these experiments, styles correspond
to different travel destinations, i.e. an annotation of personal holiday snapshots is
simulated. Significant performance improvements will be reported by style mod-
eling. These are demonstrably achieved by using context information, which has
been neglected by most methods so far.
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This chapter is organized as follows: first, an overview of related work on
style modeling and on automatic image annotation is given in Section 5.2. Next,
the proposed approach is presented (Section 5.3), and experimental results are
provided in Section 5.4. Section 5.5 concludes the chapter with a discussion and
outlook.

5.2 Related Work

Since the proposed style modeling approach is adopted from the domain of hand-
writing recognition, this section starts with a discussion of related work in this
area. After this, an overview of image annotation will be given, and particularly
approaches related to style and context information will be addressed.

5.2.1 Style Modeling

Style modeling has previously been used for an improved character recognition
based on the fact that letters from the same document usually share a coherent
font and degradation. This is referred to as the style of a document. To make
use of this information, Baird and Nagy [BN94] have presented an approach that
adjusts a pre-defined multi-font base classifier in a self-training: iteratively, the
system is applied to the test document, and classification results are fed back as
labeled samples to system training. This way, the classifier is adapted to the target
document.

The style consistency model proposed by Sarkar and Nagy [SN05] assumes a
limited number of discrete styles to be given. For each style, a specific classifier
is trained, and test documents are mapped to a style using a maximum-likelihood
approach over the whole batch. Finally, the style-specific classifier is used for an
accurate annotation.

While this approach has been demonstrated to give a superior performance
compared to omni-font classifiers [SN05], a problem remains in fonts that have not
been seen in training. In this situation, style consistency can at best be expected to
map a test document to the “most similar” style learned. A more general approach
based on hierarchical Bayesian methods [MB02] has been proposed by Mathis and
Breuel. Here, style is not a discrete variable, but becomes a parameter of the sam-
ple generation process. This parameter is itself drawn from a hyperprior modeling
the distribution of styles. For each test document, a common style parameter
is sampled, which again guides the character generation process. An improved
generalization to new fonts for an OCR scenario has been validated [MB02].
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Finally, cluster-and-label approaches have been proposed for style adaptation.
As the test document shows a coherent style, it is assumed that a clustering of
its characters can be applied, such that cluster boundaries coincide with decision
boundaries. Breuel proposes two techniques for clustering: the first one is based on
an EM estimation of Gaussian Mixture Models [Bre01b]. The second approach uses
an additional learning step to infer an improved similarity measure from labeled
training data: a Multilayer Perceptron (MLP) is used to model P (c1 = c2|x1, x2),
i.e. the posterior for two arbitrary samples x1, x2 to show the same character.
These scores are computed over all pairs of test samples, and are used to compute
the final posterior P (c|x) using a simulated annealing procedure.

5.2.2 Image Annotation

Starting with Mori et al’s pioneering work on automatic image annotation [MTO99],
a variety of approaches has been suggested. Since potential annotations (or tags)
are often associated with certain regions, images are correspondingly viewed as
collections of local parts V = {v1, ..., vn}. These can be obtained using an im-
age segmentation approach [LLM03] or by a sampling of local patches [FML04].
The goal of image annotation is to map this description V to tags t from a pre-
defined vocabulary T . Since tags of interest can include all kinds of semantic
concepts, image annotation unifies related tasks such as object category recogni-
tion [EVGW+07] and scene recognition [QMO+07].

Three general approaches towards image annotation can be distinguished. Mod-
els of the first category — referred to as joint probability models in the following
— are targeted at estimating a joint distribution P (v, t) of local image features v
and annotations t. Based on this idea, Mori et al. [MTO99] suggested to discretize
patches into visual words, such that P (v, t) turns out to be a probability table.
Recently, a similar approach has proven successful that learns a large-scale visual
vocabulary in the order of millions of visual words, which is made feasible by a
hierarchical extension of K-Means clustering [FM08].

To overcome drawbacks in terms of sparseness for limited training data, it has
been proposed to model the joint distribution P (v, t) using topic models [Hof01].
These assume tags and patches to be sampled independently from latent semantic
aspects (or topics) z:

P (v, t) =
∑
z

P (z) · P (t|z) · P (v|z)

Topics can be inferred from a collection of labeled training images using Proba-
bilistic Latent Semantic Analysis (PLSA) [MGP04], Latent Dirichlet Allocation
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(LDA) [FFP05], or a variety of hierarchical models [BDF+03]. Alternatively, one
aspect z can be associated with each single image, which leads to a series of rele-
vance models suggested by R. Manmatha and co-workers [FML04, LMJ04, LLM03].
These models differ in the realization of patch distributions P (v|z) (which can be
continuous [FML04] or discrete [LLM03]) and word distributions P (t|z) (which can
be multinomial [LLM03] or multiple Bernoulli distributions [FML04]). Another al-
ternative is to model class-conditional densities p(v|t) for local regions associated
with a tag. Carneiro et al. [CCMV07] proposed Gaussian mixtures for this pur-
pose, which are estimated in an efficient manner by first computing image-wise
mixtures and then fusing them in a clustering.

The second category of global methods uses global image-level features for a
tag decision. One simple, popular strategy based on such global descriptors is
— given an image to be labeled — to find similar training pictures and adopt
their tags. Several prototypes have been based on this idea [LW08, LCZ+06,
RvBKB08, WZLM08] which vary in the concrete features and distance measures
used. Other methods using global descriptors are based on discriminative strategies
like Maximum Entropy [JM04], SVMs [MCSM07], or kernel densities [YSR05].

Finally, approaches from the third category view image annotation as a weakly
supervised learning problem: it is assumed that the presence of a tag is caused by
a certain region in the image, and concept detection involves the explicit identifi-
cation of this “relevant” region (such that tags can be assigned directly to regions
instead of images). Duygulu et al. [DBdFF02] adopt a machine translation setup
for this purpose: visual features and tags are interpreted as different representa-
tions of an image, similar to roughly aligned texts in different languages. Exact
correspondences between image regions and tags are inferred using Expectation
Maximization (EM). Following a similar idea, multiple instance learning has been
applied to image tagging. Thereby, pictures are viewed as bags of image regions.
Tag-related regions are identified using Diverse Density [MR98] or adaptations
of supervised support vector machines [YDF05]. In a similar fashion, Kück et
al. [KCdF04] cast the assumption that at least one relevant region can be found
in each labeled image, which leads to a constrained semi-supervised learning prob-
lem. A probabilistic framework is suggested, which is solved using Markov Chain
Monte Carlo (MCMC) sampling and provides annotations on region level.

While all these methods differ in terms of features and underlying statistical
models, they share one important drawback, namely that images are treated in-
dividually. In contrast to this, the focus of this chapter is on the use of context
information. The proposed approach can be used as a wrapper around existing
probabilistic image annotation models and can thus be integrated with several
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methods mentioned above (for example, with the ones from the first category
called joint probability models).

5.2.3 Autoannotation using Context and Style

As outlined above, the majority of current image annotation approaches treats
images and video frames individually. Yet, there is some work — both for images
and video — that exploits information beyond single images and thus makes use
of context or style.

For the video domain, Snoek et al.’s Semantic Pathfinder [SWG+06] includes
additional levels of analysis based on style and genre information. The key idea is
that a video is created in an authoring process, and that correspondingly the ap-
pearance of semantic concepts is accompanied by a certain cinematographic style.
A variety of features is used to exploit this fact (like shot length, the detection of
closeups, etc) and is demonstrated to give improvements over a content-only base-
line system. We follow the idea that style information can help to improve concept
detection. However, in contrast to the Pathfinder framework, the notion of style in
this chapter is different: while style in [SWG+06] refers specifically to characteris-
tics of the authoring process (and corresponding features are used), in this chapter
styles correspond to generic categories of content, and it is abstracted from why
content shares a certain style or what characterizes a style (this information is
derived in a learning step).

For the domain of images, a variety of methods has been proposed using the
structure of content beyond individual items. Li et al. [LSW08] address the image
annotation problem using photo-sharing websites such as Flickr. They address
the fact that tag information is noisy and filter non-relevant tags. Therefore, the
user structure at Flickr is taken into account in the sense that tag relevance is
related to the number of different users assigning a tag. In a similar approach, Mei
et al. [MWH+08] exploit the tag structure of image datasets to learn a so-called
“semantic similarity” based on tag correlations. These approaches are similar to
the work presented in this chapter in the sense that the structure of an image
collection is taken into account. In fact, Flickr groups will be used as a similar
information source in this chapter. The key difference, however, is that — while
these approaches are targeted at making a better use of training data (by filtering
annotations or learning better similarity measures), the work presented in this
chapter focuses on the use of context during testing. This makes the proposed
approach orthogonal to training set improvements as in [LSW08, MWH+08], and
ultimately concept detection could be given a boost by combining both approaches.
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There are other approaches more similar to this work in the sense that content
structure is taken into account in testing. For the video domain, context plays
a key role for the detection of events, which are typically composed of several
subitems occurring in a temporal surrounding or in a certain order. Snoek and
Worring [SW05a] propose to make use of such context in soccer and news video
(events are “goal”, “interview”, etc). Multi-modal detectors for certain clues mine
the temporal surrounding of a potential event E (like “a closeup appears shortly
after E”), and these binary detections form the input to a statistical classifier.
While this chapter follows this idea of using context to disambiguate recognition,
the proposed framework differs in two aspects: first, while in [SW05a] a full spec-
trum of temporal relationships is modeled, only a grouping of content is assumed
to be given. Second, our framework addresses the detection of generic concepts
and does not focus on events in video.

Other approaches for the domain of still images make similar use of context
in the test data [GNC+08, NYGMP05]. Gallagher et al. [GNC+08] match pic-
tures with events in personal calendars (like “George’s Wedding”). Naaman et
al. [NYGMP05] group photos to events at photo sharing sites and use this infor-
mation for person identification. Cristani et al. [CPCM08] enhance image anno-
tation with a latent variable that models the geographic region in which a picture
was taken. A collection of geo-tagged pictures is then clustered into regions of
geographic proximity, and it is demonstrated that geo-localization can be solved
better when using a whole batch of multiple pictures taken at the same location
instead of a single one.

What we learn from these approaches is that a grouping of pictures can be
inferred from meta-data such as times and locations of capture. Our style model
relies on the very same grouping information. Further, these contributions show
that for specific recognition applications it can be helpful to view images in groups
instead of individually. However, it should be pointed out that this chapter ad-
dresses the more general annotation problem for generic concepts. The notion of
styles here is a generic one — it can refer to geographic categories as well as to
semantic or technical ones, and is learned automatically from Flickr groups.

Finally, another closely related approach is the one by Cao et al. [CLKH08], who
propose a hierarchical annotation model in which pictures are clustered to events
previous to annotation. The system groups test content based on time and GPS
stamps. Similar to this chapter, Cao et al. also address the annotation of images,
and their events resemble the notion of style used here. Yet, the approach differs
from the work in this chapter with respect to several aspects: Cao et al. emphasize
the challenge of how to obtain grouping information of pictures using time and GPS
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stamps. Context is used in form of correlation terms in a postprocessing step.
Instead, the approach proposed here assumes a grouping of images to be given and
focuses on how this information can improve autoannotation. Therefore, image
annotation itself is directly adapted, and it is demonstrated that style modeling is
a well-founded and successful strategy to do so.

5.3 Approach

In this section, a style model from the domain of optical character recognition [SN05]
is adopted for image annotation. The key idea is that images should not be labeled
individually, but context should be employed in form of other images in the same
group. Therefore, two assumptions are made:

• Images are assumed to belong to a predefined set of categories (or styles),
and style-specific training sets are assumed to be available (it was pointed
out previously that web-based portals like Flickr can be employed for this
purpose).

• Test images to be annotated are assumed to come in groups (or batches).
This information may be available in form of coherent times of capture or
upload, in form of GPS stamps, or may be provided by the user himself (for
example, by placing pictures in the same folder).

The framework models style as a latent random variable, and comprises of three
key steps: (1) training, in which a number of style-specific annotation models is
learned. (2) style decision, in which the style variable is inferred using context
information. (3) annotation, in which a style-specific model is used for a precise
annotation. In this framework, style modeling serves as a wrapper around image
annotation, and can be integrated with a variety of probabilistic image annotation
methods (though for this chapter the one by Monay and Gatica-Perez [MGP04]
based on Probabilistic Latent Semantic analysis (PLSA) [Hof01] is chosen).

This section is organized as follows: first, basic concepts are introduced, and
the general structure of the proposed approach is outlined (Section 5.3.1). After
this, a first model based on this structure will be discussed, where style is neglected
and the approach boils down to a conventional image-wise annotation [MGP04]
(Section 5.3.2). This model will serve as a baseline in later experiments. After
this, two realizations including style modeling will be presented (Sections 5.3.3
and 5.3.4).
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5.3.1 Basic Concepts

The core of the proposed approach is an image annotation model based on Proba-
bilistic Latent Semantic Analysis (PLSA) [Hof01], a topic model that was originally
developed in the text domain and has successfully been adopted for a variety of
visual recognition tasks [QMO+07, SREZ05, SMH04]. PLSA views documents (or
images, in our scenario) as collections of words (here, visual words, see Section
3.5). It is assumed that each document is a mixture of a few latent aspects (or
topics), and that the words of the document are sampled from these topics.

We consider a set D of images to be given, whereas each image d is represented
by a set of visual words v from a vocabulary V and by tags t ∈ T . The latent
topics are denoted with z ∈ Z. Finally, images are assumed to come in groups
sharing a coherent style s ∈ S. According to our style-based PLSA model, the
generative process of sampling a batch of images D is the following:

1. pick a style s

2. for d ∈ D:

for i = 1, ..., nT (d): (sampling tags)

sample zi ∼ P (z|d)
sample ti ∼ P (t|zi, s)

for j = 1, ..., nV (d): (sampling visual words)

sample zj ∼ P (z|d)
sample vj ∼ P (v|zj , s).

nT (d) and nV (d) denote the number of tags and visual words for image d. The
number of topics |Z| is assumed known and fixed (usually, |Z| is much smaller than
the number of documents and words, such that z serves as a “bottleneck variable”).
P (z|d) assigns topics to images. This sampling process posits that tags and visual
words are conditionally independent given topics z and style s, and that they are
drawn from the following distributions:

P (t|d, s) =
∑
z∈Z

P (t|z, s) · P (z|d)

P (v|d, s) =
∑
z∈Z

P (v|z, s) · P (z|d)
(5.1)

Note that these distributions depend on the style s, i.e. both tags and visual words
are influenced by the style that was chosen for the whole batch at the beginning
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of the sampling process. As this style is the same for all pictures in the batch D,
pictures are correlated.

5.3.2 Baseline: Coupled PLSA

While the last section introduced the fundamental structure of the proposed model
— with tags and visual words sampled from style-dependent distributions — we
now discuss several concrete realizations of this framework making different use of
style information.

The first version ignores style information completely: the topic distributions
P (t|z, s) and P (v|z, s) are replaced with simpler equivalents P (t|z) and P (v|z),
such that the style variable s does not have any influence and can be dropped:

P (v|d) =
∑
z∈Z

P (v|z) · P (z|d)

P (t|d) =
∑
z∈Z

P (t|z) · P (z|d)
(5.2)

This model corresponds to the PLSA-words image annotation method proposed
by Monay and Gatica-Perez [MGP04]. Like most standard approaches, it treats
each image individually. A graphical illustration of the sampling process can be
found in Figure 5.3(a).

In the following, learning and inference with this model are briefly outlined,
which are both based on a maximization of the overall data likelihood (using the
terms from Equation (5.2)), where n(., d) denotes the number of occurrences of a
specific tag or visual word in image d:

L(D) =
∏
d∈D

[
P (d) ·

∏
t∈T

P (t|d)n(t,d) ·
∏
v∈V

P (v|d)n(v,d)

]
(5.3)

Learning The topic posteriors P (z|d) and topic vectors P (v|z), P (t|z) are learned
from a set of annotated training images D. For standard PLSA models, such learn-
ing is done by maximizing the overall data likelihood (Equation (5.3)), whereas
optimization is carried out using Expectation Maximization (EM) [DLR77] or vari-
ants [Hof01]. Iteratively, two steps are applied: first, in the “E”-step, the pos-
teriors for latent variables (i.e. the topic that each word is sampled from) are
estimated. In the subsequent “M”-step, the expected log-likelihood of the train-
ing data with respect to these posteriors is maximized, resulting in updates for
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Figure 5.3: Graphical models depicting the sample generation process for image features

v and tags t. (a) The baseline model [MGP04]. (b) The“appearance-only”style extension.

(c) The “appearance-and-tags” style extension.

the topics and topic distributions. For a detailed description of EM, please refer
to Hofmann’s work [Hof01]. In this chapter, a slightly altered procedure will be
used, for which Monay and Gatica-Perez have reported improved image annotation
results [MGP04]:

1. The distribution of visual words is neglected, and the topic distribution
P (z|d) is learned by maximizing the likelihood over the training images’
tags only:

LT (D) =
∏
d∈D

[
P (d) ·

∏
t∈T

P (t|d)n(t,d)

]
. (5.4)

For optimization, the standard EM algorithm is used.

2. PLSA is run over visual words to compute P (v|z). Again, EM is used for
optimizing the likelihood (now over visual words only):

LV (D) =
∏
d∈D

[
P (d) ·

∏
v∈V

P (v|d)n(v,d)

]
. (5.5)

Thereby, the topic distributions P (z|d) learned in the previous step are fixed,
i.e. they are not changed during the “M”-step of the EM algorithm.

Inference Given a previously unseen batch D∗ of test images d∗ to be labeled,
each image is annotated independently. Thereby, the visual distribution P (v|d∗)
is given, and the tag distribution P (t|d∗) is inferred:
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1. Given P (v|d∗), P (z|d∗) is computed using a “fold-in heuristic” [Hof01]: the
EM algorithm is applied to maximize LV (D∗), whereas the topic appearances
P (v|z) learned in training are fixed.

2. The distribution of tags is estimated, with P (t|z) learned previously in train-
ing:

P (t|d∗) =
∑
z∈Z

P (t|z) · P (z|d∗), (5.6)

Finally, a set of tags with highest posterior probability P (t|d∗) is selected as an-
notations of d∗.

5.3.3 Style Variant 1: Appearance-Only

In this section, a second realization of the style-based image annotation framework
from Section 5.3.1 is presented. While the baseline version introduced in the last
section labels images individually, the model presented in the following takes the
style of image batches into account.

Therefore, the visual word distribution P (v|z) from the baseline model is re-
placed with style-specific appearance models P (v|z, s). The model for image d

turns out to be:

P (v|d, s) =
∑
z∈Z

P (v|z, s) · P (z|d)

P (t|d) =
∑
z∈Z

P (t|z) · P (z|d)
(5.7)

Note that — while the appearance model of visual words is now style-dependent
as in Equation (5.1) — the distribution of tags P (t|d) remains as in the baseline
model. A graphical representation of the resulting sampling process is illustrated
in Figure 5.3(b), where changes relative to the baseline model (Figure 5.3(a))
are highlighted. Two things should be kept in mind: first, only a single style
variable is drawn for the whole group, i.e. all images in the batch share the same
style. Second, as the tag distribution P (t|z) remains unchanged, it is implicitly
assumed that tags appear with the same frequency in all styles but appearance
differs between styles (for example, the tag “building” looks different in a “New
York City” style and in an “Africa” style). We will refer to this approach as the
“appearance-only” style model in the following.
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Learning Like for the baseline model, the topic posteriors P (z|d) and topic
vectors P (v|z), P (t|z, s) are learned using a two-step procedure similar to the one
for the baseline (Section 5.3.2). First, standard EM on the tags of all input images
(regardless of style) is used to learn P (t|z) and P (z|d) by maximizing the tag
likelihood (Equation (5.4)). Second, the distribution of visual words P (v|z, s) is
learned. For this purpose, it is assumed that the style s(d) for each training image
d is given (it has already been pointed out that Flick groups will be employed for
this purpose). For each style s, the following likelihood is maximized:

LsV (D) =
∏

d:s(d)=s

(
P (d) ·

∏
v∈V

P (v|d, s)n(v,d)

)
(5.8)

Again, optimization of the topic appearances P (v|d, s) is carried out using EM,
whereas the topic distributions P (z|d) are fixed.

Inference Compared to inference in the baseline model (Section 5.3.2), the key
difference is that the style variable s is unknown. As Sarkar and Nagy demon-
strated, a globally optimal Bayesian inference is infeasible [SN05]: since tags and
style are both unknown and influence each other, optimal inference requires to test
all combinations of tags, whose number grows exponentially with the number of
test images in a batch.

To solve this problem, a similar strategy is followed as in [SN05]: it is assumed
that — for batches D∗ of sufficient size — the style parameter can be reliably
inferred using a maximum likelihood approach:

s∗ = arg max
s

[ ∏
d∗∈D∗

(
P (d∗) ·

∏
v∈V

P (v|d∗, s)n(v,d∗)

)]
(5.9)

This leads to an annotation procedure in which the appearance likelihood is com-
puted for each style, and after this style-specific annotation is run for the best style
s∗.

5.3.4 Style Variant 2: Appearance-and-Tags

The “appearance-only” style model from Section 5.3.3 makes limited use of style
information in the sense that the distribution of tags is assumed to be style-
independent. In practice, however, tags may be strongly correlated with style
(for example, the tags given to pictures from a New York City sightseeing trip
may differ significantly from the ones used for an African safari). To exploit this
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information, a second style variant is proposed in which both appearance and
tags are modeled with style-dependent distributions P (v|z, s) and P (t|z, s), like in
Equation (5.1):

P (t|d, s) =
∑
z∈Z

P (t|z, s) · P (z|d)

P (v|d, s) =
∑
z∈Z

P (v|z, s) · P (z|d)
(5.10)

While for the “appearance-only” model, different styles were still connected via
the joint use of the tag distribution P (t|z), the new approach leads to a set of
entirely decoupled style-specific annotation models. It will be referred to as the
“appearance-and-tags” style model in the following. A graphical illustration of the
sample generation process can be found in Figure 5.3(c).

Learning and Inference Since styles are now completely decoupled, training
simplifies to learning a separate PLSA-based annotation model per style. Similarly
to the plain PLSA model in Section 5.3.2 the EM algorithm is used, only that
the distributions P (v|d) and P (t|d) are replaced with style-specific equivalents
P (v|d, s) and P (t|d, s). These are trained on style-specific training image sets
{d | s(d) = s}.

For inference, the target style is determined using the same maximum likelihood
criterion as for the “appearance-only” style model in Equation (5.9), only that
P (t|z) is replaced with its style-specific equivalent P (t|d, s). Again, annotation is
carried out using the style-specific model of the best style s∗.

5.4 Experiments

In this section, several experiments are presented in which the proposed style
modeling approach for image annotation is evaluated. Tests are run on several
datasets compiled from the COREL dataset, which is a standard benchmark for
image annotation [CCMV07, DBdFF02, FML04, TL07], and on real-world photo
stock downloaded from Flickr.

It has already been mentioned that the proposed framework requires style labels
for training. For the COREL dataset, the fact is used that pictures come in folders
associated with objects (“Mushroom”,“Model”), locations (“Africa”,“Hong Kong”),
or other categories (“Kung Fu”, “Reflecting Surfaces”). Pictures are assumed to
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Table 5.1: Throughout the experiments in this chapter, different styles are associated

with locations and travel scenarios as they might appear in personal collections of holiday

snapshots. Datasets were sampled from COREL folders or Flickr groups.

Dataset Styles Used

COREL-13 Africa Holland Kyoto Monaco Rome Singapore Turkey England Ireland

Mexico NY City Scotland Thailand

COREL-45 Afrcianw Egypt1 Ireland Kyoto Montreal Portugal Singapore Wash-

ington Africa Egypt2 Isles1 London Namibia Prague Thailand Yemen

Alaska France Jamaica Middle East New Guinea Quebec Turkey Zim-

babwe Belgium 1 Hawaii Japan1 Mexico New Zealand Rome Utah

Berlin Holland Japan2 Mexico City NY City Russia Virginia Devon UK

Hongkong Kenya Monaco Pei Scotland Washington DC

FLICKR Africa Alaska Greece Maldive New York City Paris Rome Tibet

belong to the same style if they are placed in the same folder. In the Flickr case,
images in the same Flickr group are assumed to share the same style. The groups
used in the experiments correspond to holiday destinations, like “African Safari”
or “New York City Trip”.

The proposed style-based model is compared with state-of-the-art results from
the literature and with several baselines, all treating images individually.

5.4.1 Setup

This section describes the experimental setup, including datasets, methods tested,
and performance measures. Quantitative results will be discussed afterwards.

Datasets Three datasets are used, consisting of different image data, ground
truth annotations, and groupings of pictures into style-coherent batches. Two of
these sets are subsamples of the COREL dataset [MMMP02], a collection of over
800 photo CDs that is a standard choice for evaluating image retrieval. A 1:1
correspondence between styles and COREL folders is imposed (a complete list of
styles/folders can be found in Table 5.1).

COREL-13: 13 folders (1, 300 images overall) are selected from the COREL
dataset corresponding to countries, regions, and cities (for example, “Africa”
and “Kyoto”). A vocabulary of 644 tags from the COREL annotations is
used.

113



5.4. EXPERIMENTS

New York City Africa

Figure 5.4: Pictures randomly sampled from two styles of the FLICKR dataset. High

content variation renders an automatic annotation of these pictures a difficult challenge.

Also, it can be seen that appearance differs strongly between styles. Pictures from Flickr.

COREL-45: To compare the performance of style modeling under varying num-
bers of styles, a dataset similar to COREL-13 is sampled, only that 45 folders
(4, 500 images overall) are used instead. The tag vocabulary size is 1, 257.

Though frequently used, the COREL dataset has been criticized to be over-
simplifying, as it contains many near-duplicate images, and words tend to appear
in clusters [TL07]. To validate that style modeling works on more challenging and
realistic data, the framework is also tested when learning its styles directly from
Flickr groups:

FLICKR: This dataset contains 8, 000 images downloaded from 8 Flickr groups,
each one serving as a style. These styles correspond to travel destinations, i.e.
one style contains images taken from New York trips, one shows pictures from
an African safari, etc. Please refer to Figure 5.4 for some sample pictures. A
vocabulary of 544 terms was created from the most frequent Flickr tags by
filtering infrequent or unsuitable ones (like “d40”, “2008”, or “Olympus”).

Features As outlined in Section 5.3, the PLSA annotation approach uses visual
words as image features. Standard practice for visual word extraction was fol-
lowed [QMO+07, SREZ05, SZ03]: patches were sampled from each image using a
dense regular sampling at several scales, obtaining ca. 4, 800 patches per image
on average. These were described using SURF features [BTvG06], which were
clustered into 2, 000 visual words by K-Means (a fast version [Elk03] was used3).

3available from http://mloss.org
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Methods The experiments presented in the following include comparisons of
various baselines and control runs, indicating how reliably the style of an image
batch can be inferred and how style modeling performs compared to an annotation
of individual images. Eight different PLSA-based methods were tested, whereas
the number of topics was fixed to |Z| = 20 (which gave the best results in previous
tests):

Baseline, |Z| Topics: This is the plain PLSA annotation model by Monay and
Gatica-Perez [MGP04] (Section 5.3.2) using |Z| topics. Images are tagged
independently, and style information is discarded.

Baseline, |Z| · |S| Topics: To make sure that potential performance improve-
ments by style are not trivially attributed to a higher number of topics, the
baseline was also tested with |Z| · |S| topics (which equals the overall number
of topics in the style models).

Appearance-only, Style Assigned: This run uses the “appearance-only” style
model from Section 5.3.3. The correct style is assigned for all test images ac-
cording to ground truth information (which may not be available in practice).
This oracle-based control experiment will be used to quantify performance
loss due to incorrect style assignment.

Appearance-only, Style by Batch: The same model (“appearance-only”style),
but now style is decided automatically based on the whole batch (proposed
approach).

Appearance-only, Style by Image: The same model (“appearance-only”style),
but the batch size is set to 1, i.e. each image is mapped to a style individually.
This method serves as a baseline.

Appearance-and-tags, Style Assigned: The style model from Section 5.3.4.
The correct style is assigned according to ground truth (serves as a control
experiment similar to “Appearance-only, Style Assigned”).

Appearance-and-tags, Style by Batch: The same model (“appearance-and-
tags” style), but now style is decided automatically based on the whole batch
(proposed approach).

Appearance-and-tags, Style by Image: The same model (“appearance-and-
tags”), but now style is assigned for each image individually (serves as a
baseline similar to “Appearance-only, Style by Image”).
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Performance Measures The 4 tags with the highest posteriors (see Equation
(5.6)) are selected as annotations for each test image. As a measure of annotation
performance, the F-measure (weighted harmonic mean of precision and recall) is
used. For each test image d∗, the annotation result r(d∗) is compared to the ground
truth tags gt(d∗), obtaining the image-wise precision P(d∗) and recall R(d∗):

P(d∗) =
| r(d∗) ∩ gt(d∗) |
| r(d∗) |

, R(d∗) =
| r(d∗) ∩ gt(d∗) |
| gt(d∗) |

By averaging these over all test images, the mean image-wise precision P̄ and recall
R̄ are obtained. These are finally combined to the F-measure:

F-measure =
2 · P̄ · R̄
( P̄ + R̄ )

Apart from the final annotation results, we also evaluate the accuracy of the max-
imum likelihood style decision:

Astyle =
number image batches assigned the correct style

overall number of image batches

5.4.2 An Illustrative Example of Style Modeling

The experimental evaluation starts with an example that illustrates the effects
of style modeling on image annotation. One fundamental requirement for style
information to give an improvement is that style-specific models differ from their
non-style equivalents. This is demonstrated for a sample topic and the two styles
“Africa” and “Kyoto” from the COREL dataset. A topic is chosen (referred to as
“Topic No. 12” in the following) whose most frequent tags include the terms “peo-
ple”and“temple”. For this topic, the distribution of visual words P (v|”Topic 12”) is
visualized for the baseline model as well as for the two styles P (v|“Topic 12”, “Africa”)
and P (v|”Topic 12”, “Kyoto”) using the “appearance-only” style approach. The re-
sult is illustrated in Figure 5.5(a). Obviously, the appearance learned for both
styles differs strongly from the one in the global model. In fact, the non-style
model can be seen as a mixture of two very different style appearances.

The next question is how well images are fitted to appropriate topics. This is
illustrated in Figure 5.5(b). These sample pictures are tagged with “people” and
“temple”, which are again associated with Topic No. 12. Consequently, a good
model should lead to a strong activation of Topic No. 12 in the image. To study
whether this is true, the visual words with high topic scores (P (v|”Topic 12”) ≥
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Figure 5.5: (a) The visual word distribution of Topic No. 12 for the styles “Africa”

(top), “Kyoto” (center), and without style modeling (bottom). It can be seen that style

has a massive influence on topic appearance. (b) The visual words corresponding to Topic

No. 12, which is strongly linked to the tags “people” and “temple”. Non-style results are

in the top row, results for the “Kyoto” style at the bottom. For the style model, more

patches can be found that activate the topic, and better tagging results are to be expected

(pictures from the COREL Dataset).

0.5) are highlighted for the non-style case (top) and for the correct style “Kyoto”
(bottom). While in the baseline model only few patches can be found related to
Topic No. 12, for the style approach multiple patches activate Topic No. 12, and
a better annotation result can be expected.

5.4.3 Results 1: COREL and Flickr Experiments

Quantitative results for all three datasets are given in Figures 5.6 and 5.8. All
results were obtained by averaging the F-measure of annotation performance over
multiple runs (20 for COREL-13 and FLICKR, 11 for COREL-45). In each run a
random split into 80% training and 20% testing was done, i.e. images were grouped
to style-coherent batches of size 20.

Comparison of Style Models: Plot 5.6 provides results for all three bench-
marks. Both style extensions are compared with two non-style baselines. It can
be seen that the proposed style modeling improves annotation performance sig-
nificantly: compared to the best baseline, relative improvements between 30.1%
(COREL-45) and 146.4% (FLICKR) are measured. All of these are significant ac-
cording to a paired t-test over all runs (level 99%). Second, “appearance-and-tags”
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Figure 5.6: Comparing non-style baselines with the two proposed versions of style

modeling. It can be seen that style modeling improves performance in all experiments

significantly, and that “appearance-and-tags” style outperforms the “appearance-only”

style model (n = 5, 200 [COREL-13], 9, 900 [COREL-45], 32, 000 [FLICKR]).

style outperforms the “appearance-only” style model on all datasets, which can be
explained by the fact that the former takes varying tag distributions over styles
into account. Again, these relative improvements are significant (paired t-test,
level 99%), ranging from 18.0% (COREL-45) to 48.5% (FLICKR).

Comparison with Control Runs: Plot 5.8 compares the proposed method
(“appearance-and-tags” style) with two more control runs. One (“style assigned”)
chooses the correct style for each image batch. The other makes an individual
style decision for each image (“style by image”).

The first important insight from Figure 5.8 is that batch-wise annotation out-
performs an image-wise one in all cases, i.e. using style information drawn from
the whole batch of images improves image annotation significantly. This can be
seen when comparing the “style by batch” results with the “style by image” ones.
Relative performance improvements range from 27.4% (COREL-13) to 101.0%
(FLICKR) and are all significant (paired t-test, level 99%). When comparing
“style by batch” with the “style assigned” control runs, it can be observed that a
moderate relative performance loss occurs due to incorrect style decisions, ranging
from 5.0% (COREL-13) to 11.8% (FLICKR). When comparing the COREL-13
and COREL-45 experiment, it can be seen that — when increasing the number of
styles — performance loss increases slightly, which can be attributed to the fact
that a decision between more styles is more error-prone (accuracy decreases from
85.8% to 66.5%). Overall, the benefits of style modeling decrease slightly when
scaling from 13 to 45 styles, but remain significant.
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Figure 5.7: Sample annotation results for the COREL-13 dataset (top), the COREL-

5K benchmark (center), and the FLICKR dataset (bottom). For all datasets, annotation

results without style (top) and with style (bottom) are given. Correct annotations are

highlighted in bolt and green, incorrect ones in red. Style modeling improves tagging

performance — for example, for the Flickr image at the center of the bottom row, the

style-based approach estimates the correct style “Paris” and infers that the Eiffel Tower

appears in the background.
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Figure 5.8: Results when using the ground truth style, inferring style using context, and

inferring the style separately for each image. The proposed method almost reaches the

performance of the oracle-based control run (slight performance loss occurs due to inac-

curacies of the automatic style decision), and inferring the style from the batch performs

significantly better than deriving the style from each individual image.

Sample Results: Sample annotations are provided in Figure 5.7, where anno-
tations for the non-style baseline are compared with the ones for the “appearance-
and-tags” style model. While the baseline provides mostly incorrect annotations,
style modeling helps to infer surprisingly good results: for example, for the image
showing flowers (top left) the style “Holland” is estimated from the whole image
batch, which allows to infer the correct tag “tulip”. For a Flickr image showing
an accordion player (bottom row, center) the style approach estimates the correct
style “Paris” from the batch and is able to infer that the “Eiffel Tower” appears in
the background, while the baseline approach assigns the incorrect tag “new york”.

Influence of Batch Size The observations made in the last section support
the hypothesis that annotation performance is correlated with the test batches’
size (for example, “by-batch” runs consistently outperform “by-image” runs). An
explanation for this is that the style decision can be made more reliably when
based on more images. This is illustrated in Figure 5.9(a), where both the style
decision accuracy Astyle and the annotation performance are plotted against the
test batch size for the COREL-13 dataset (using the “appearance-and-tags” style
model and averaging over 10 cross-validation runs). It can be seen that — by
increasing batch size from 1 to 20 pictures — the style decision accuracy can be
improved significantly from 31.6% to 86.8%, and correspondingly the annotation
performance increases from 26.5% to 34.4%. Even for a rather small batch size
of 8 images, a relative performance improvement of 20% is achieved (significant
according to a paired t-test, level 95%).
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Figure 5.9: (a) The style decision accuracy Astyle and the annotation performance

both increase with the number of images per style-coherent group. The leftmost point

in both plots corresponds to a tagging of individual images. (b) The confusion matrix of

style decision on the COREL-45 dataset. The most frequent confusions tend to occur for

visually similar styles (like “Kenya” vs “Africa”).

Style Confusion Finally, we address the question what styles tend to be
confused most often. Figure 5.9(b) illustrates the confusion matrix of style decision
for the COREL-45 dataset (using the “appearance-only” style model). An in-depth
inspection reveals that the most frequently confused classes are in fact visually
similar: For example,“Kenya”and“Africa”are frequently confused (the probability
is close to 0.5). Other confusions are “Rome” vs “Monaco”, both showing similar
classical architecture, or “Yemen” vs “Zimbabwe”.

5.4.4 Results 2: COREL-5K Benchmark

In a final experiment, the proposed framework is compared to other methods
from the literature. These tests are performed on the COREL-5K benchmark,
a frequently used test case for image annotation [CCMV07, DBdFF02, FML04,
LMJ04, TL07]. The dataset consists of 5, 000 images from the COREL dataset
corresponding to 50 folders of 100 images each. Like in the previous COREL tests,
a 1:1 correspondence between styles and folders is imposed. The dataset was split
by default into a training set of 4, 500 images (90 images per style) and a test set
of 500 images (10 images per style). The batch size was set to 10. The standard
tag vocabulary of 374 terms was used, and — similar to all other methods in
the literature — the proposed framework returned the top 5 words as annotation
results.
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The original COREL images were downscaled to a width of 192 pixels. Visual
words were extracted by a regular sampling of about 5, 400 patches of side length
12 per image. These were described using DCT coefficients in YUV color space.
A K-Means clustering to 2, 000 visual words was done, similar to the one for the
previous COREL and FLICKR tests.

The same performance measures are used as in the literature: for each tag t,
the per-word precision and per-word recall are measured over all test images d∗:

P(t) =
| {d∗ | t ∈ gt(d∗) ∩ t ∈ r(d∗)} |

| {d∗ | t ∈ r(d∗)} |
, R(t) =

| {d∗ | t ∈ gt(d∗) ∩ t ∈ r(d∗)} |
| {d∗ | t ∈ gt(d∗)} |

,

These values are averaged over all 251 tags occurring in the test set to obtain the
mean per-word precision P̄ and recall R̄, which were combined to an F-measure.
Also, the number of tags t with R(t) > 0 is reported.

Quantitative results are illustrated in Table 5.2, including a variety of results
reported by other researchers: the co-occurrence model by Mori et al. [MTO99],
the machine translation model by Duygulu et al. [DBdFF02], two relevance models
by Manmatha and co-workers [FML04, LMJ04], supervised multi-class labeling by
Carneiro et al. [CCMV07],

and several other annotation models [CR08, TL07].

Our tests also include two baseline approaches: the PLSA model by Monay
and Gatica-Perez (Section 5.3.2) and the “appearance-and-tags” style model ap-
plied to images individually. Both these baselines do not show a competitive per-
formance (F-measures 5% / 16%). However, by tagging images in style-consistent
batches, the proposed approach achieves the best result reported on the COREL-
5k benchmark so far, with an outstanding recall of 39%, precision of 25%, and
F-measure of 31%. Note that this is achieved by using additional context infor-
mation, which has not been used on this benchmark so far. Note also that this
improvement cannot be attributed to the underlying annotation model (which by
itself does not perform competitively), but is clearly due to the exploitation of
style. Consequently, it can be expected that other probabilistic annotation models
(like Supervised Multi-class Labeling [CCMV07] or Multiple Bernoulli Relevance
Modeling [FML04]) could benefit from style modeling in a similar fashion. Overall,
these results indicate that context is a valuable information source for autoanno-
tation, and that the proposed integration with style modeling is an appropriate
way of using it.

122



CHAPTER 5. STYLE MODELING FOR CONCEPT DETECTION

Table 5.2: A comparison of the proposed framework (bottom) with methods from the

literature on the COREL-5k benchmark. By making use of context information, the

proposed approach achieves the best result reported so far.

Approach #words

with rec.>0

avg.

per-word

precision

avg.

per-word

recall

F-measure

co-occurrence [MTO99]

(from [CCMV07])

19 0.02 0.03 0.02

Translation [DBdFF02]

(from [CCMV07])

49 0.04 0.06 0.05

kernel densities with tag

co-occurrence [CR08]

91 0.11 0.13 0.12

SVDCos [TL07] 102 0.15 0.15 0.15

CRM [LMJ04] 107 0.16 0.19 0.17

CSD-Prop [TL07] 130 0.20 0.27 0.23

MBRM [FML04] 122 0.24 0.25 0.24

SML [CCMV07] 137 0.23 0.29 0.26

CSD-SVM [TL07] 127 0.25 0.28 0.26

PLSA (no style) [MGP04] 57 0.04 0.09 0.05

PLSA (style by image) 106 0.13 0.23 0.16

PLSA (style by batch) =

proposed approach

141 0.25 0.39 0.31

5.5 Discussion

In this chapter, a concept detection framework was presented that labels groups of
style-coherent images instead of individual ones, such that pictures from the same
group can serve as context information for an improved recognition. To make
use of such context, an approach based on style modeling was adopted from the
domain of optical character recognition. For style learning, category information
from the image sharing website Flickr was employed.

Using this framework, significant improvements of up to 100% (n = 32, 000)
have been validated compared to a conventional annotation of individual images.
Also, the method achieves the best performance reported so far on the COREL-5K
benchmark for image annotation (mean per word precision/recall: 25% / 39%).
These results show that context information can give a significant boost to image
annotation, and that the proposed style learning from web-based portals like Flickr
provides the right way to achieve this.
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Several questions demand further investigation along this promising line of
research. First, it should be kept in mind that — compared to an image-wise
annotation — the proposed method requires some additional information, namely
a grouping of test content. Several clues can be used to infer this knowledge, like
time stamps and GPS coordinates [CLKH08], the folder structure in a file system,
or manual user feedback. A potential problem is that some of these indicators
might be unreliable. However, experimental results demonstrate significant im-
provements even for small groups of images: for batches as small as 8 pictures, a
relative performance improvement of 20% was achieved. This shows that context
can help even if images are aggregated conservatively into small, reliable groups.

A possible way of improving the system might also be to integrate other image
annotation methods. It has been pointed out that the proposed style modeling
approach can serve as a wrapper around a variety of models — correspondingly,
further performance improvements could be expected by integrating style infor-
mation with the most successful approaches in this domain, like relevance model-
ing [FML04] or supervised multi-class labeling [CCMV07].

Other interesting questions are related to a practical, large-scale use of style
modeling: how well does the system scale to very large numbers of styles, and how
well does it generalize to styles that have not been trained on? While the approach
has been validated for up to 45 styles in this chapter, even more might be of interest
in practice (ultimately, there are thousands of Flickr groups [NGP08], each one a
potential style category). Breaking points of style decision accuracy may occur,
and speed issues might have to be overcome, as the complexity of inference is linear
in the number of styles. Regarding the generalization to new styles, we can at best
expect a mapping of test images to the “most similar” style learned. This may
work well in case of a rich collection of styles, but does not have to.

Both these issues might be overcome by integrating other style modeling ap-
proaches. One option might be hierarchical Bayesian methods [MB02], which
replace a fixed number of discrete styles by modeling style as a continuous param-
eter sampled from a hyperprior (please refer to Section 5.2 for a brief discussion).
It is not straightforward to adapt this approach to the image annotation problem,
with its high number of classes and complicated part-based representations. Yet,
if such a transfer can be achieved, hierarchical Bayesian methods might be the
solution to learn from large style vocabularies and achieve strong generalization
capabilities.
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Chapter 6

Improving Concept

Detection using Motion

Segmentation

This chapter proposes a novel combination of concept detection with motion seg-
mentation. The approach is targeted at an improved robustness with respect to
clutter: objects are segmented from the background based on their distinctive mo-
tion, and recognition is applied on the level of object regions instead of to the
whole frame. The following contributions are made, targeted at both an improved
motion segmentation and its combination with recognition1:

• A novel approach is presented to infer a background motion and region from
a given motion field, using a globally optimal branch-and-bound search of
parameter space [Bre92]. The method is demonstrated to outperform several
local search methods on synthetic and MPEG-4 motion fields.

• A second method is presented that extends a direct motion segmentation
[SC06] with statistical color models. This is shown to give improvements
over a purely motion-based approach.

• A novel framework for the recognition of objects in video is presented, which
combines the above motion segmentation technology with a patch-based ob-
ject recognition.

1This chapter is based on the author’s work in [Ulg07, UB08, ULKB07]
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• In quantitative experiments on several datasets, the approach is compared
to a baseline using unsegmented images. Relative improvements reach 50%
(error reduction, n = 1, 584) for the recognition of specific objects, and 33%
(MAP, n = 4, 160) in a concept detection experiment.

6.1 Introduction

In video retrieval, concepts of interest frequently correspond to physical objects
such as buildings, cars, product covers, animals, etc. This is a special case of the
more general concept detection setup we have studied so far, and will be the focus
of this chapter. The task is closely related to object recognition, which is one of
the most intensively studied challenges to computer vision and is concerned with
the recognition of specific objects, or — more recently — objects belonging to a
certain category such as “car” or “building” [PHSZ07]. Strong connections can also
be found with the task of object matching [SZ03, SJL+06].

Object matching, object recognition, and object-specific concept detection can
all be achieved by relying on the same techniques: correspondences between train-
ing views and test images are estimated, obtaining a score that indicates how well
both match. In object matching, this score is used to rank images in a database en-
tirely based on visual characteristics, i.e. it is neglected which objects are actually
present. In object recognition, we use matches for a decision about object pres-
ence. Finally, in concept detection, an object-specific score is used for a ranking of
content. This chapter is targeted at an improvement of the underlying search for
correspondences, such that the proposed approach can be used for object match-
ing as well as object recognition and concept detection. The experiments in this
chapter will address the last two challenges, and correspondingly both terms will
be used in the following.

It is important to note that all three tasks have strong connections with the
segmentation problem, as objects usually occupy only a part of the image or frame.
It seems reasonable to assume that recognition becomes significantly simpler if a
segmentation of the object from the background is given. However, for still im-
ages, such a segmentation turns out to be a difficult challenge: while pictures can
be partitioned into regions of coherent appearance, the resulting segments can-
not be expected to correspond to meaningful objects or object parts in general.
Such a segmentation is called weak [SWSJ00]. When it comes to video content,
the segmentation problem becomes simpler, as motion can serve as an additional
clue. In this chapter, we will assume that such a motion-based segmentation can
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achieve a strong segmentation [SWSJ00], i.e. that we can decompose the scene into
a background layer and an object layer (we will focus on the situation of a sin-
gle foreground object, but approaches to overcome this limitation exist [KTZ04]).
Motion segmentation has been demonstrated to achieve this using a variety of ap-
proaches [CS05, KRB01, SC06, Tek95, TZ00], even in situations where a strong
segmentation cannot be achieved using color and texture alone.

The concern of this chapter is an improved object recognition and object-
specific concept detection by using motion segmentation. Motion segmentation
will serve as a filter for ruling out false positive correspondences with the scene
background. The key hypothesis is that this increases the robustness of recognition
with respect to clutter.

To realize this idea, we first need to address the segmentation problem. Mo-
tion segmentation has been demonstrated to be capable of giving strong scene
segmentations in many situations. Yet, it is based on restrictive assumptions like
constant pixel intensity or spatial coherence of motion [BA96]. These assump-
tions are violated in many practical situations, as in case of illumination changes,
transparency, or at object boundaries. Therefore, to achieve a robust segmenta-
tion, this thesis first presents two improvements and extensions of motion-based
segmentation algorithms.

First, an indirect approach towards motion segmentation is presented which
estimates a motion field and then segments it into coherent regions. This is done
by estimating a dominant motion and associated region. In Section 6.4, this idea
is followed, and an approach is presented which — in contrast to local search
techniques that constitute the state of the art — infers an optimal background
from a given flow field. This is made feasible by an adaptive search of parameter
space using the RAST (“Recognition by Adaptive Subdivision of Transformation
Space”) algorithm [Bre92]. In experiments on synthetic flow fields and real-world
video sequences, the approach is demonstrated to outperform several local search
methods in terms of accuracy of segmentation and estimated background motion.

A different, direct strategy towards motion segmentation combines motion es-
timation and segmentation in a joint optimization process, which compensates for
the ambiguity of local motion clues. In Section 6.5, an extension of such a direct
approach with parametric color models is presented which combines motion and
color clues in a joint framework. In experiments on a variety of video data, it is
demonstrated that this extension reduces segmentation error compared to a purely
motion-based approach.

127



6.2. BASIC CONCEPTS AND NOTATION

With such motion-based segmentation technologies at hand, the second ques-
tion addressed in this chapter is whether motion-based segmentation helps to im-
prove object recognition by first segmenting a scene and then applying recogni-
tion to the resulting regions. While this idea seems appealing, there are also
several arguments against it: first, motion segmentation itself remains a chal-
lenging problem, and results can be error-prone and inaccurate. Second, modern
patch-based recognition methods by themselves already provide a certain robust-
ness with respect to clutter and give impressive results even for heavily cluttered
scenes [FTG06, Low04, SZ06]. Third, in some scenarios, background can be a
valuable clue for the presence of an object — for example, the fact that a road is
visible hints at the presence of a car.

An answer to the question whether motion segmentation can improve concept
detection is given in Section 6.6. A framework for the recognition of moving objects
in video is presented that combines motion segmentation with a state-of-the-art
patch-based recognition [JDS08a, Low04, MPDB+06, PCI+07]. In the proposed
framework, motion segmentation serves as a filter for patches from the background
region. This way, incorrect correspondences between object models and scene back-
ground are prevented, and the influence of clutter is reduced. Using this framework,
the combination of motion segmentation with patch-based recognition is studied.
Two quantitative experiments are conducted — one regarding the recognition of
specific objects, the other regarding object retrieval in web video databases. Re-
sults of both experiments show that, under conditions where motion segmentation
can be expected to work, it improves patch-based recognition significantly.

This chapter is organized as follows: after an introduction of some basic termi-
nology and notation (Section 6.2), an overview of motion segmentation and object
recognition is given, and previous work targeted at a connection of both fields sim-
ilar to this chapter is discussed (Section 6.3). After this, the contributions of this
thesis with respect to motion-based segmentation are presented (Sections 6.4 and
6.5). Finally, the proposed framework for combining motion-based segmentation
with a patch-based object recognition is outlined and validated in two experiments
(Section 6.6). A discussion concludes the chapter (Section 6.7).

6.2 Basic Concepts and Notation

In this chapter, a video is viewed as a function over a volume of points (x, t),
where t ∈ R denotes the time (or frame number, as time steps are discrete in
practice), and x ∈ R2 the spatial location. I(x, t) denotes the intensity of a pixel.
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The spatio-temporal derivatives of this intensity are denoted with the gradient
∇I(x, t) := ( ∂I(x, t)/∂x1, ∂I(x, t)/∂x2 ) and It := ∂I(x, t)/∂t, which denotes the
intensity change over time and will be approximated by I(x, t + 1) − I(x, t). In
some cases, we will also make use of color information, whereas RGB color values
will be treated as functions similar to the intensity I. These functions are denoted
with IR(x, t), IG(x, t), and IB(x, t).

In most situations, this chapter will focus on motion in a single frame t (or
between two frames t and t+1, respectively). Therefore, the notation is abbreviated
by dropping the time component t: we will replace I(x, t) with I(x), ∇I(x, t) with
∇I(x), and even It(x, t) with It(x).

We will deal with two kinds of motion estimates in this chapter. First, local
ones, indicating that a feature at position (x, t) moves to (x+ v, t+ 1) in the next
frame. v ∈ R2 is called a motion vector. Usually, local motion is defined at discrete
positions x1, ..., xn over frame t, obtaining a motion field:

{(x1, v1), ..., (xn, vn)}

where xi is a position in the frame and vi a motion vector. Again, the time t is
dropped in this notation, as we only focus on a single point in time.

The second kind of motion describes a global mapping of positions to motion
vectors. This transformation is denoted with vθ(x) : R2 → R2 (where θ is a
parameter vector). In contrast to local motion fields, vθ induces a dense estimate
of motion over the whole frame, i.e. for any position x, vθ maps x in frame t to
the position x+ vθ(x) in frame t+ 1.

6.3 State of the Art

As this chapter is targeted at a combination of motion-based segmentation and
object recognition, an overview of both fields is given in the following. It should
be noted that both tasks have been subject to intensive research since the 1980s (in
case of motion analysis [HS80]) or even the 1950s (for object recognition [Mun06]).
Therefore, a complete overview of methods is beyond the focus of this section.
Instead, the most prominent approaches will be outlined, and pointers to further
reading will be provided for the interested reader. We will first address motion-
based segmentation (Section 6.3.1) and then object recognition (Section 6.3.2).
Finally, methods targeted at combining both fields will be discussed (Section 6.3.3).
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6.3.1 Motion-based Segmentation

Motion-based segmentation is targeted at partitioning the frames of a video se-
quence into regions of coherent motion. The resulting segmentation is of interest
in a variety of applications, including obstacle detection [Enk91], video compres-
sion [ZL01], the recovery of scene structure [TZ00], or object recognition [KRB01]
(which will also be the focus of this chapter).

Let us compare the approach with segmentation in still images, where a group-
ing is usually done on the basis of low-level clues such as texture or color. Despite
strong efforts put into the task, a segmentation of still images remains a diffi-
cult challenge, and suffers from the problem that — without prior knowledge of
the scene — segmented regions cannot be expected to correspond to meaningful
objects [MFTM01]. In contrast to this, a grouping based on motion has a good
chance of resulting in regions that correspond to objects (or rigid parts of articu-
lated objects), i.e. a strong segmentation is achieved [SWSJ00].

This section reviews related work on motion segmentation in a compact overview
(for more information, please refer to the review by Zhang [ZL01], the text book
by Tekalp [Tek95], or to a bibliography compiled by Wiskott2). Also, it should be
noted that background subtraction (or change detection) techniques [RAAKR05]
— which achieve more reliable segmentations for restricted setups with a static
camera – are not covered.

We will first focus on the estimation of motion (which by itself does not include
a segmentation of the scene). After this, two general approaches towards motion
segmentation will be discussed: feature-based (or indirect) methods and direct
ones.

Motion Estimation

The estimation of motion in video sequences has been addressed in computer vision
since the 1980s, starting with contributions by Horn and Schunck [HS80] and Lucas
and Kanade [LK81]. Ideas of how to compute motion are outlined in the following
(for an in-depth review, please refer to [BB96]).

Intensity-based Methods: One fundamental assumption of motion estima-
tion is data preservation [BA96], which refers to the fact that image intensity stays
constant as a feature moves over time. Let us first focus on the estimation of
the local motion vector v for a single image feature x in frame t. Then, data

2http://itb.biologie.hu-berlin.de/˜wiskott/Bibliographies/SegmFromMotion.html
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preservation states that:
I(x+ v, t+ 1) = I(x, t).

Using a first-order Taylor series expansion, this rewrites as the well-known optical
flow equation [BB96]:

I(x, t) +∇I(x, t) · v + It(x, t) = I(x, t)

∇I(x, t) · v + It(x, t) = 0, (6.1)

which provides an elegant way to estimate the motion vector v directly from the
spatio-temporal image derivatives. Note, however, that (6.1) is a single equation
with two unknowns (namely, v = (vx, vy)), such that additional constraints are
required. This dilemma is commonly referred to as the aperture problem [BB96].
As a solution, Horn and Schunck [HS80] introduced an additional regularization
term |∇vx|2 + |∇vy|2 that enforces the estimated flow field to be smooth. Alter-
natively, Lucas and Kanade [LK81] assumed motion to be approximately constant
over a small neighborhood region surrounding x. From pixels in this surrounding,
additional constraints can be acquired, leading to a sufficiently determined linear
equation system from which v can be estimated in a least squares fashion.

Note that — as the optical flow equation is based on a first-order Taylor series
expansion — it gives inaccurate motion estimates in case of strong motion. This
can be overcome to some extent using a hierarchical approach, where — starting
at a low resolution level — motion is iteratively estimated and used to refine
frame alignment [BAHH92]. It has been reported that intensity-based methods
can handle motion of up to 10− 15% of image size this way [IA00].

Parametric Motion: Motion estimation is usually constrained using the fact
that features do not move independently but are strongly correlated. One popular
strategy is based on the assumption that the flow field follows a low-dimensional
parametric form. This is modeled by a mapping of positions x to motion vectors
vθ(x) (where θ denotes a parameter vector). A variety of such parametric motion
models has been suggested (please refer to [BAHH92, Smo01] for an overview). It
ranges from complex 3D models to low-dimensional 2D approximations, like the
affine transformation:

vθ(x) =
(
θ1 θ2

θ3 θ4

)
· x+

(
θ5

θ6

)
(6.2)

This model gives a sufficiently accurate approximation of the true scene motion if
the scene is near-planar and in sufficient distance from the camera. As the number
of parameters is as low as 6, these can be estimated reliably even in the presence of
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strong noise. This way, parametric approaches increase the robustness of motion
estimation significantly.

Feature Tracking: Intensity-based methods as outlined above derive motion
directly from the spatio-temporal image derivatives. A second approach is based
on a tracking of image features over time. One simple technique following this
idea is block matching [Tou02], which is a key component of modern video en-
coders: a frame is divided into rectangular blocks, and for each block the most
similar region in the previous frame is found under a simple intensity-based block
distance measure. Note that motion cannot be estimated reliably in regions show-
ing only line features or no texture at all. This observation motivates a feature
selection step previous to motion estimation, such that we focus on areas where
accurate estimates can be expected. Corners — i.e. locations with strong image
derivatives in either spatial direction — have been pointed out as good choices for
this purpose [ST94]. More recently, a variety of other interest point detectors has
been proposed [SMB00] that are covariant with respect to strong changes of scale,
perspective, and illumination. Based on this development, motion estimation can
be performed using a feature matching: features are extracted in two successive
frames, and a matching is done based on robust descriptors of local appearance.
This approach will be discussed later under the term feature-based methods.

It is important to note that all motion estimation strategies above are based
on assumptions that are violated in many practical situations. For example, while
most methods assume a constant intensity of moving image features, intensity
in practice depends on many factors such as the distance and angle of a surface
relative to light sources and camera. Another assumption is that motion occurs
with spatial coherence, which can be formulated explicitly by smoothness con-
straints [HS80] or is implicitly assumed by methods such as feature matching.
Again, this assumption is violated in practice, particularly at motion boundaries.
Heuristics to solve this problem have been proposed based on an inhibition of
motion smoothness across image contours [BB96, Ren08], but do not guarantee a
reliable solution.

Other fundamental problems are occlusion (i.e., features that are only visible
in one of two subsequent frames) and missing image texture (for uniformly colored
regions, motion estimates are inherently unreliable). Overall, motion estimation is
error-prone and intertwined with motion segmentation, such that any interpreta-
tion of motion fields must take outliers and inaccuracies into account.
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Feature-based Motion Segmentation

A first category of motion segmentation approaches separates the estimation of
motion from its interpretation (i.e., an indirect approach is followed). First, local
motion is estimated using feature tracking (which is why the approach is also called
feature-based [TZ00]). Second, the resulting flow field is segmented into regions of
coherent motion.

Some methods from this category estimate a parametric 2D background mo-
tion (like affine motion, Equation (6.2)) using M-estimators or related robust tech-
niques [FdW05, KCM04, RSSM01, Sib08, Smo01]. Outliers that do not fit this
global motion are attributed to foreground objects. While such 2D models can
be considered simple and robust alternatives, motion interpretation can also be
performed in 3D, which allows for an additional reconstruction of the 3D scene
structure. An early approach in this direction has been presented by Adiv [Adi85]:
a given motion field is oversegmented into parts corresponding to planar patches
under a 3D motion model. These parts are then grouped to obtain a final segmen-
tation.

A similar approach in 2D has been followed by Wang and Adelson [WA93],
who decomposed video scenes into several coherently moving layers. First, a local
intensity-based estimation of optical flow is performed, and after this the motion
primitives are alternately segmented and grouped into clusters of coherent affine
motion. This clustering is based on a similarity measure in the parameter space
of affine transformations, and several such similarity measures have been stud-
ied [NWD00]. Another approach by Kühne [KRB01] uses local motion estimation
followed by an active contour segmentation. Motion boundaries are iteratively
refined, stopping at motion probes that do not fit the global motion estimate.
Effectively, this renders motion segmentation an anomaly detection process.

Torr and Zisserman [TZ00] present another system using a matching of corner
features. Given the resulting set of point correspondences, a Random Sample Con-
sensus (RANSAC) technique is used to estimate a dominant homographic motion
while discarding outliers. It is demonstrated that scene structure can be recovered
this way. An evaluation of other 3D motion-based segmentation methods is given
by Tron and Vidal [TV07].

Generally, the strengths of the indirect approach lie in the fact that motion
estimation can focus on thoroughly selected features. Over the last years, tech-
niques have been developed to make feature detection and description robust to
photometric and geometric variations [Mik03, SMB00], such that — by focusing
on thoroughly selected image areas — sparse but reliable motion estimates can
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be obtained, even under significant scene motion (in fact, feature matching is also
applied for wide baseline stereo matching [MCMP02]). The problem of sparseness
can be overcome by a postprocessing that infers dense flow representations — for
example, Belongie et al. [WAB03] start from a feature point matching and then
apply a graph cut technique to assign pixels to coherent motion layers. For a
detailed discussion of feature-based methods, please refer to [TZ00].

Direct Motion Segmentation

While supporters of feature-based methods argue that a selection of well-trackable
features leads to a more robust motion estimation [TZ00], a problem is that —
as motion estimation and interpretation are separated — a recovery from errors
made in the motion estimation step is difficult. This is particularly true as the
estimation of motion is intertwined with knowledge of region boundaries, which
is why motion segmentation is also called a “chicken-egg problem” [CS05]. This
insight motivates direct methods, which estimate motion boundaries and motion
itself in a joint process operating directly on image intensities. A variety of methods
follows this idea, most of them based on the optical flow equation (6.1): we expect
for each pixel x that ∇I(x) · v + It(x) ≈ 0, and the quantity ∇I(x) · v + It(x)
is called the optical flow error. A minimization of this error is the key idea of
direct dominant motion estimation methods: it is assumed that the majority of
the frame (typically, the background region) follows a parametric global motion.
This is estimated together with the associated region by minimizing flow error in
a robust fitting process [IRP94]. Black and Anandan [BA96] propose to replace
quadratic flow error as used previously [HS80] with error measures from robust
statistics [Hub74], which are less prone to the influence of outliers. A segmentation
can be obtained by recursively removing already explained regions and repeating
dominant motion estimation until the whole frame is fitted.

Another category of direct methods views motion segmentation as a parame-
ter estimation problem in a probabilistic setting. Assuming image data I to be
given in form of spatio-temporal derivatives, a joint estimation of the motion field
V and label field L (representing a segmentation) is obtained using a Bayesian
formulation:

V̂ , L̂ = arg max
V,L

P (V,L|I) = arg max
V,L

P (I|V,L) · P (V |L) · P (L) (6.3)

If taking the logarithm, such formulations lead to the minimization of energy func-
tions consisting of additive terms. A data fit term represents − logP (I|V,L), the
negative log-likelihood of the image data given the motion field. This is balanced

134



CHAPTER 6. IMPROVING CONCEPT DETECTION USING MOTION
SEGMENTATION

with regularization terms that typically penalize the length of motion boundaries.
Bouthemy and François [BF93] were the first to propose such a formulation. For
the data fit term, motion within each region is assumed to follow a paramet-
ric 2D model, and a Gaussian distribution of optical flow error is assumed. for
the regularization terms, an Ising model is proposed, which effectively leads to a
Markov Random Field for motion segmentation. Similar formulations were pro-
posed later by Cremers and co-workers, where a quality criterion similar to Equa-
tion (6.3) is optimized in an active contour framework [CS05] or using a graph cut
approach [SC06]: starting from an initial guess of the segmentation, alternately
parametric motion estimates for each region are obtained using least squares, and
based on these parameters pixels are re-assigned to appropriate regions. If us-
ing graph cut optimization for this assignment, segmentation can be carried out
in near-realtime [SC06] or even in real-time (if combined with a multi-resolution
approach [VGWK08]).

Other methods use similar probabilistic formulations as Equation (6.3) and pro-
pose the EM algorithm for parameter estimation. Jepson and Black [JB93] present
a model based on a mixture of parametric motions (including an outlier process).
In an EM fashion, soft assignments of pixels to these motions are alternated with
parameter updates. Weiss [Wei97] proposed a non-parametric approach, where
motion is enforced to be smooth using the prior term P (V |L). While previous
formulations such as the one by Horn and Schunck [HS80] did not take motion
discontinuities into account and enforced smoothness over the whole frame, Weiss
restricted this constraint to apply only within the segmented regions. Again, op-
timization is based on the EM algorithm.

It should be kept in mind that most direct methods are based on the optical
flow equation, which itself relies on the pixel constancy assumption. Violations of
this requirement (for example in case of illumination changes) have been addressed
using heuristic normalization techniques [IA00], but remain a serious challenge. On
the other hand, the strengths of direct methods lie in the fact that segmentation
and motion estimation are coupled in a joint process, that highly accurate motion
estimates in the subpixel range are obtained (which is mandatory for some ap-
plications such as superresolution and mosaicing), and that the recovered motion
segmentations are inherently dense. For a more detailed discussion, please refer to
Irani’s and Anandan’s work [IA00].
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6.3.2 Patch-based Object Recognition

The recognition of objects has been in the focus of computer vision research since
the 1950s [Mun06]. Though an accurate recognition of a large number of generic
objects remains beyond the capabilities of state-of-the-art systems, intensive re-
search has lead to an increasing robustness and broader applicability. The fo-
cus of this section will be on patch-based methods, which have become increas-
ingly popular over the last years, and have also been implemented in commercial
systems [MPDB+06]3. Yet, it should be kept in mind that a plethora of other
approaches towards object recognition exist, the most important ones including
global appearance-based methods (which are extensively discussed in a recent
overview by Roth [Rot08]), and shape-based methods (which have been surveyed
by Pope [Pop94]). For a historical overview of the field, please refer to Mundy’s
article [Mun06].

Object recognition poses a difficult challenge, since robustness must be achieved
with respect to variations of illumination, viewpoint, rotation, and pose. Further
difficulties are clutter, intra-class variation of object categories, and the effort as-
sociated with training data acquisition. In different use cases, a different emphasis
may be put on each of these challenges, leading to different requirements to recog-
nition systems in practice. For example, the best choice of features may depend
on properties of the objects to be recognized (different representations are helpful
for heavily textured objects and for untextured ones).

In this chapter, the focus will be on object retrieval in video databases, an
extremely difficult challenge that can be characterized by strong intra-class vari-
ation and significant clutter. Also, a learning of object models should take place
on similarly challenging video datasets labeled with objects of interest. In this
scenario, patch-based approaches have been demonstrated to be an appropriate
choice [EVGW+08, JDS08a]. They are adopted in this chapter, and are corre-
spondingly in the focus of the following overview.

Patch-based methods are based on the observation that the image parts re-
lated to an object must be identified and separated from the background during
the recognition process. The fundamental prerequisite for this is that — in con-
trast to global appearance-based methods [NaSN96] — an image is described as
collections of local parts (or patches, respectively). By combining this approach
with robust methods for a detection and description of interest regions, a high
robustness has been achieved with respect to perspective changes, deformations,
clutter, and partial occlusion. This section provides an overview of the most im-

3http://www.kooaba.com/technology/
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portant trends in patch-based recognition. For further reading, a variety of web
resources exist which provide an introduction to the field, like the tutorial on local
features by Tuytelaars at ECCV 20064, a tutorial on visual recognition given by
Leibe and Grauman5, and a short-course by Fei-Fei et al. at ICCV 20056. A
comprehensive overview of different approaches is also given in the textbook by
Ponce et al. [PHSZ07]. This section will first address the patch-based recognition
of specific objects and after this the recognition of object categories.

Recognition of Specific Objects

Patch-based methods targeted at a recognition of specific objects usually cast a
matching problem on the basis of local features, which is conducted in four major
steps. First, regions of interest are detected. Second, the appearance of each
region is described by a numerical feature. Third, these descriptors are matched
with patches from training views of the object, obtaining a (potentially error-
prone) set of correspondences. In a final step, this set of matches is refined —
usually by making use of the spatial constellation of patches — and a decision of
object presence is made, typically by choosing the class that maximizes the number
of correspondences. In the following, these processing steps will be discussed in
detail:

• Patch Selection: Region selection can simply be performed by sampling
patches over random or regular positions and scales. While this usually pro-
duces lots of patches (which has been shown to increase system robustness
in certain cases [NJT06]), a more efficient way is to focus on interest points
allowing a repeatable detection. Typical examples are corners, for which the
Harris detector offers a popular choice [HS88]. More recently, scale-invariant
detectors for corners [MS04] and blobs [BTvG06, Low99] have been pro-
posed. Other methods identify so-called maximally-stable extremal regions
with a strong contrast to their surrounding [MCMP02], or detect maxima
of a saliency measure [KB01]. An evaluation of these methods in terms of
detection repeatability has been conducted by Schmid et al. [SMB00]. For
an extensive overview, please refer to the survey by Roth [Rot08].

• Patch Description: Local features are used to describe the distinct ap-
pearance of a patch while achieving robustness to changes of rotation and

4http://homes.esat.kuleuven.be/ tuytelaa/ECCV06tutorial.html
5http://www.vision.ee.ethz.ch/ bleibe/teaching/tutorial-aaai08/
6http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html
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illumination. Like for the region selection step, a variety of methods has
been proposed. Many of these — like the popular SIFT descriptor [Low99]
— capture localized statistics over gradient directions (which are inherently
robust with respect to illumination changes) [BTvG06, BMP02]. Invari-
ance to rotation can be achieved by a normalization to a characteristic an-
gle [Low99] or by aggregating information from multiple angles in the same
histogram bin [JH99]. For an overview and a performance study, please refer
to [Mik03, Rot08].

• Matching: In this step, correspondences are found between patches in the
test image and in training views. This is often done using a nearest neighbor
matching of patch descriptors: given a patch from a test image, the most
similar one from all training views is found and declared to be a match.
This is called a full patch search in the following. More efficient alterna-
tives are based on a vector quantization of patches to visual words [SZ06],
such that matching is done with a significantly lower number of patch proto-
types. This way, an efficient search is possible even in large image databases,
particularly when using hierarchical extensions of visual word vocabular-
ies [JDS08b, NS06, PCI+07].

• Refinement: Frequently, a refinement of error-prone correspondences is
done based on the spatial arrangement of patches. This is based on the as-
sumption that object features come with a restricted spatial constellation,
which does not hold for false positive matches. One strategy models a global
transformation from patch positions in training views to positions in the test
image. This transformation can be estimated using RANSAC [FB81], a com-
bination of the generalized Hough transform and robust least squares [Low04],
or the RAST algorithm [KDB07]. Alternatively, training and test image can
be viewed as a stereo pair, and epipolar geometry can be employed [FP02].
While all these methods define a global relation between model and im-
age features, others mine the match set for locally correct constellations of
patches. In their VideoGoogle system, Sivic and Zisserman and Ferrari et
al. [SZ04, FTG06] detect consistent configurations of patches by analyzing
local patch neighborhoods. Jegou et al. require valid matches to show a con-
sistent orientation and scale, but neglect their spatial constellation [JDS08a].
Finally, another alternative is to discretize the position of local features into
bins [LSP06].
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It should be pointed out that — while multiple alternatives exist regarding the
above design choices — there is no agreement on an optimal configuration. For
example, evaluation efforts for interest point detection and description show very
different results on different datasets [FB04, Mik03, MP05, SMB00]. Yet, patch-
based approaches in general have been demonstrated to be very successful when
it comes to the recognition of specific objects.

Object Category Recognition

The recognition of object categories (like cats, airplanes, buildings, etc) is usu-
ally considered a much more challenging problem compared to the recognition of
specific objects. This is because instances within a category may vary signifi-
cantly in their appearance, such that recognition systems need to distinguish what
variations are inherent to the class and which ones make a distinction to oth-
ers. Yet, the field has experienced a boost over the last years due to intensive
research [PHSZ07, EVGW+08]. Just like for the recognition of individual objects,
the patch-based paradigm plays an important role: like objects, object categories
are often described as collections of local parts associated with patches.

Early examples of patch-based object category recognition are the Constellation
Model [BWP00, FPZ03, FPZ05] and the Implicit Shape Model [LS07], which both
combine probabilistic distributions for the appearance of object parts (like the
handles and wheels or a motorbike) with a model for the spatial arrangement
of parts in the image plane. In case of the constellation model, appearance is
modeled by Gaussians in the space of local descriptors, and pairwise terms define
the relative spatial arrangement of object parts. Recognition is carried out by
evaluating all possible constellations, which corresponds to a marginalization over
latent correspondences. A similar approach is followed by Leibe’s and Schiele’s
Implicit Shape Model [LS07], though some different design choices are made: patch
appearance is discretized to visual words, and the spatial constellation of patches is
modeled relative to the object center, such that the Generalized Hough Transform
can be used for an efficient localization.

A variety of approaches has been proposed using similar ideas [HL04] or sug-
gesting hierarchical extensions [OB07, UVNS02]. Most of these methods focus on
object views that are restricted to a consistent viewpoint, and the object is also
required to be prominent compared to its background. Correspondingly, these
approaches achieve a good performance on oversimplifying datasets such as the
Caltech image collection [PBE+06], which “invite over-optimization to trivial reg-
ularities” [PCD08].
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To investigate more realistic situations (in which occlusion, extreme clutter,
and general viewpoint changes pose additional challenges), object category recog-
nition has also been evaluated on web photos downloaded from Flickr. In this
benchmark, the PASCAL Visual Object Challenge [EVGW+08], a fairly simple
approach de-emphasizing patch position was found to give the best results, which
discretizes features into visual words and stores them in histograms. The spatial
constellation of patches is neglected entirely or used in a very limited fashion, for
example by dividing the image into subwindows and storing one histogram per
window [LSP06]. The resulting feature vector is fed to a Support Vector Machine
(SVM) classifier [SS01]. This approach has been found successful though it is fairly
simple: no segmentation of the object from the background is involved, and neither
is an estimation of object pose. It has therefore been argued that there might be
more appropriate models for object recognition, but that the PASCAL datasets
might be “too difficult for any model to gain traction [...], giving little insight on
which approaches are most promising” [PCD08].

6.3.3 Combining Object Recognition and Segmentation

Obviously, the problems of recognizing objects and segmenting them from the
background are strongly intertwined, and it seems reasonable to assume that solu-
tions to one task can help solving the other: on the one hand, a segmentation of the
object from the background may simplify the recognition problem. On the other
hand, an object model used for recognition can serve as a clue for segmentation.
Therefore, this section discusses previous work targeted at combining segmentation
and recognition.

Top-Down Segmentation: A number of approaches has been proposed for
a joint segmentation and object recognition in still images. These methods can be
subsumed under the term “top-down segmentation” [BU02], as high-level knowl-
edge of object shape and appearance complements low-level image clues during
the segmentation process.

A first category of methods follows this approach for specific objects. Simon
and Seitz [SS07] and Ferrari et al. [FTG06] propose to solve recognition through
the exploration of a dense feature correspondence field. Starting from an initial
set of sparse matches (which can be found reliably even for wide variations of
viewpoint), a dense covering of the image is achieved by iteratively exploring the
surrounding of matches for further correspondences. This approach gives a dense
segmentation and has been reported to lead to an improved recognition, but is also
computationally expensive [FTG06].
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Beyond this, several approaches have been suggested dealing with instances of
an object category. Borenstein and Ullman [BU02] and Leibe and Schiele [LLS04]
present models that achieve a category-specific object segmentation, which are
based on a matching of image parts with patches from segmented training views.
While Borenstein and Ullman start from a few reliable matches and expand the
match set successively, Leibe and Schiele use the Hough transform as a global
approach. Similar to a jigsaw puzzle, the resulting patch-level segmentations are
stitched to a global, object specific segmentation.

Todorovic and Ahuja [TA06] follow a graph-based approach. Given many views
of object instances, a hierarchical bottom-up segmentation of each image is per-
formed, obtaining a segmentation tree. Then, an object model is inferred as a
subtree common to all images. Other approaches are targeted at an object-specific
extension of Conditional Random Fields (CRFs), which are frequently used mod-
els for segmentation. In conventional CRFs, “data” terms express the fit of image
regions to foreground and background, and are combined with “smoothness” terms
enforcing a spatial continuity of segmentation. This formulation is now extended
with “object terms” penalizing deviations from an object category model. For
example, the Layout Consistency CRFs by Winn and Shotton [WS06] model the
appearance of object parts via detectors based on discriminative classifiers. Kumar
et al. [KTZ04] present a model that integrates appearance terms with part-level
penalty terms for invalid spatial constellations. Other approaches [KTZ05b, WJ05]
use pixel-level penalty terms, such that segmentations are modeled as deformed
variations of a latent prototypical object shape.

All these models have in common that object-specific shape and appearance
terms are used to guide segmentation. Usually, an interleaved fitting process is
applied: alternately, the object model is mapped into the image and image regions
are fitted to this model. Differences cannot only be found in terms of the exact
prior terms, but also in the supervision of learning: while some methods require
manually segmented object views for training [BU02, LLS04], others infer a motion-
based segmentation from training videos [KTZ04, KTZ05b] or learn from entirely
unsegmented images [TA06, WJ05].

This work has led to first promising results: it has been shown that more
accurate and meaningful segmentations can be acquired compared to a purely
bottom-up approaches, and that a recognition of object categories is possible as
well. Two aspects have not been addressed so far. First, all methods mentioned
above have only been applied to images where objects are prominent and are viewed
from the same canonical pose (often, side views). It is controversial in how far
such input data represents natural scenes “well” [PCD08], and — though progress
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may be seen in this direction in the near future – it currently remains unclear
how well these methods generalize to arbitrary 3D viewpoint changes and general
objects. Second, evaluations focus on the segmentation aspect in most cases, and
— while a segmentation of objects has a value in itself for other applications —
improvements over competitive no-segmentation baselines for recognition have not
been validated satisfyingly. In this chapter, both these limitations are addressed:
a much simpler recognition approach is followed based on patch appearance only
(and not on object pose), which can be applied even in case of wide viewpoint
variations. Also, a quantitative evaluation will be presented in which the proposed
approach is compared to competitive standard baselines free of segmentation.

Object Retrieval: The combination with segmentation has been viewed from
a different perspective in object matching [SZ03, SJL+06]. Here, one or more
query views of an object are given, and a dataset of images or videos is to be
searched for other views of the same object. Similar to the recognition problem,
it seems reasonable to assume that a segmentation simplifies the retrieval task, as
appropriate similarity measures can be found more easily in the absence of clutter.
Smeaton et al. [SJL+06] present a user study in which test persons were asked to
retrieve objects such as“historical buildings”or“palm trees” from a video database.
This dataset was manually segmented previous to the study, and test persons were
offered the possibility to segment query objects previous to retrieval. It was found
that users made intensive use of this functionality, and that this did indeed lead
to a more efficient search.

In practice, however, a segmentation of database content may be infeasible,
such that real-world prototypes for object-based retrieval deal with segmentation
in different ways: patch-based approaches like the VideoGoogle system [JDS08a,
PCI+07, SZ06] usually omit it and rely on a filtering of correspondences to achieve
robustness to clutter. Wang et al. perform an unsupervised clustering of interest
points based on their position [WLT08] — similar to the approach followed in this
chapter, a grouping of patches to supposed objects is performed. The approach
proposed here, however, employs motion as a strong additional clue to guide this
grouping and to obtain more exact object regions.

Motion Segmentation and Recognition: Only a few previous contributions
can be found targeted at a combination of motion-based segmentation and object
recognition. Kühne et al. [KRB01] perform a motion segmentation and feed the
resulting foreground regions to a shape-based classification. While the approach
indicates the capability of motion segmentation to accurately segment objects from
the background, recognition experiments are only conducted on very small datasets
and do not include comparisons with competitive baselines free of segmentation.
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Rothganger et al. [RLSP06, RLSP07] present an object recognition system
based on 3D patch models. Using structure from motion [TM93], patches extracted
from a video scene are segmented into rigidly moving components corresponding to
objects. From this information, object models are constructed that capture both
the 3D pose and the appearance of each patch. During the recognition process,
these models can be matched with images or other 3D models, resulting in a
recognition process that combines geometry and appearance. It is demonstrated
that this approach outperforms a plain matching of patches in 2D [RLSP06]. The
framework proposed in this chapter makes use of motion information in a similar
way to segment the scene into rigidly moving components and thus erases false
positives from the match set. However, instead of a full 3D reconstruction, it uses
2D segmentation into layers of coherent motion. This can be seen as a simpler
(and computationally much more efficient) alternative.

6.4 Global Motion Estimation by Adaptive Search

of Transformation Space

This section addresses the problem of estimating a parametric global motion for
scenes including moving foreground objects. As has been outlined in Section 6.3.1,
approaches for solving this task can generally be subdivided into two categories:
direct methods, which estimate a global motion directly from image intensities,
and feature-based (or indirect) ones, which first estimate a motion field and then
infer a global parametric motion from it. It has been mentioned previously that
strong arguments in favor of either approach can be found [IA00, TZ00].

In this section, an indirect approach will be followed. The focus is not on the
motion estimation step, i.e. a motion field is assumed to be given. As common for
indirect methods, the majority of the motion field is assumed to follow a global
parametric motion. The parameters of this motion are unknown, and global motion
estimation is the task of inferring them. As the estimation of background motion
also involves the estimation of an associated region, we can apply global motion
estimation recursively and use it for segmentation, whereas all regions that have
been found to fit the global motion are removed. This process is repeated until the
whole frame is explained, i.e. first the background is segmented, then a foreground
object, then a second one, etc.

What makes global motion estimation difficult is the presence of noise and
outliers, which can be caused by moving foreground objects or by errors in the
motion estimation process. Obviously, we face a “chicken-egg” problem. We want
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to infer a parametric global motion from the background region. On the other
hand, this region must be inferred from the (unknown) background motion. Stan-
dard approaches for solving this problem rely on a local search in parameter space.
Examples are the RANSAC algorithm [FB81], which iteratively tests motion esti-
mates derived from subsamples of the motion field, or robust least squares methods
(or M-estimators, respectively) [Hub74, Ch. 4] [Smo01], which alternately refine
motion estimates and reject outliers. These methods can get caught in local min-
ima (as in case of robust least squares) or give a good solution only with a certain
probability (as RANSAC).

To overcome this problem, this section is targeted at a full search of parame-
ter space giving an optimal result. One way to achieve this is the Hough trans-
form [Bal81]: the parameter space is divided into bins, motion probes cast votes
associated with parameter regions, and the bin with most votes is returned as a
result. While this does conceptually provide a full search of parameter space, no
rigorous solution is provided to cope with measurement noise, and the approach
gets inefficient for a small bin size [Bre93]. To some extent, such problems can
be overcome by combining the Hough transform with a refinement using local
search [Low04]. This, however, is again not guaranteed reach a global optimum.

In this section, it is shown that an optimal solution to the global motion es-
timation problem can be found using an adaptive branch-and-bound search of
transformation space. This approach is called RAST (“Recognition by Adaptive
Search of Transformation Space”). It has been developed by Breuel [Bre92] and
has been previously applied for the fitting of geometric primitives like lines [Bre96]
and rectangles [Bre03a], for object detection [KDB07], and for locating modes in
kernel densities [Wir09]. The work presented in this chapter is the first one using
RAST for global motion estimation.

The section starts with a probabilistic formulation of global motion estimation
as a maximum-likelihood parameter estimation problem. Also, the RAST algo-
rithm is described (Section 6.4.1). Next, this model is extended such that the
spatial coherence of segmented regions is taken into account (Section 6.4.2). Fi-
nally, experiments on synthetic motion fields and MPEG-4 motion vectors from
real-world video sequences are presented in Section 6.4.3. In these tests, it is
demonstrated that the proposed optimization does in fact give a superior accuracy
in terms of motion estimates and segmentation compared to local search tech-
niques.
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6.4.1 Approach 1: Maximum-likelihood

We assume a motion field D = {(x1, v1), ..., (xn, vn)} to be given such that each
entry consists of a 2D position xi and a 2D motion vector vi, indicating that a
feature at position xi in the first frame moves to xi + vi in the second one. D can
represent an optical flow field defined at regular positions or sparse tracked point
features. Restrictions to motion probes arranged on a regular grid will be made
later.

The key assumption of global motion estimation is that the motion field D

can be approximated well by a parametric transformation. This transformation
is denoted with vθ : R2 → R2. It maps positions x to motion vectors vθ(x). In
this section, the 4-dimensional similarity transform model with parameters θ =
(α, σ, cx, cy) will be used, which is based on a 2D rotation by an angle α and a
scaling σ, followed by a translation (cx, cy):

vθ(xi) =
(
σ · cos α− 1 −σ · sin α
σ · sin α σ · cos α− 1

)
· xi +

(
cx
cy

)
(6.4)

Global motion estimation is the task of inferring the parameters θ such that
vθ fits D “well”, i.e. vi ≈ vθ(xi). This goodness-of-fit can be expressed using a
maximum-likelihood formulation:

θ̂ = arg max
θ

p(D | θ ) (6.5)

We assume the motion probes (xi, vi) ∈ D to be independent and drawn from a
distribution p(xi, vi|θ). A simple choice for this distribution would be to model
inaccuracies of motion estimation with isotropic Gaussian noise [TZ00] such that
p∗(xi, vi|θ) = N (vi; vθ(xi), σ2I). In practical flow fields, however, outliers occur.
These can be caused by failures of the motion estimation process or by foreground
objects moving into a different direction. Since we do not have prior information on
the motion of such objects, we assume a uniform distribution within a reasonable
range:

p′(xi, vi|θ) =

{
c ||vi||2 < 1√

πc

0 else

Assuming that in practice no outlier motion occurs outside this range ||vi||2 < 1√
πc

,
we simply write p′(xi, vi|θ) = c. If combining global motion p∗ and outlier process
p′, we obtain the following motion model:

p(xi, vi|θ) ∝ max
{
N (vi; vθ(xi), σ2I), c

}
. (6.6)
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This implies that if a motion vector vi deviates too far from its expected back-
ground motion vθ(xi), it is considered an outlier. By inserting this term into the
overall likelihood p(D|θ), we obtain the following optimality criterion:

θ̂ = arg maxθ p(D|θ) = arg max
θ

n∏
i=1

p(xi, vi|θ)

= arg max
θ

n∑
i=1

log p(xi, vi|θ)

= arg max
θ

n∑
i=1

max
(

log
1

2πσ2
− 1

2σ2
(vi − vθ(xi))2, log c

)

= arg max
θ

n∑
i=1

max
(

1− (vi − vθ(xi))2

ε2
, 0
)
.

with ε2 := 2σ2 log 1
2πσ2c . Correspondingly, maximizing the likelihood p(D|θ) is

equivalent to maximizing the quality function:

Q1(θ) =
n∑
i=1

max
(

1− (vi − vθ(xi))2

ε2
, 0
)

︸ ︷︷ ︸
s(xi,vi;θ)∈[0,1]

. (6.7)

This optimality criterion has been used for global motion estimation before (for
an example, see [Smo01, Ch. 4]). It is an M-estimator [Hub74], i.e. it consists
of local truncated quality contributions that can be interpreted as negative log-
likelihoods of the data points. These contributions are denoted with s(xi, vi; θ),
and are referred to as the support of a local flow probe (xi, vi) for a global motion
θ. s(xi, vi; θ) is zero exactly if vi deviates further than ε from the model motion
vθ(xi) (in this case, we call the probe an outlier). The parameter ε determines
the allowed deviation of a motion sample from the global motion vθ and is set
manually in practice.

Optimization using RAST To optimize the (highly non-convex) target func-
tion Q1, a full search of parameter space is conducted which — in contrast to local
search techniques — is guaranteed to find the global optimum. The approach is
called RAST (Recognition by Adaptive Search of Transformation space)7. We first

7an open source implementation by Christoph Lampert was used:

http://christoph.lampert.googlepages.com/work/software

146



CHAPTER 6. IMPROVING CONCEPT DETECTION USING MOTION
SEGMENTATION

Algorithm 2 The RAST algorithm for global motion estimation.
given: the parameter space Θ and a motion field D

insert Θ into the priority queue q (which is sorted by U1)
repeat

extract the first element Θ from q

split Θ into substates Θ0 and Θ1

compute U1(Θ0) and U1(Θ1) using interval arithmetic
insert Θ0, Θ1 into q

until Θ is small enough
return Θ

define a parameter range Θ to be searched (which is chosen to include all global
motions expected). A hyperrectangle is chosen, i.e. Θ = [θ0

1, θ
1
1] × ... × [θ0

d, θ
1
d].

The strategy of RAST is to find the global maximum θ̂ = maxθ∈ΘQ1(θ) using
a branch-and-bound search over parameter space. Subregions are searched recur-
sively until we converge in a sufficiently small result region. To choose subregions
for the algorithm to focus on, an upper bound U1 for the maximum value of Q1

within a subregion Θ ⊆ Θ is computed.

U1(Θ) ≥ max{Q1(θ) | θ ∈ Θ}. (6.8)

The higher this bound, the more promising a subregion is considered to be. Based
on this assumption, the algorithm works as described in the following (a pseu-
docode listing is given in Algorithm 2): starting with the whole parameter space
Θ, we iteratively identify the region Θ ⊆ Θ with maximum upper bound U1(Θ).
This region is investigated in more detail: a threshold t and a dimension d∗ are
picked, and Θ is split into two parts Θ0 = {θ ∈ Θ | θd∗ < t} and Θ1 = Θ \Θ0. For
either of these parts, the upper bound U1 is computed, and the whole process of
selecting a promising subregion and splitting is repeated.

The upper bound U1 is computed using interval arithmetic [Bre03b]: given in-
put values x ∈ [a, b] and y ∈ [c, d] and an arithmetic operation ◦ ∈ {+,−, ·, /},
interval arithmetic returns the minimal interval known to contain x ◦ y. This in-
terval is denoted with [a, b] ◦ [c, d]. As the quality function Q1 to be optimized is
computed using basic arithmetic operations on values known to come from a pa-
rameter range Θ, interval arithmetic can provide an interval containing all possible
values of Q1 within Θ. This interval is denoted with [Q0

1(Θ), Q1
1(Θ)], and it holds

that:
Q1(θ) ∈ [Q0

1(Θ), Q1
1(Θ)] ∀ θ ∈ Θ.
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Correspondingly, we set U1 := Q1
1(Θ). One important aspect of U1 is that it

converges to the quality Q1 if the region of interest converges to a single point.
Under this condition, it can be shown that the RAST algorithm converges to
the global optimum: let us assume that RAST converges to a solution θ̂, i.e. it
produces a sequence of increasingly smaller regions Θn|∞n=K such that Θn+1 ⊂ Θn,
θ̂ ∈ Θn ∀n, and limn→∞Θn = θ̂. As the upper bound U1 converges to the quality
Q1, it holds that:

Q1(θ̂) = lim
n→∞

U1(Θn).

At the same time, the regions Θn (which are iteratively picked as the first elements
from q) are associated with a higher upper bound than all other regions:

Q1(θ̂) = lim
n→∞

U1(Θn) = max
θ∈Θ

Q1(θ),

i.e. RAST converges to the globally optimal solution. In practice, search is aborted
using a stopping criterion, for example if the size of the parameter region of interest
falls below a certain limit.

6.4.2 Approach 2: Adding Spatial Coherence

The optimality criterion Q1 introduced in Equation (6.7) was derived from the
data likelihood, where all motion samples in the field D were assumed to be in-
dependent. In real-world scenes, however, regions of coherent motion (like the
scene background and foreground objects) tend to be spatially correlated. While
this fact has been ignored in the last section, in the following an extension of the
criterion Q1 is presented such that the spatial coherence of target regions is taken
into account. To do so, we first introduce a notation for the fact that a sample
belongs to the background. This is done using labels L1

θ, ..., L
n
θ ∈ {0, 1} such that

Liθ = 1 exactly if the motion sample (xi, vi) belongs to the background region
(which again is exactly the case if s(xi, vi; θ) > 0). Otherwise, Liθ = 0, and we
consider the sample to be an outlier. Note that these labels depend on the global
motion: for some choices of θ a sample may belong to the background, while for
others not.

According to the assumption of spatial coherence, sites in the motion field
that are close to each other should with a high probability belong to the same
region (i.e., have the same label). To express this fact, we define a neighborhood
structure over the motion field sites x1, ..., xn. Sites are assumed to be arranged
on a regular grid, such that cliques can be defined as all pairs of sites (xi, xj) that
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are 4-connected. Letting C denote the set of all such cliques, the quality function
Q1 from the last section is extended with a spatial coherence term:

Q2(θ) = Q1(θ) + γ ·
∑

(xi,xj)∈C

Liθ L
j
θ. (6.9)

Q1 is the quality criterion from Equation (6.7). The parameter γ determines the
weight of spatial coherence relative to the goodness-of-fit term Q1. This extension
has two major effects: first, it penalizes large foreground regions (its maximum
is reached when the whole screen belongs to the background). Second, it favors
solutions leading to smooth (and thus short) object boundaries. Similar terms have
previously been used in other motion segmentation formulations (e.g., [Wei97]).

Optimization using RAST To optimize Q2, an extension of the original RAST
algorithm is presented that takes the spatial coherence term from Equation (6.9)
into account. The basic idea, namely to perform a branch-and-bound search of
parameter space, remains the same, and so does the structure of the algorithm
(Table 2). The only difference is that a new bound U2 is defined such that U2(Θ) ≥
Q2(θ) ∀ θ ∈ Θ. This bound is set to:

U2(Θ) = U1(Θ) + γ · U ′(Θ),

where U ′(Θ) denotes the upper bound for the spatial coherence term. U ′ is com-
puted in two steps: first, for each motion sample we compute an upper bound S
for its support s(xi, vi; .):

S(xi, vi; Θ) ≥ max
θ∈Θ

s(xi, vi; θ),

By this, we determine for each motion sample (xi, vi) if the sample could potentially
fit a motion θ ∈ Θ. To compute S, we again use interval arithmetic. Then, from
S an upper bound for the label Liθ of the corresponding motion sample is derived:

LiΘ =
{

1 S(xi, vi; θ) > 0
0 else.

Given these upper bounds, we obtain:

U2(Θ) = U1(Θ) + γ ·
∑

(xi,xj)∈C

LiΘL
j
Θ︸ ︷︷ ︸

U ′(Θ)
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Note that the computation of U2 comes with negligible extra effort compared to U1,
as the upper bounds S(x1, v1; Θ), ...,S(xn, vn; Θ) (and with them L1

Θ′ , ...,LnΘ′) are
implicitly computed as parts of U1 (which is simply the sum of the single-sample
bounds: U1(Θ) = S(x1, v1; Θ) + ..+ S(xn, vn; Θ)).

6.4.3 Experiments

In the following, the proposed approach is evaluated on synthetic motion fields
(where a ground truth background motion is known) and on MPEG-4 motion
vector fields derived from real-world video sequences. It is illustrated that RAST
optimization gives superior results compared to several local search methods in
terms of motion segmentation quality, support region size, and quality of motion
estimates.

General Setup All input motion fields — synthetic or extracted from video —
are defined at 16× 16 macroblock positions. For video streams, motion fields are
obtained using the MPEG-4 video codec XViD8 [Tou02]. The RAST approach
is compared with a variety of local search techniques. For all methods, the same
outlier threshold of ε = 2.3 (Equation (6.7)) was used, which was validated to be
an appropriate choice in previous test:

1. Least Squares: As a baseline method, least squares parameter estima-
tion [FP02, Section 3.1] is used, which is equivalent to assuming a Gaussian
motion density instead of a truncated Gaussian one (Equation (6.6)). Out-
liers are not taken into account.

2. Robust Least Squares: Robust least squares methods alternately compute
least squares estimates and discard motion samples from D that deviate fur-
ther from the solution than an outlier threshold t. Starting with a high
threshold t0 = 100, the method iteratively (a) computes a new motion esti-
mate based on all inliers, (b) refines the set of inliers using the threshold tk,
and (c) sets tk+1 = 0.95 · tk. This process is repeated until tk reaches the
final outlier threshold ε.

3. XViD: This is the global motion estimation component of the XViD codec.
The implementation is comparable to robust least squares but uses a “greed-
ier” outlier rejection strategy.

8www.xvid.org
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Figure 6.1: (a) A synthetic motion field with three foreground blobs, each moving in a

different direction. (b,c) Segmentation and motion estimation error, plotted against the

size of the foreground blobs. In both cases, the RAST approach gives consistently lower

error compared to local search methods (n = 750).

4. RANSAC: Random Sample Consensus (RANSAC) [FB81] is a popular fit-
ting procedure with excellent robustness to outliers and noise. The method
has also frequently been used for global motion estimation [FdW05, Sib08].
RANSAC is a stochastic algorithm: the solution is obtained by iteratively
sampling a random subset Dk ⊂ D consisting of k samples (here, k = 2),
estimating a least squares solution θ on this subset (assuming that Dk con-
tains no outliers), and evaluating the quality of θ on the whole motion field
D. This process is repeated K times, and the best estimate is returned (after
doing a least squares refinement on the set of all inliers). The probability of
failure decreases with the number of iterations K, but never reaches zero —
in contrast to the proposed method, optimality is not guaranteed.

5. RAST: The proposed approach was tested with γ = 1, which was vali-
dated to be a appropriate choice in previous tests. The transformation space
searched by RAST is set to σ ∈ [0.9, 1.1], α ∈ [−0.1, 0.1], and (cx, cy) ∈
[−40, 40]2, such that it contains all reasonable motion between subsequent
video frames . An accuracy of 0.1 pixels for the translation and 0.0002 for
rotation and scale was found sufficient, and the convergence conditions of
RAST are set accordingly. Finally, a least squares refinement on all inliers
is done.

151



6.4. GLOBAL MOTION ESTIMATION BY ADAPTIVE SEARCH OF
TRANSFORMATION SPACE

Synthetic Flow Fields In a first experiment, real-world phenomena like noise
and spatial coherence are simulated on synthetic motion fields. As the example
in Figure 6.1(a) illustrates, these motion fields show three blob regions moving
in front of a dynamic background. The background motion is randomly drawn
from [−0.05, 0.05]× [0.95, 1.05]× [−10, 10]2. Also, three blobs are initialized with a
random motion from {0}×{1}× [−16, 16]2. These three blobs are of the same size.
Together, they occupy a certain fraction of the motion field f ∈ {0.4, 0.6, 0.7} (the
higher f , the more difficult global motion estimation becomes). Further, isotropic
Gaussian noise with standard deviation σ ∈ {1.0, 1.3, 1.6, 2.0, 2.3} was added to
each motion vector. This way, 5 motion field sequences of 10 frames each were
generated for all combinations of noise levels σ and screen fractions f , obtaining
a total of 750 motion fields.

All methods are tested except XViD (which will be applied to real-world videos
later) and least squares (which performed much worse than all other approaches).
Results are given in Figure 6.1. In Figure 6.1(b), the average segmentation error
is plotted against the fraction f occupied by the foreground. First, note that
some intrinsic segmentation error results from outliers due to noise. The rate
of such outliers — and thus the segmentation error — constantly drops with f .
When comparing the different methods, the proposed approach gives the lowest
segmentation error by a margin of 2−4%. This improvement is significant (paired
t-test, level 99%). In Figure 6.1(c), the average error of the estimated motion
(more precisely, the x-translation parameter) is plotted against f . Again, the
proposed RAST approach shows a significantly better performance than other
methods (paired t-test, level 99%), with a mean squared error of about 0.1 pixels.
Finally, it can be observed that Q1 and Q2 give a similar performance for RAST.
For RANSAC, the combination with spatial coherence leads to slightly better
motion estimates.

Video Sequences — Motion Estimation The proposed approach was also
evaluated on MPEG-4 motion vector fields derived from test video sequences.
Thereby, the quality of a motion estimate is measured in terms of the support
Q1. All methods were run on two test sequences (for RANSAC, 20 iterations were
used). The first one called “Mobile & Calendar”9 shows a textured background be-
hind three foreground objects, each moving in a different direction (a subsampling
at 1 fps was done). The second sequence called “Snooker” was captured from a TV
sports broadcast, where a snooker player is tracked by a translating camera.

9http://www.m4if.org/resources.php
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Figure 6.2: (a-e): Frames from the test sequences “Mobile & Calendar” and “Snooker”

with results of global motion estimation. It can be seen that RAST (b) outperforms the

XViD global motion estimation (c). (f-g): motion support Q1, plotted against the frame

number. RAST gives an upper bound for all other methods, which tend to fail from time

to time. (h) timing results for all methods on the “Snooker” sequence.

Results are illustrated in Figure 6.2. For either sequence, a sample frame
with motion segmentation results is illustrated. Segmentation is visualized by
coloring motion probes (red probes correspond to the background region, white
ones to outliers). This is overlayed with a motion-compensated difference frame.
For the “Mobile & Calendar” sequence, the result of RAST (Figure 6.2(b)) is
compared with the XViD motion compensation (Figure 6.2(c)). It can be seen
that XViD classifies parts of the background (on the upper left) as foreground and
compensates them poorly. In contrast, RAST correctly identifies the background
region and leads to a good estimate.

Quantitative results for both sequences are provided in Figure 6.2, where the
quality Q1 is plotted against the frame number. For both sequences, it can be seen
that least squares and XViD give suboptimal results, and that robust least squares
and RANSAC perform comparable to RAST but fail occasionally. Overall, RAST
provides an upper bound for the performance of the other methods.
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(a)

segm. error (%)

method “Curt.” “Forem.”

RAST 7.5 24.2

RANSAC 7.7 25.0

Rob. Lst. Sq. 7.8 25.5

XViD 11.7 33.1

Least Squares 40.6 41.4

(b)

Figure 6.3: (a) A RAST segmentation result on the “Foreman” sequence (red blocks

correspond to misclassifications). (b) Segmentation error rates on the test sequences

“Curtain” and “Foreman”.

Figure 6.2 also provides the execution time of different methods on the“Snooker”
sequence, indicating that local search procedures are significantly faster than RAST
(by a factor of more than 8). Note, however, that RAST optimization could easily
be parallelized (multiple threads can investigate different subregions of parameter
space independently). We can also see that, when comparing the processing time
of RAST with and without a spatial coherence term, that the spatial information
in Q2 leads to a speedup. Obviously, spatial coherence helps optimization to dis-
card bad motion hypotheses early which are scattered over the frame, such that
search is guided into promising regions of transformation space more quickly. This
insight might also be interesting in the geometric matching domain where RAST
was developed originally.

Video Sequences — Motion Segmentation Finally, the proposed approach
is evaluated with respect to motion-based segmentation. Tests are run on two
video sequences with known ground truth segmentations: first, the self-generated
“Curtain” sequence of 700 frames with two hands moving in front of a green cur-
tain (ground truth segmentations were extracted using a histogram-based skin
color model [JR02]). Second, a subsampled version of the well-known “Foreman”
sequence (80 frames) that comes with manually generated ground truth masks.

Numerical results in terms of segmentation error are also given in Figure 6.3
(the extension with spatial coherence was used). They confirm observations made
in previous tests: the proposed approach provides an optimal performance and
gives moderate improvements over other test methods. Segmentation errors occur
for frames where the object stands still or due to a complicated scene structure for
which the 4D similarity transform model (Equation (6.4)) is not adequate. The
most severe problem, however, are errors in the previous motion estimation step.
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6.4.4 Discussion

In this section, the estimation of a global parametric motion from an optical flow
field has been addressed. A novel approach based on the RAST algorithm has
been proposed, which performs a full, adaptive search of transformation space and
thus — in contrast to local search procedures — gives an optimal result.

It should be kept in mind that the proposed approach is limited in two ways:
first, it is restricted to low-dimensional motion parametrizations (for the experi-
ments in this section, a 4D similarity transform [Equation (6.4)] was used), and a
search of high-dimensional parameter spaces is cost-intensive. Second, while the
proposed approach was demonstrated to achieve a better accuracy, results also
show that local search techniques are significantly faster and thus remain an ap-
pealing alternative in real-world video processing scenarios.

Yet, RAST is the method of choice if a high accuracy of motion estimation is
desired and time constraints are weak. Also, the proposed approach can serve as
a generator of ground truth for evaluating other motion estimation methods, as it
provides the best motion estimate achievable for a given motion model and video
sequence.

Finally, as our segmentation results demonstrate, a general weakness of the
feature-based framework lies in the fact that errors in the motion estimation step
cannot be overcome in the motion interpretation step addressed here. Though
this problem can be addressed to some extent using robust features and matching
techniques [TZ00], it also motivates direct methods targeted at a joint motion es-
timation and segmentation. Such an approach will be investigated in the following
section.

6.5 Segmentation by Combining Motion Informa-

tion with Color Models

In this section, a second model for motion segmentation is presented that follows
a direct strategy [IA00], i.e. it couples motion estimation and scene segmentation
in a joint process directly operating on the pixel intensity. The benefit of this ap-
proach lies in a higher robustness to errors and uncertainty of motion estimation.
In contrast to the last section, the focus is not on optimization (for which we will
refer to graph cut [BK04] as a standard technique). Instead, a combination of
motion segmentation with color information is proposed. Both motion and color
can be useful clues for scene segmentation, but remain fairly limited if employed
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input color only motion only color+motion

(a) (b) (c) (d)

Figure 6.4: An illustration of combining color and motion segmentation. While color (b)

and motion (c) information alone lead to incorrect segmentations, a simple combination

of both as described in this section (d) segments the object from the background correctly

(picture from YouTube).

individually. On the one hand, color can help to group images into regions of
coherent appearance [SM00], but the resulting segments cannot be assumed to
correspond to meaningful objects in general [MFTM01]. On the other hand, mo-
tion information provides that regions can often be associated with objects, but —
as previously outlined — inaccuracies occur due to illumination changes, specular
highlights, motion discontinuities, transparency, etc. Correspondingly, a segmen-
tation based on motion alone remains a challenging problem as well. The fact
that motion and color clues individually do not provide reliable segmentations is
illustrated in Figure 6.4, where sample results for a video scene showing a moving
giraffe are illustrated. A color-based approach partitions the scene into a dark and
bright area but does not give a segmentation of the object. Motion segments only
the head but misses the neck.

This raises the question whether segmentation can be improved by combining
both sources of information. In this section, a simple and efficient extension of
motion segmentation with color models is presented that partitions video frames
into regions of coherent motion and color (in Figure 6.4(d), this approach is il-
lustrated to give a good segmentation of the object). The method decomposes a
dynamic scene into a foreground and background layer. For each layer, statisti-
cal models are used to describe the motion and color within. Motion is modeled
with the approach by Schoenemann and Cremers [SC06]. For color, several choices
like histograms and Gaussian mixtures are tested. Cost terms are formulated for
assigning each pixel to the foreground or background, and for assigning neighbor
pixels to different layers. Both kinds of terms serve as edge weights in a cost graph,
and a segmentation is obtained using a graph cut algorithm.
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6.5.1 Related Work

The idea of integrating multiple clues for object segmentation in video has been
followed before by a variety of methods. These are usually subsumed under the
term spatio-temporal segmentation, as they make use of both spatial information
drawn from the frame of interest and temporal information in form of differences
to previous and subsequent frames.

Frequently, spatio-temporal methods use heuristic approaches to integrate mo-
tion with other clues, such that texture, intensity, or color are used in additional
preprocessing or postprocessing steps. One very simple approach is to adapt mo-
tion boundaries to image edges after motion segmentation. For example, Mech
and Wollborn [MW98] apply a change detection to motion-compensated frames
and then align motion boundaries with image edges detected with a Sobel op-
erator. Piroddi et al. [PV02] obtain separate segmentations from color, motion,
and texture, and fuse them using morphology and heuristic rules. Altunbasak et
al. [AET98] also follow the idea that motion boundaries usually coincide with im-
age edges. Therefore, previous to motion analysis a segmentation based on color
is performed. The resulting oversegmented regions are then tracked and finally
grouped according to their individual parametric motion. This approach offers
benefits in terms of processing speed, as motion segmentation is performed on the
level of coarse regions. Also, motion boundaries coincide inherently with intensity
boundaries in the image. A similar idea is followed by Choi et al. [CLK97], who
estimate a few initial regions of coherent motion and color as reliable initial mark-
ers. Then, a grouping is applied in which spatial regions obtained by a watershed
segmentation are assigned to these markers.

Other approaches closer to the one presented in this section are targeted at
a joint application of motion and texture. Typically, segmentation is cast as an
energy minimization problem, whereas cost terms are defined for assigning pixels
to each scene layer. In this framework, color and intensity clues can be integrated
by defining cost terms not only based on motion but also on spatial information.
A variety of methods follow this approach: Black [Bla92] presents an early system
based on Markov Random Fields. Cost terms include both intensity and motion,
and spatial coherence of segmentation is enforced by penalizing local constella-
tions of image boundaries. Kahn and Shah [KS01] present another system, where
combined cost terms are derived from the assumption of independent motion and
color clues. This idea is adopted, but smoothness terms are added for the motion
boundary. Also, while Kahn and Shah use pre-computed optical flow, the approach
proposed here couples motion estimation and segmentation in a joint process.
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More recently, graph cut algorithms [BK04] have become a popular approach
for segmentation. Thereby, energy functions are optimized that combine data fit
terms with smoothness terms penalizing an assignment of neighbor pixels to dif-
ferent layers. Both kinds of terms serve as edge weights in a cost graph, such
that segmentation effectively becomes a two-way graph cut problem (for which an
optimal solution can be obtained in polynomial time [BK04]). Several approaches
have been presented based on this idea. Li et al. [LSS05] suggest a semi-automatic
method, where manual segmentations are provided for certain keyframes. These
segmentations are propagated over time using graph cut, obtaining segmentations
of other frames. Galun et al. [GAB05] present another system in which graph
cut segmentation is used in a multi-scale approach. Based on probabilistically
motivated similarity measures, image regions are grouped together if they fit a
common motion model. Initially, simple translational models are used, which are
later replaced with higher-dimensional, more complex alternatives (affine flow and
epipolar geometry). This allows the grouping of increasingly heterogeneous and
larger motion segments. Again, intensity is used as part of a region-level simi-
larity measure. Another approach by Wang et al. [WXZG07] uses initial motion
estimates from edge and corner pixels to obtain reliable motion parameters. The
remaining pixels are then labeled using a graph cut approach, in which color dif-
ferences are integrated together with a spatial coherence term.

Though the approach presented in this section strongly resembles such graph-
based methods, there are two differences. First, a joint parameter estimation and
segmentation is performed, while the aforementioned methods estimate motion in
a preprocessing step [WXZG07], adapt motion and color parameters from previous
frames [Bla92], or neglect motion altogether [LSS05]. Second, experimental results
in previous work do usually not provide a comparison with motion-only baselines.
In contrast to this, the approach presented in this section will be evaluated on
different kinds of video data, and improvements will be validated compared to
using motion clues only.

Finally, another category of approaches called sprite-based methods [JF01,
KTZ05a, KTZ08] follows a different way of combining motion and appearance.
A model of the video scene is maintained consisting of image fragments (or sprites,
respectively). A generative process for video frames is defined by transforming and
morphing these sprites and overlaying them in the image plane. Sprites, motion,
and the order of layers in the video are learned in a joint optimization process,
where each component is alternately optimized while fixing the others. This ap-
proach offers an elegant handling of motion blur and occlusion [KTZ08]. Compared
to such methods, the work proposed in this chapter can be viewed as a light-weight
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approach, where pixel-exact models of scene layers are replaced with much simpler
global color models. As pointed out by Jojic et al., such light-weight methods are
less prone to problems caused by local minima [JWZ06] and are significantly faster.
While the estimation of a sprite-based approach has been reported to require sev-
eral minutes per frame [KTZ08], the proposed method runs in near-realtime. In
fact, it has already been proposed to combine both kinds of models such that a
selection between complex pixel-accurate sprite models and simple motion models
is made automatically during optimization [JWZ06].

6.5.2 Approach

We follow the notation introduced in Section 6.2, denoting pixel intensity with
I(x, t) and RGB values with IR(x, t),IG(x, t),IB(x, t) defined over positions x

in frames t. Motion is derived from the spatio-temporal derivatives ∇I(x, t) =
( ∂I(x, t)/∂x1, ∂I(x, t)/∂x2 ) and It(x, t). These measurements are combined in a
joint vector of image data I(x, t) = (∇I(x, t), It(x, t), IR(x, t), IG(x, t), IB(x, t)).
As only the gray level parts of this vector are used for motion estimation, we
divide I(x, t) into a motion part Iv(x, t) = (∇I(x, t), It(x, t)) and a color part
Ic(x, t) = (IR(x, t), IG(x, t), IB(x, t)).

Let us first focus on the segmentation of a single frame t. In this case, we
can simplify notation by dropping the time component t and abbreviating I(x, t)
with I(x), It(x, t) with It(x), etc. The goal of segmentation is to estimate a bi-
level mask m such that m(x) = 1 exactly if the pixel x in frame t belongs to the
foreground (and m(x) = 0 otherwise). Also, a parameter vector θ is inferred that
describes the motion and appearance in the foreground and the background.

We formulate segmentation as an energy minimization problem [BF93, SC06]:

m̂, θ̂ = arg minm,θ E1(m, θ; I)

= arg minm,θ α ·
∑
x

− log p(Ic(x) |m, θc)︸ ︷︷ ︸
color cost

+ (1− α)
∑
x

− log p(Iv(x) |m, θv)︸ ︷︷ ︸
motion cost

(6.10)

+
∑

(x,y)∈C,m(x) 6=m(y)

β

︸ ︷︷ ︸
smoothness cost

,

159



6.5. SEGMENTATION BY COMBINING MOTION INFORMATION WITH
COLOR MODELS

where C is the set of all mutually 4-connected pairs of neighbor pixels. E1 consists
of three terms: the first two “data fit” terms regulate the fit of pixels to scene fore-
ground and background. For every pixel, a color likelihood p(Ic(x) |m, θc) and a
motion likelihood p(Iv(x) |m, θv) are formulated, each with distinctive motion and
color parameters, θc and θv. The weight α ∈ [0, 1] balances the influence of color
and motion information. The last term enforces the boundary between regions
to be smooth, with β > 0 weighting the importance of the prior relative to the
previously defined likelihood terms. Particularly, our focus is on the additional
color term, which will be evaluated experimentally later. Note that if α = 0, this
color information is neglected and the model boils down to a purely motion-based
approach [SC06], which will serve as a baseline in later experiments. In the follow-
ing, the motion and color cost terms are addressed in more detail, i.e. statistical
models for the likelihoods p(Iv(x)|m, θv) and p(Ic(x)|m, θc) are discussed.

Motion Information The model for the motion likelihood p(Iv(x)|m, θv) is
adopted from an approach by Schoenemann and Cremers [SC06]. It is based on
the assumption of separate parametric motions within foreground and background
regions. Like in [SC06], affine motion models (Equation (6.2)) and constant flow
(vθ(x) = (c1, c2)) will be tested.

Two motions are defined, one for the background layer and one for the fore-
ground. The associated parameters are denoted with θbv and θfv . For each pixel
position x, the model predicts the associated motion vectors assuming that the
pixel belongs to the foreground, vf (x), and to the background, vb(x). The quality
of these motion predictions is measured using optical flow error:

ef (x) = ∇I(x) · vf (x) + It(x),

eb(x) = ∇I(x) · vb(x) + It(x).

If vf (x)/vb(x) is an accurate motion prediction, the associated flow error is zero
according to the optical flow equation (6.1). In practice, however, inaccuracies
occur due to phenomena such as camera noise, illumination changes, and specular
highlights. Therefore, error is assumed to be normally distributed with mean 0 and
variances σb · ||∇I(x)||2 and σf · ||∇I(x)||2. This leads to the following likelihoods
for foreground and background:

pf (Iv(x) | θfv ) = N (ef (x) ; 0, σ2
f ||∇I(x)||2)

pb(Iv(x) | θbv) = N (eb(x) ; 0, σ2
b ||∇I(x)||2),
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input segmentation Normal GMM Histogram

(a) (b) (c) (d) (e)

Figure 6.5: Given input images (a) and segmentations (b), color models for foreground

and background are trained and used to estimate pixel score maps (c,d,e). Bright regions

have a high probability of belonging to the foreground according to the color model. It

can be seen that Normal densities (c) perform poorly, while Gaussian mixtures (d) and

color histograms (e) discriminate foreground and background better.

and the overall motion model with motion parameters θv = (θbv, σ
2
b , θ

f
v , σ

2
f ) be-

comes:

p(Iv(x) |m, θv) = m(x) · pf (Iv(x) | θfv ) + (1−m(x)) · pb(Iv(x) | θbv). (6.11)

Color Information Similar as for motion, color in the foreground and back-
ground is modeled using parametric distributions, now over color features Ic(x).
To model these distributions pf (Ic(x)|θfc ) and pb(Ic(x)|θbc), different choices are
possible. One option are normal densities (where the parameters θb/fc become mean
values and variances in RGB color space). Others are Gaussian mixture models
(GMMs) or color histograms (where θf/gc are associated with histogram bins). Sev-
eral choices are illustrated in Figure 6.5. Given a segmented input image, different
color models for foreground and background are trained, and a posterior for each
pixel to belong to the foreground is inferred:

P (m(x) = 1 | Ic(x)) =
pf (Ic(x) | θfc )

pf (Ic(x) | θfc ) + pb(Ic(x) | θbc)

This score is plotted for different color models, namely normal densities with diag-
onal covariance, Gaussian Mixture models (GMMs), and color histograms. Bright
values correspond to high probabilities of foreground, illustrating how well a color
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Algorithm 3 Dynamic scene segmentation
initialize m (for example with the segmentation result from the previous
frame).
repeat

estimate θfc and θbc (for example, by computing color histograms).
estimate θfv and θbv [SC06, Section 4.3].
re-estimate m by fixing θ, constructing a cost graph, and applying graph cut
optimization.

until m does not change
return m

model discriminates between foreground and background (a perfect scoring would
be the segmentation mask itself). It can be seen that normal densities give a
poor discrimination, while Gaussian mixtures and color histograms separate the
foreground more reliably. These observations will be confirmed in terms of seg-
mentation error later.

Optimization To estimate the segmentation mask m and parameters θ, the
energy E1 is minimized given image data I and weights α, β. Optimization is
carried out in an iterative scheme similar to the one in [SC06], where θ and m are
estimated alternately. For an outline and illustration, please refer to Algorithm 3
and Figure 6.6.

An efficient algorithm described by Boykov and Kolmogorov [BK04] is used
for solving the graph cut problem. Also, the motion model can be estimated
efficiently from statistics of flow error. At a resolution of 160 × 120 pixels, an
untuned prototype runs at 3 fps on a 2.4 GHz machine.

Extensions: Shape and Contrast The model from Equation (6.10) can be
extended using two observations. The first one is that motion boundaries tend to
coincide with image edges, which motivates the use of a contrast term similar to
the one by Kumar et al. [KTZ05a]:

E2(m, θ; I) = E1(m, θ; I)− β · η
X

(x,y)∈C,m(x)6=m(y)

»
1− exp(−

(I(x)− I(y))2

2σ2
)

–
(6.12)

i.e., the smoothness cost from Equation (6.10) is reduced by a factor η ∈ [0, 1]
depending on the gray value pixel difference (like Kumar et al. [KTZ05a], we
estimate σ2 as two times the mean squared pixel difference).
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Figure 6.6: An illustration of video segmentation as an iterative optimization over color

and motion. Based on the current segmentation (top), color and motion models for

foreground and background are estimated (left and right). All pixels in the image are

then fitted to these models, obtaining color and motion cost. These are associated with

edges in a cost graph, and graph cut is used to infer a new segmentation. This process is

repeated until convergence.

The second observation is that objects move smoothly between successive
frames. Therefore, while the previous formulations E1 and E2 focused only on
a certain point in time, the problem is now extended to video sequences. A
sequence of frames I(., 1), ..., I(., T ) is assumed to be given, and segmentation
masks m(., 1), ...,m(., T ) are to be inferred. Correspondingly, different parame-
ters for different frames θ1, ..., θT are estimated. The previous formulation is ex-
tended such that the mask m(., t) in frame t is constrained to be similar to the one
from the previous time step, m(., t− 1), using an additional shape consistency
term [KS01, WXZG07]:

E3(m(., t), θt ; I(., t),m(., t− 1) ) = E2(m(., t), θt; I(., t)) +
X

x:m(x,t)6=m(x,t−1)

γ (6.13)

where the parameter γ regulates the influence of shape consistency. It should be
noted that this extension helps in cases where motion is not discriminative. For
example, if the object stands still for a moment, the proposed approach relies
on color and shape consistency clues and can still give a correct segmentation.
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Finally, it should also be kept in mind that the extensions in E2 (contrast) and
E3 (shape consistency) do not change the structure of the optimization problem.
The additional terms simply turn into modifications of edge costs in the graph.

6.5.3 Experiments

The proposed approach is evaluated in the following experiments, where the influ-
ence of color information compared to motion-only segmentation is studied. It is a
common problem with segmentation that ground truth information is difficult to
obtain at a large scale — in fact, many publications only provide limited results
on a few test sequences. To give a more thorough evaluation, two experiments are
presented in the following. Experiment 1 is conducted in a constrained setup with a
static camera, for which background subtraction techniques can give segmentations
of sufficient accuracy to serve as ground truth. After this, a smaller-scale experi-
ment for dynamic scenes using manually generated ground truth is presented.

Static Scenes In case of a static background and fixed camera, an almost
perfect segmentation can be achieved using robust background subtraction tech-
niques [SZTS06]. This provides a simple way for generating ground truth auto-
matically at a larger scale compared to a tedious manual segmentation. A dataset
of 24 video clips of ca. 3 seconds length was used, in which several objects were
presented to a camera in front of varying static backgrounds. 507 frames were
sampled (frames without foreground objects in them were ignored). Ground truth
segmentations were obtained automatically using a self-implemented background
subtraction (as this serves only as a source of ground truth, a closer description is
omitted here). The resulting segmentations were briefly checked to be correct. A
sample result in Figure 6.7(b) indicates that an accurate segmentation is achieved.
It should be kept in mind, however, that this approach is restricted to static scenes
and is therefore significantly limited compared to the more general setup of motion
segmentation studied in this chapter.

Previous to motion segmentation, frames were scaled to a resolution of 160×120
pixels. An affine motion model was used with parameters β = 6, γ = 2.5, and η =
0.5 (this setup was obtained by a grid search optimization of segmentation error).
As the goal of the experiment is to evaluate the influence of color information on
the system, the color weight α was varied. If α = 0, the system uses only motion
information. With α, the influence of color on the segmentation increases.

A sample result is illustrated in Figure 6.7. In this scene, motion alone is not
sufficient to segment the object from the background (possible explanations are
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(a) (b) (c) (d)

Figure 6.7: Illustration of the “static scenes” experiment: (a) an input image. (b)

Ground truth obtained using a background subtraction approach. (c) Segmentation

result using motion only. (d) Segmentation result when combining color and motion

information.

sudden illumination changes and a motion pattern that does not properly fit the
parametrization). If combined with color information, however, the object can be
segmented almost perfectly.

Quantitative results are given in Figure 6.8(a), where the segmentation error
is plotted against the color weight α. Four color models were tested: a Gaussian
mixture model (12 components, fitted using Expectation Maximization [DLR77]),
a color histogram model (103 bins), and as baselines Normal densities with full
and diagonal covariance matrices. It can be seen that by choosing a moderate
color influence (α ≈ 0.05), segmentation error can be improved from 10% to 8%
compared to a purely motion-based segmentation. According to a t-test (level 99%)
this improvement is significant. When comparing different color models, we see
that a model of a certain complexity is advantageous - while both normal densities
fail, the mixture model and the histogram lead to comparable improvements.

Dynamic Scenes A second experiment is conducted for dynamic scenes in which
the background is allowed to move. As in these cases no automatic generation of
ground truth is possible, 30 pairs of frames were segmented manually. The data
was sampled from videos downloaded from the video portal revver.com and shows
cars, faces, and animals in motion.

In this experiment, larger images were used (240×180 pixels) and also smoothed
with a Gaussian filter previously to segmentation. We tested the system with a
constant motion model and a histogram color model. Compared to the static
case, results show higher error rates (which can be explained by the fact that the
segmentation problem is more difficult for dynamic scenes), but also a reduction
from 13.5% (α = 0) to 12.7% (α = 0.3) by using color information. Some sample
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Figure 6.8: (a) Quantitative segmentation results for static scenes. Segmentation error

is plotted against the color weight α (n = 507). For GMMs and color histogram models,

segmentation error can be reduced from 10% to 8%. (b) Sample results for dynamic

scenes. Top row: input. Center: results. Bottom row: ground truth (manually acquired).

Pictures from revver.com.

segmentations are illustrated in Figure 6.8(b). Overall, this demonstrates that the
proposed way of integrating color clues improves segmentation in both static and
dynamic scenes.

6.6 An Object Recognition Framework using

Motion Segmentation

In Sections 6.4 and 6.5, the challenge of segmenting video scenes into layers of
coherent motion has been addressed, and it has been demonstrated that segmen-
tations of physical objects from the scene background can be obtained. The work
presented in the following is targeted at using this information for an improved
recognition of objects. Thereby, a patch-based approach is followed for recognition,
which is a popular approach and has been pointed out to achieve high robustness
with respect to pose variation, illumination changes, clutter, and intra-class vari-
ation [Low04, PCI+07, PHSZ07, Rot08] (for a discussion, please refer to Section
6.3.2).

In the following, a simple combination of a patch-based object recognition with
motion segmentation will be presented. Motion segmentation is used as a filter
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such that only patches from the object region are used for recognition. The key
question studied in this section is whether adding such segmentation information
improves the robustness of a state-of-the-art object recognition. At a first glance,
this might not seem very surprising. However, there is also evidence supporting
the assumption that motion segmentation does not necessarily lead to an improved
recognition of objects:

• Motion-based segmentation is inaccurate and error-prone, as dealing with
phenomena such as illumination changes, specularity, absence of texture,
and motion discontinuities is difficult. In cases of failure, such a segmentation
must be considered harmful and not beneficial for recognition.

• Object recognition by itself can achieve a certain robustness. Particularly for
patch-based recognition methods, it has been demonstrated that objects can
successfully be discovered in cluttered scenes [FTG06, Low04, SZ06]. This
is achieved by a robust matching of local features, during which unreliable
correspondences are discarded based on their appearance. To some extent,
this achieves a filtering of clutter similar to a segmentation.

• Finally, there may be situations in which scene background can be helpful,
particularly if it is correlated with objects of interest. For example, instances
of the category “airplane” tend to appear in front of sky, such that the pres-
ence of sky in the image might be a discriminative clue for a detector.

Due to these reasons, it is not obvious a priori whether motion segmentation does
indeed help to improve recognition. Therefore, the proposed framework is eval-
uated in two experiments, one concerned with the recognition of specific objects
and one with the detection of object categories in video databases.

6.6.1 Approach

In this section, an approach for the recognition of moving objects in video is
presented that combines a patch-based recognition strategy with motion-based
segmentation. The approach describes video frames as a collection of local image
parts (or patches). Each patch p = (x, f) comes with a position in the image x
(here, the patch center) and a feature vector f describing its appearance. The
core of recognition is a matching between patches in the input image and in a
knowledge base of labeled object views. If a sufficient number of correspondences
for a certain object is found, this object is returned as a recognition result. This
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Figure 6.9: A recognition system using motion segmentation. In both training and test-

ing, features are extracted and filtered according to a motion-based scene segmentation.

A matching determines correspondences between training and test views (indicated by

patches of different color). The resulting matches are used to infer the presence of an

object (pictures from YouTube).

general approach can be considered a state-of-the-art technique, and variations
of it are implemented in research prototypes and commercial systems [JDS08a,
Low04, MPDB+06, PCI+07, SZ06].

The framework proposed in the following extends this by using motion seg-
mentation as a filter, such that only patches situated within the foreground region
are used. The whole approach is illustrated in Figure 6.9, and a detailed listing is
given in the following. The processing steps in training and testing are widely the
same: features are extracted, filtered by motion-based segmentation, and stored
in a database (in training) or matched with object patches (in recognition). The
single processing steps are outlined in the following in more detail.

Feature Extraction As already mentioned, a robust patch-based feature rep-
resentation is chosen. Regions of interest are detected in the image (which can
correspond to corners, blobs, or other characteristic features). The appearance of
these regions is described by local descriptors (for a discussion of methods, please
refer to Section 6.3.2). In the following, SURF features [BTvG06] will be used.

Segmentation For segmentation purposes, the fact is employed that objects
correspond to regions of coherent motion in video streams. The approach from
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Algorithm 4 Recognition using motion segmentation: training
given: video frames I1, ..., IT with object label l1, ..., lT .
initialize the database: D = ∅
for all training images It: do

feature extraction: extract patches pt1, ..., p
t
n

motion segmentation: segment It, obtaining a mask mt such that
mt(x) = 1 exactly if x belongs to the foreground.
filtering: filter out patches from the background: Dt = {(ptj , lt) |mt(xtj) =
1}
storage: store patches in the database: D = D ∪Dt

end for

Section 6.5 is used, which is based on a combination of motion and color infor-
mation with graph cut optimization. The method will be referred to as dynamic
scene segmentation in the following.

Note that the approach decomposes videos into at most two layers, which we
assume to correspond to a moving foreground object and the scene background.
It may not be clear a priori which of the segmented regions corresponds to the
object and which one to the background. When recognizing objects in a video,
this problem can be overcome by simply testing all segmented regions for object
presence. For system training, however, the problem is more difficult, as we must
simultaneously learn the object model and estimate object regions. In this chapter,
a simple heuristic will be used that works well for most practical situations: as ob-
jects usually appear in the center of the frame and are surrounded by background,
the region with most pixels on the image border is chosen to be the background.

Finally, it should be noted that — if segmentation is dropped, which corre-
sponds to setting m(x) = 1 ∀x — no features are filtered, and the approach boils
down to a plain image-based recognition [Low04, SZ06]. This will serve as a base-
line in later experiments.

Filtering From feature extraction, we obtain a set of patches D = {pt1, ..., ptn}
for each image It, with the center of patch pti at location xti. Further, segmentation
provides a mask mt. This information is combined in a filtering, obtaining a set
of patches from the foreground region (as shown in Figure 6.9):

Dt = {pti ∈ D |mt(xti) = 1}
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Algorithm 5 Recognition using motion segmentation: testing
given: a video sequence V = I1, ..., IT , a database of labeled patches D, and
object labels 1, ..., C
initialize the set of matches: M = ∅
for all test frames It: do

feature extraction: extract patches p′1, ..., p
′
m

motion segmentation: segment It, obtaining a mask mt with mt(x) = 1
exactly if x belongs to the foreground.
filtering: filter out patches from the background: Dt = {p′j |mt(x′j) = 1}
matching: find correspondences between Dt and the database D using
a feature similarity relation ’∼’: M = M ∪ {(p′i, pj , l) | f ′i ∼ fj , f

′
i ∈

Dt, (pj , l) ∈ D}
end for
refinement: refine matches M based on the spatial location of patches.
scoring: compute object scores P (c|V ) from M

Matching The key component of recognition is a matching of features in the
input image with features from a database of object views. Patches in the database
are denoted with (pi, li)ni=1, where li is an object label and pi = (xi, fi) a patch (for
matching, only the appearance fi will be of interest). Correspondingly, we assume
patches p′1, ..., p

′
m from a test frame to be given (which were optionally filtered using

motion-based segmentation). Finally, labels 1, ..., C associated with C objects are
assumed to appear in the database. Between training and test patches, a similarity
search is performed, obtaining a set of correspondences M = {pi ∼ p′j}. From these
correspondences, object scores P (c|V )Cc=1 are computed. We follow two general
strategies, a full patch search and a faster approximation based on a discretization
of patches to visual words (for more information, please refer to [JDS08b]):

Full Patch Search: For each patch in the test image p′i = (x′i, f
′
i), the nearest

neighbor nn(f ′i) = arg minj=1,...,n ||f ′i − fj ||2 in the object database is found, and
both are assumed to match (p′i ∼ pj) exactly if j = nn(f ′i) . This correspondence
induces a vote for the object associated with nn(f ′i). We aggregate votes from all
patches inside the test video V in a sum rule fusion. This can be interpreted as a
probabilistic object score:

P (c|V ) =
1
m

m∑
i=1

P (c|x′i) =
1
m

m∑
i=1

δ(c, lnn(f ′i)
).
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One problem is that patches in cluttered regions cast error-prone votes, which
again lead to incorrect object scores. To improve the robustness of recognition
with respect to clutter, Lowe [Low04] suggested to remove inconfident votes based
on the nearest neighbor ratio: besides the nearest neighbor nn(f ′i), we also find a
second neighbor as the closest patch from a different object category:

nn2(f ′i) = arg min
j=1,...,n:lj 6=lnn(f′

i
)

||f ′i − fj ||2,

and votes are accepted only if the ratio of the distances to these neighbors is smaller
than a threshold λ ∈]0, 1]:

P (c|V ) ∝
∑

i:
||f′
i
−f
nn(f′

i
)||2

||f′
i
−f
nn2(f′

i
)||2
≤λ

δ(c, lnn(f ′i)
), (6.14)

Obviously, if λ = 1, no filtering takes place, and the further λ is decreased the more
matches are rejected. This filtering offers a certain robustness to clutter: matches
with the background region are usually not distinctive for a certain object, i.e.
their nearest neighbor ratio is high. Correspondingly, clutter is filtered during the
matching process, which offers an alternative to motion segmentation. In later
experiments, this strategy will be evaluated.

Visual Words: Another problem with full patch search is that it requires a
nearest neighbor evaluation on patch basis, which can get time-consuming if the
number of objects to be learned (and with it the number of patches in the database)
is high. A faster recognition can be achieved by discretizing patches into a lower
number of clusters (or visual words) q1, ..., qK , which are estimated using K-means
(visual words have already been used in previous chapters, see Section 3.5). Each
patch is mapped to its closest visual word, which induces a quantizer of patch
descriptors f :

q(f) = arg min
k=1,...,K

||f − qk||2

It is counted how often each visual word appears in the video V = I1, ..., IT , and
this information is stored in a histogram h1(V ), ..., hK(V ) (the so-called bag-of-
visual-words feature):

hk(V ) ∝
m∑
i=1

δ (q(f ′i), k)

Similar histograms of feature counts are stored for all objects in the database:

hk(c) ∝
∑

(pi,li)∈D:li=c

δ (q(fi), k) . (6.15)
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Figure 6.10: Frames from the dataset used in Experiment 1. One video was captured

for each combination of these 12 books and 12 indoor locations. The dataset shows

significant clutter and changes of pose and illumination.

All histograms are normalized to sum one. Matching is simplified by assuming a
correspondence to occur exactly if two patches belong to the same visual word.
This way, matching with the full patch dataset is replaced by a matching with the
cluster centers, and voting is conducted on the basis of visual words. The patch
score turns out to be:

P (c|V ) ∝
K∑
k=1

hk(V ) · hk(c) (6.16)

Refinement Two ways of refining the correspondences obtained in feature match-
ing have already been outlined, the first one based on the nearest neighbor ratio
(Equation (6.14)), the second one (which is the key contribution of this chapter) on
a motion-based segmentation of the frame. Object recognition systems sometimes
add another refinement of correspondences based on patch position. Here, the
key idea is that object features come with a restricted spatial constellation, while
this does not hold for false positive matches. This makes it possible to employ
additional filters on the match set (an overview has been given in Section 6.3.2).

In the proposed framework, an approach suggested by Lowe [Low04] is followed:
given a set of correspondences with positions x1, ..., xn and x′1, ..., x

′
n, it is assumed

that the former can be mapped to the latter using an affine transformation. The
parameters of this transformation are estimated from the noisy match set using a
two-stage approach: a voting in Hough space is conducted to get candidate param-
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(a) (b) (c)

Figure 6.11: Results of motion segmentation. (a) Input Frames. (b) Background

subtraction results, which are close to perfect. (c) Results of dynamic scene segmentation

from Section 6.5, which does not employ the assumption of a static background.

eters, and a refinement with robust least squares leads to a final transformation.
Finally, matches are identified that fit the estimated affine transformation within
an error range of ε. All other matches are discarded.

6.6.2 Experiment 1: Object Recognition

In the following, the proposed framework of combining object recognition with mo-
tion segmentation will be evaluated in two experiments. The first one is concerned
with the recognition of objects presented to a camera. This setup is not only of
interest from a practitioner’s view (where objects of interest might be commercial
products like books or CDs10, items that a user works with [LBU+05], or even
users themselves [PPC01]). It also provides a controlled setup: first, as we can film
all objects in front of the same backgrounds, we can generate a scenario in which
clutter is widely uncorrelated from the object class. Second, if a static camera
is used, we can obtain a close-to-perfect segmentation using background subtrac-
tion techniques (which is not possible for general scenes). This allows us to study
how accurate object recognition could be if a perfect segmentation was available,
and what influence the quality of segmentation has (by comparing a near-perfect
segmentation with an error-prone one).

10http://delicious-monster.com/
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Dataset and Setup The dataset for this experiment was manually generated:
12 books were chosen and presented to a static camera11 at 12 indoor locations,
obtaining 144 video clips of about 3 seconds length each. Sample frames from the
dataset are illustrated in Figure 6.10. Strong changes of illumination and pose
can be observed as well as significant clutter. Yet, despite these difficulties, this
data represents a test case for which a state-of-the-art object recognition system
is expected to work well. Frames were scaled to a resolution of 320 × 240 pixels
and sampled at a framerate of 4 fps, obtaining 3− 4 views per object and location
(frames not showing the object were omitted). SURF features [BTvG06] were
extracted, obtaining about 600 patches on average per frame.

The system was tested using one-shot learning: one location is picked, and
the videos taken at this location are used as training samples. Then, objects are
recognized in the 132 clips taken at the other locations. For each video clip and
object, a score is computed (see Equations (6.14) and (6.15)), and the object with
the highest score is decided to appear in the clip. This experiment was repeated
with all 12 locations as training data, obtaining an overall of 1, 584 object decisions.
The error rate over these decisions is used as a performance measure.

Three setups of motion segmentation were tested: one not using segmentation
at all, one using a near-perfect background subtraction, and one using the dynamic
scene segmentation from Section 6.5 combining motion information with color
models. Its parameters (α = 0.05, β = 6, γ = 2.5, and η = 0.5) were estimated in a
grid search minimizing segmentation error on a part of the dataset, and an affine
motion model was used. Similar to Bouthemy [BF93], the segmentation result
from previous frames (if there was a foreground region) was used as a starting
point for segmentation. Images were scaled to a resolution of 160 × 120 pixels
for segmentation. Sample segmentations are given in Figure 6.11. It can be seen
that background subtraction gives close-to-perfect segmentations, while dynamic
scene segmentation — which does not impose the strong assumption of a static
background — tends to be inaccurate.

The recognition settings outlined in Section 6.6.1 were tested. First, a full patch
search was tested, using a kd-tree for approximate nearest neighbor [PPC01]. The
nearest neighbor ratio λ was varied such that λ ∈ {0.6, 0.7, 0.8, 0.9, 1.0}. Further,
the approach was tested with and without a spatial refinement. Here, a tolerance of
ε = 5 pixels for deviations between model features and test features was validated
to work best. Finally, full patch search was also compared with a faster approach
discretizing patches to visual words.

11Canon Powershot S80
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Figure 6.12: Sample recognition results using full patch search and different filtering

techniques (correct votes are highlighted in red). Filtering by the nearest neighbor ratio

(λ = 0.9, second column) reduces the influence of clutter to some extent. An addi-

tional spatial refinement (third column) can improve the accuracy of the match set, but

sometimes discards patch groups entirely. A filtering by motion segmentation (rightmost

column) gives the correct result in all cases.

Results We start with an illustration of sample results in Figure 6.12. Three
examples are shown, with patches colored according to the object they vote for.
Correct votes are highlighted in red. The top row shows a simple case, where
enough patches in the object region can be matched reliably, and an unfiltered
voting using full patch search (first column) already gives the correct object deci-
sion. A further filtering by the nearest neighbor ratio (λ = 0.9, second column),
by a refinement according to spatial constellation (third column), or by a motion-
based segmentation (fourth column) increases the confidence of this object decision
further. More difficult cases are illustrated in the second and third row. For both,
a plain matching without filtering gives an incorrect result, and even the nearest
neighbor ratio refinement does not lead to the correct object decision. A spatial
refinement helps in one case but discards all positive object votes in the other.
Only motion segmentation leads to the correct object decision in all cases.
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Figure 6.13: Quantitative Results of Experiment 1 (n = 1, 584). (a) Results of full

patch search. (b) A spatial refinement does not give any improvements over a filtering by

the nearest neighbor ratio and motion segmentation. (c) For visual words voting, motion

segmentation again provides strong performance improvements.

Quantitative results are given in Figure 6.13. First, in Figure 6.13(a), results
for full patch search without spatial refinement are given. The error rate is plot-
ted against the nearest neighbor ratio λ. It can be seen that recognition can be
improved significantly by filtering according to the nearest neighbor ratio — for
example, classification error is improved from 51.0% (λ = 1) to 8.1% (λ = 0.7) in
the unsegmented case, which roughly corresponds to recognition rates reported for
a commercial patch-based system [MPDB+06].

However, when comparing results without segmentation (red) with a near-
perfect segmentation (green) and dynamic scene segmentation (blue), we see that
both segmentations help to reduce error further. For a slightly higher λ = 0.8
(since segmentation pre-filters patches, a less greedy rejection by nearest neighbor
ratio turns out to be advantageous), the error rate for background subtraction
is 2.5%. Dynamic scene segmentation does not reach this result, but still gives
an improvement (4.4% error). Both improvements are significant according to a
paired t-test over different training locations (level 98%).

We compare these results with a refinement by spatial constellation, for which
parameters λ = 0.9 and ε = 5 were obtained by a grid search optimization of
recognition error. In Figure 6.13(b), it can be seen that this spatial refinement
does not lead to any further improvements of recognition rate. A reason for this
is indicated in Figure 6.12: while in some cases it helps to filter outliers, spatial
refinement also tends to discard correct matches in some frames.
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tiger zebra giraffe elephant background

Figure 6.14: Sample segmentation results in Experiment 2. Foreground objects are

segmented in many cases, though results are far from accurate. Typical sources of failure

are slow motion (bottom giraffe) or a segmentation of body parts only (bottom elephant).

Pictures from YouTube.

Finally, the visual words approach was evaluated, which achieves a more ef-
ficient matching by discretizing patches. In Figure 6.13(c), recognition error is
plotted against the number of visual words. It can again be observed that motion
segmentation leads to significant improvements: an error rate of 8.21% is reached
by background subtraction, 12.31% for dynamic scene segmentation, and 31.31%
without segmentation. Again, these improvements are significant (paired t-test,
level 99%). Also, it can be seen that system accuracy increases strongly when
using more clusters. The best result is achieved for a codebook size of 10, 000 (this
cannot be increased much further, as the overall number of training features is
about 13, 000).

6.6.3 Experiment 2: Concept Detection

Experiment 1 was conducted in a controlled setup in the sense that a static camera
was used and that scene background was not correlated with the object class. In
the following experiment, we will drop these assumptions and study the proposed
framework in a real-world concept detection scenario, i.e. the system is applied
to dynamic scenes, and background may be correlated with the object. As a test
domain, the detection of animals in video databases was chosen. Similar experi-
ments have previously been conducted by Ramanan et al. [RFB06], who presented
a part-based model learned from video and validated improvements over baselines
operating on plain images. Similar results will be described in the following for
the proposed framework with motion segmentation.
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Dataset Experiments were run for four animal categories (“tiger”, “zebra”, “gi-
raffe”, “elephant”). Content downloaded from YouTube was used as test material
for each category (and also for the background class). Videos were downloaded
using a few manually defined queries: for example, for the concept“giraffe”, queries
like “giraffe zoo”, “giraffe running”, and “giraffe serengeti” were used. From the re-
sulting video clips, small shots of 1− 2 seconds length were sampled. As our focus
is on the influence of motion segmentation, this dataset was manually filtered with
respect to a number of criteria:

• Only shots were accepted that show animals of sufficient size and visible to
a sufficient extent.

• The animal is moving (for example, shots showing a tiger lying in the sun
were discarded).

• Shots should not show multiple animals moving in different directions. This
restriction is imposed by the current segmentation (which assumes a single
foreground region to be given) and may be overcome in the future using an
extension of motion segmentation to multiple regions (e.g., [KTZ05a]).

• Also, shots were discarded if they showed overlayed text or black bars at the
top and bottom, which causes difficulties for motion segmentation.

• Finally, to avoid overfitting, only a single shot per YouTube clip was used.

This way, 29− 50 shots were sampled per animal category (160 shots total). This
dataset was combined with a background class represented by 1, 000 shots sampled
from the YouTube-22Concepts Dataset (see Section 3.6.1).

Setup The framework outlined in Section 6.6.1 was applied, with dynamic scene
segmentation from Section 6.5. Parameters were optimized on a different dataset
to α = 0.05, β = 6, γ = 1.5, and η = 0.5. A constant motion model was used, and
frames were sampled at a stepsize of 3 and smoothed with a Gaussian previous to
motion segmentation.

While in Experiment 1 the accuracy of an object decision was measured, the
object score is now used for a ranking of test content. For each animal category,
a separate run was conducted in which animals from the category were classified
versus the YouTube background class. Due to the limited number of positive
examples, this evaluation was done in a leave-one-out fashion, i.e. each shot was
scored by using the rest of the dataset as a training set. For efficiency reasons, only
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(a)

avg. prec. (%)

segmented

category no yes

tiger 15.6 34.5

zebra 27.2 34.1

giraffe 27.2 42.5

elephant 53.7 55.3

MAP 30.9 41.6

(b)

Figure 6.15: (a) The top 4 detection results for “tiger” with motion segmentation (top)

and without (bottom). . (b) Quantitative Results on the YouTube-Animals Dataset

(n = 4, 160). Pictures from YouTube.

the visual words variant of the proposed framework was tested. Keyframes were
sampled at regular steps of 6 frames, and SURF features [BTvG06] were extracted
and mapped to a 5, 000-dimensional visual codebook trained on the whole dataset.
One global histogram of visual words was stored for the “animal” class and the
“background” class, and matching was performed by computing the inner product
of visual word histograms (see Equation (6.16)). A fusion over keyframes was done
by accumulating votes from all frames of a shot.

Results Some sample results of motion segmentation are illustrated in Figure
6.14. It can be seen that in the majority of cases the animal in the foreground is
detected correctly, but also that the segmentation is far from accurate. Typical
sources of error are illustrated as well: the animal may be missed as a whole, which
may happen if motion is too slow as in the bottom “giraffe” frame (in this case,
the object score is set to P (”animal”|V ) = 1

2 ). Also, sometimes only body parts in
strongest motion are segmented (like the legs of the bottom “elephant”). For the
background class, other kinds of moving objects are segmented (like the face or
the train). If no foreground motion takes place, a foreground region is sometimes
hallucinated by the system.

Let us now study the combination of segmentation with patch-based recogni-
tion. Figure 6.15 illustrates the top 4 detection results for the concept “tiger” with
segmentation and without. While in the unsegmented case no hits are found, the
system with segmentation detects two tigers correctly. Note also that the other
two detection results show dark vertical bars similar to tiger fur. Figure 6.15

179



6.6. AN OBJECT RECOGNITION FRAMEWORK USING
MOTION SEGMENTATION

(a) (b) (c)

P(“zebra”|x)

1.0

0.75

0.5

0.0

0.25

Figure 6.16: The “zebra” recognizer on a YouTube sample shot. (a) Result of motion

segmentation. (b,c) Result of recognition. Red patches indicate high scores, green patches

low ones. Focusing on the object region (b) provides higher scores and thus gives a better

result than recognition on the unsegmented frame (c). Picture from YouTube.

also provides quantitative results, where the average precision of object retrieval
is compared with and without segmentation. It can be seen that for all animals,
improvements are achieved by segmenting foreground objects. These are high for
three of four animals, with “elephant” being the only exception. An in-depth in-
spection revealed that the segmentation of elephants does in fact fail more often
than for the other animals — typically only certain body parts like legs or trunks
are segmented. Overall, if combined with segmentation, a mean average precision
of 41.6% is achieved, which is distinctly better than the system without segmen-
tation (30.9%). This improvement is significant (sign test over rank improvement
of positive samples, level 99%). A baseline using random guessing achieves 3.8%.

A sample recognition result is illustrated in Figure 6.16 for a “zebra” frame.
Votes are visualized when using segmentation and when not, whereas red indicates
a strong vote for “zebra” and green a strong vote for the background class. Two
effects can be observed. First, votes from the background region tend to be noisy,
also containing evidence for the background class. These votes are avoided by
a segmentation of the test frame. Second, when comparing the votes within the
object region, it can be seen that in the segmented case patches give a stronger
vote for the “zebra” class. This is because a segmentation in training leads to a
less noisy “zebra” model with stronger focus on the object itself.
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CHAPTER 6. IMPROVING CONCEPT DETECTION USING MOTION
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6.7 Discussion

In this chapter, an approach for the automatic recognition of objects in video was
presented. Its key contribution lies in combining patch-based recognition with
motion segmentation. In this setup, frames are segmented into regions of coherent
motion, and recognition is applied to these regions instead of on frame level. By
applying motion segmentation this way, incorrect correspondences due to clutter
can be reliably discarded. In two experiments — one related to the recognition of
specific objects, one to concept detection — it has been demonstrated that adding
segmentation information leads to significant improvements.

We have discussed previously that these results were not necessarily to be
expected. Three potential arguments against an improvement by motion segmen-
tation were given, namely an inherent robustness of patch-based recognition, the
benefits of a correlated scene context, and inaccuracy of motion segmentation. Let
us briefly discuss these issues with respect to the experimental results:

• First, patch-based methods have previously been shown to detect objects
even in cluttered scenes [PHSZ07], as incorrect correspondences can be dis-
carded based on feature appearance or position. Experimental results in this
chapter confirm this robustness to some extent, but also show that some error
remains, and that motion-based segmentation offers a more reliable way of
filtering incorrect correspondences compared to patch appearance or spatial
constellation. In a recognition experiment, error was reduced by ca. 50%
using segmentation (n = 1, 584).

• Second, one might expect that background — if correlated with the object to
be recognized — can provide valuable context information [Tor03] and thus
support recognition. In the two experiments presented, scene background
played different roles: in Experiment 1, clutter was not correlated with the
object class, as all objects were trained and recognized in the same scenes. As
was to be expected, background did not give any helpful clues for recognition.
In Experiment 2 — where the detection of animals in video databases was
addressed — background was inherently correlated with the object class,
as animals usually appear in zoos or in the wild. Again — despite this
correlation — recognition was improved significantly, which indicates that
segmentation serves as a stronger clue for recognition than context. This
confirms results by Zhang et al. [ZMLS07], who studied the influence of clut-
ter on object category recognition using image datasets from the PASCAL
Challenge. Similar to the experiments conducted here, it was found that by
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using only features from the manually segmented object region, recognition
performance improved. Beyond this, our results also show that the same can
be achieved by an automatic segmentation for video data.

• Third, motion segmentation is error-prone and limited. It should be kept in
mind that the focus of this chapter was on situations where motion segmen-
tations can be expected to work (i.e., showing a single object in motion).
Here, motion segmentation, even if inaccurate, gave significant improve-
ments. However, to employ segmentation in a truly unsupervised fashion
for concept detection, several problems remain to be solved. First, situations
with multiple moving objects may be addressed using appropriate motion
segmentation techniques (e.g., [KTZ04]). This, however, leads to a corre-
spondence problem: as we may face multiple regions per image, we do not
know which ones are associated with the object of interest. Approaches to
infer such correspondences have been developed in the image annotation lit-
erature [DBdFF02, KCdF04, YLP00] and are an option to overcome this
problem.

Also, motion segmentation will not help in cases where the object remains
static, and all results so far have been based on the precondition of distinctive
object motion. To overcome this problem, an iterative fitting procedure can
be envisioned, in which alternately segmentations and object models are
inferred. In this framework, motion-based segmentation could serve as an
initial trigger for constructing a first object model only from scenes with
moving objects. In later stages of learning, this object model can be used as
an additional clue for top-down segmentation, such that objects can also be
segmented and learned in other scenes where the object is static. One could
also envision a semi-automatic learning framework: instead of annotating
keyframes, users are presented frames together with segmentation results,
and during annotation they can switch off segmentation or preserve it if
appropriate.

Alternative directions of future work might include comparisons with other mo-
tion segmentation frameworks. So far, a direct approach has been followed, i.e. a
dense segmentation of the scene has been inferred from the spatio-temporal deriva-
tives and color statistics (see Section 6.5). Possible future directions of research
might be to investigate sparse, feature-based approaches [TZ00]: as recognition in
the proposed framework is entirely based on patches, it might be sufficient to per-
form a segmentation on basis of these sparse features. As strong arguments may
be found in favor of both direct and feature-based methods [IA00, TZ00], it might
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be interesting to compare both in a recognition framework. Similarly, another
comparison could be done with the framework by Rothganger et al. [RLSP07],
who cluster scenes into objects of coherent motion and infer an intermediate 3D
representation of each object. Generally, our results demonstrate that such a 3D
representation — while interesting for other applications — is not mandatory in
a recognition framework, and that improvements of recognition can be achieved
using a simpler (and computationally more efficient) 2D approach. Yet, it might
be interesting to investigate how the proposed framework compares to a matching
based on 3D scene representations.

Overall, the key results of this chapter are that despite progress in patch-based
recognition, robustness with respect to clutter remains a key challenge, that, corre-
spondingly, solving the segmentation problem can still be considered an important
step towards a robust recognition, and that motion segmentation provides an ap-
propriate way to do this.
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Chapter 7

Discussion

Concept detection is an exciting field — as digital video databases grow at enor-
mous rates [Jun09] and a precise manual indexing becomes infeasible, automatic
video tagging can be attributed a good chance of becoming an integral part of
future content-based video search technology. However, for it to gain traction, a
fundamental scalability problem remains to be solved: thousands of concepts need
to be learned, overfitting to training domains must be overcome, and systems must
become flexible enough to catch up with users’ information needs. This requires
new strategies of bootstrapping visual learning beyond the manual annotation of
limited datasets that constitutes the state of the art.

Therefore, the core concern of this thesis has been the question: can we learn
to detect visual concepts in video with less supervision? To achieve this goal, we
have turned towards web-based video sharing portals like YouTube. These services
offer new sources of information that open great chances for concept learning.

First (and most obviously), vast amounts of visual content are available. We
have seen in Chapter 3 that this content can be employed by concept detection
systems, with experimental results indicating that YouTube-based detectors gen-
eralize comparably well to new domains as the ones trained on manually acquired
annotations. Also, by adding YouTube content to other training sets, generaliza-
tion capabilities can be improved.

Besides the scale of content, another appealing characteristic of portals like
YouTube lies in the active participation of their users. Content is not only up-
loaded, but is also annotated, categorized, and debated about. This has allowed
us to derive label information for concept learning — however, we have also seen
that this information is of a different kind than the accurate annotations used
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in concept detection before, as YouTube users give spontaneous, subjective, and
coarse descriptions of their content. This has been shown to be a key problem
with web-based training sets (Chapter 4), as significant amounts of material do
not show the target concept. To overcome this problem, relevance filtering was
proposed, which adapts the statistical models underlying concept detection such
that unrelated content is filtered during system training. It could be seen that —
by using this approach — the robustness of concept learning from web video could
be improved.

Another valuable feature beyond content, tags, and descriptions is that users
of portals like Flickr or YouTube sort their pictures into semantic categories. A
novel way of exploiting this information has been suggested in Chapter 5, which
is based on a combination of concept detection with style modeling from the do-
main of optical character recognition (OCR) [MB02, SN05]. The fact is used that
the content to be annotated comes in groups sharing a coherent style (like TV
shows, or snapshots taken over the same holiday trip). Based on evidence from
the whole group, this style is matched with a previously learned web category, and
a category-specific annotation model leads to an accurate concept detection. With
this approach, significant performance improvements have been validated over a
separate tagging of individual images.

Finally, we have addressed motion as an additional information source that is
specific to video. A novel concept detection approach was presented that employs
motion information for a segmentation of objects from the background. Recog-
nition is then carried out on the level of the resulting object regions, which was
shown to achieve an improved detection of concepts related to physical objects.

The experimental results presented in this thesis demonstrate that with the
proposed framework, significant improvements can be achieved in terms of recog-
nition performance and required supervision (and with it: scale and flexibility).
It should also be noted that — besides the use of web-based information — an-
other key aspect has been the design of proper statistical models. While previous
approaches have usually cast concept detection as a standard supervised learning
problem on labeled sample frames, the work in this thesis has been targeted at
breaking out of this paradigm. Different information sources have been investi-
gated, including information on context (Chapter 5), information on the reliability
of labels (Chapter 4), and intra-frame segmentation information (Chapter 6). To
make use of such information, a view of concept detection beyond standard super-
vised learning must be taken, and statistical modeling must be adapted.
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Altogether, the contributions of this thesis can be combined in a novel approach
for an efficient and widely unsupervised visual learning. An outline of this frame-
work has already been given in the introduction (see Figure 1.2): the basis is an
acquisition of training content from the web, which can be refined using motion
segmentation or a filtering of non-relevant material. In parallel, category informa-
tion can be used by learning several style-specific concept detectors instead of a
global one. Though these processing steps can be applied independently (which
has been the case in most experiments throughout this thesis), it should be noted
that — if applied together — the different improvements can be expected to boost
each other: for example, motion segmentation leads to better features by discard-
ing the background, which can again simplify the identification of non-relevant
material in relevance filtering. Correspondingly, one promising future direction
along the proposed line of research is an integration of the different strategies.

Despite these achievements, this work can only be seen as a first step towards
web-based concept learning. We have addressed some of the chances and challenges
offered by user-tagged content, but have only started to understand what exactly
we can learn from portals like Flickr and YouTube, how to cope with the enormous
diversity of content, and how to automatically interpret its sparse and noisy tags
and descriptions.

One remaining challenge is the “domain change problem”, which refers to the
fact that concept detection is often applied on different domains of video data
(like TV) than it was trained on (here, web video). We have already seen in
Chapter 3 – where YouTube-based detectors were evaluated on datasets of news
and documentary TV from the TRECVID benchmark – that this domain switch
causes severe problems, mainly because the appearance of target concepts can
change significantly. Without doubt, when targeted at learning from web video we
need to face this problem, and cross-domain analysis is one important direction of
future work on web-based concept learning.

Another aspect that deserves more investigation is the enormous scale of web
content, which might help to improve concept learning further by using much larger
quantities of data. While the experiments in this thesis have in many cases already
employed more training samples compared to manually acquired concept detection
standard data, the full quantity of available material has not been exploited yet,
and it is to be expected that — as sample size increases — tasks like relevance
filtering and style selection will become easier. In this context, it might also be
useful to learn from a variety of web-based information sources simultaneously,
including video from YouTube as well as images from a web search or Flickr.
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Finally, another chance to improve concept learning from the web is a limited
amount of manual supervision. While this has been avoided deliberately in this
thesis, at some point the capacity of a fully automatic system may be restricted by
the diversity of content, even with more appropriate models and more data. Here,
the key question is whether limited manual supervision can be integrated without
sacrificing the scalability advantages of web content. The proposed framework of-
fers several alternatives to include such extra information: users might be asked to
refine training data by specifying more descriptive queries for downloading “good”
YouTube content, or might provide a few thoroughly selected annotations to fil-
ter out non-relevant material. Other alternatives could be a manual grouping of
content such that style information can be exploited, or a semi-automatic motion
segmentation of objects from the background. Some recent work by the author
of this thesis has already addressed this problem, and initial results indicate that
the robustness with respect to label noise can in fact be improved by a low-cost
semi-automatic refinement. Yet, important issues are far from solved, namely how
much manual effort pays off best and where to best invest it — ultimately, to
achieve concept detection that is both highly accurate and scalable, we will need
to find the right level of manual supervision.
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Appendix A

Test Concept Information

This section gives a description of test concepts used in Chapter 4. These def-
initions are related to the visual presence of a concept (for example, “desert” is
associated with “scenes showing desert landscape”). Table A.1 provides definitions
as well as information on how video data was downloaded from YouTube (i.e. what
queries were made to the YouTube API).

Table A.1: Definitions and download information regarding the 10 test concepts used

in Chapter 4
concept description YouTube Query YouTube Category

basketball Scenes showing people play-

ing basketball. Includes

streetball if recognizable as

such.

basketball,

basketball nba,

basketball dunking,

basketball best moves,

basketball dunks

Sports

beach Scenes showing a beach. Wa-

ter does not have to be visible

(if anything else qualifies the

scene as showing a beach).

Shots from a distance qualify

as well, but only if the coast-

line is clearly a beach.

walk on the beach,

beach sunbath,

beach hawaii,

beach panorama,

beach malibu day

Travel&Places

cats Scenes showing one or multi-

ple cats. Closeups qualify as

well as full body shots.

cats,

cats funny,

cats pets animals,

cats playing,

cats eating

Pets&Animals
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desert Scenes showing desert

landscape. Panoramic

shots involving significant

amounts of sky are allowed

(as long as some desert

landscape is visible at

the bottom). Things like

plants, rocks, canyons,

cars, etc. are allowed, but

the landscape should show

desert.

desert egypt,

driving through desert,

desert panorama,

desert sahara,

desert trip

Travel&Places

eiffeltower Scenes showing the Eif-

fel Tower. Views from

top of the tower qualify if

you see a part of it, like

parts of the steel construc-

tion. Night shots qual-

ify. Closeups showing only

parts of the steel construc-

tion qualify (if the tower

can be identified) as well

as panoramic shots from

a distance. Shots with

people in the foreground

and the tower in the back-

ground count as well.

tour eiffel,

eiffel tower,

eiff.t. paris france,

eiffelturm paris

Travel&Places

helicopter Scenes showing a heli-

copter (airborne or on the

ground). Views from in-

side the helicopter are al-

lowed if they can be iden-

tified as such. Only instru-

ments or the pilot are not

sufficient. Shots of toy he-

licopters qualify as well.

helicopter,

helicoptero,

helicopter flying,

helicopter landing

Autos&Vehicles

sailing Scenes showing sail-

ing ships/boats on the

water/in the harbor.

Panoramic views from

onside a boat qualify if

you see a part of the

boat (like ropes or sails).

Catamarans qualify as

sailing ships, but surf

boards or tankers do not

(generally, everything with

a sail qualifies).

sailing,

sailing trip,

sailing boat,

sailing holiday,

sailing mediterranean

Travel&Places,Sports
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soccer Shots showing a soccer match.

Actions only weakly related to

soccer do not qualify (like people

doing soccer tricks in the street).

Close-ups of players are allowed

as well as global shots (if clearly

identifiable as soccer). Soccer

fields without action qualify as

well. Shots of a cheering crowd

do not qualify.

soccer bundesliga,

soccer goals,

soccer match,

soccer game outdoor,

fussball spiel

Sports

swimming Scenes showing somebody swim-

ming or a swimming pool (even

if nobody is swimming inside it).

Also includes swimming objects

(fish, bottles).

swimming,

swimming pool -clean,

swimming technique,

sw. competition,

sw. olympics,

sw. championship

Sports

tank Scenes showing a tank, i.e. a

heavily armored vehicle. Any

scene qualifies if a part of the

tank is visible such that the tank

is identifiable. Other sorts of

military ground vehicles qualify

as well.

tanques,

tank,

tank battle,

panzer,

tank fire -flashpoint

Autos&Vehicles
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