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Abstract

As digital video has become a source of information and entertainment to millions
of users, video databases grow at enormous rates, and a need for new efficient
indexing and search strategies has been recognized by research and industry. In
this context, concept detection aims at a machine indexing by automatically linking
video scenes with semantic concepts appearing in them.

Existing concept detection systems rely on manual annotation for concept
learning, and are thus limited by the effort associated with training data acquisi-
tion. To overcome this problem, this thesis describes a concept learning approach
that requires significantly less manual supervision compared to standard meth-
ods. To achieve this, user-tagged web video is employed (as offered by portals
like YouTube). Four contributions are made that greatly enhance our ability to
use this data source for training, regarding its content, label noise, context, and
motion information.

To make use of web video content, this thesis presents a concept detection
system that employs clips downloaded from YouTube as training data, with class
labels being automatically derived from user-generated tags and descriptions. It
is demonstrated on standard datasets from the TRECVID benchmark that the re-
sulting detectors generalize comparably well to novel domains as detectors trained
on manually acquired ground truth. At the same time, the approach offers a much
more scalable and flexible way of concept learning.

To address label noise (i.e., the problem that user-generated tags are coarse,
subjective, and context-dependent), this thesis proposes to adapt the statistical
models underlying concept detection. Web tags are viewed as unreliable indicators
of true label information, which is modeled as a latent random variable and inferred
during concept detector training. This novel approach (called relevance filtering)
is validated to improve concept learning from web video significantly compared
to supervised standard methods, for both a generative and a discriminative base
model.

To make use of context, user-generated category labels are employed, another
valuable feature of web video. It is demonstrated that this information can be used
by combining concept detection with style modeling: a distinct model is learned
per category (or style, respectively) and used for an accurate concept detection.
Test images are mapped to a style using their context (for example, other pictures
taken at the same event). This approach is demonstrated to improve performance



by up to 100% on Flickr photos (n = 32,000). On the well-known COREL-5K
image annotation benchmark, the proposed method gives a mean recall /precision
of 39%/25%, which is the best result reported to date.

Finally, to make use of motion information, this thesis suggests to improve the
learning and recognition of objects using motion-based segmentation. Two novel
motion segmentation approaches are presented, one based on a globally optimal
branch-and-bound search of parameter space, one on a combination of motion and
color information. These approaches are integrated with a patch-based recognition
method, achieving an improved robustness to clutter. Compared to a baseline
operating on unsegmented images, recognition error improves from 8.1% to 4.4%
(n = 1,584), and the precision of concept detection from 31% to 41% (MAP,
n = 4,160).

Altogether, these contributions suggest that web video can form the basis for a
novel way of concept learning beyond the manual acquisition of small training sets
that constitutes the state of the art. With the technology described in this thesis,
we can now build concept detection systems that can learn thousands of concepts
and offer a better support for video search.
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Chapter 1

Introduction

Over the last decade, digital image and video content has become an integral part
of our everyday life — we capture it using cameras and camcorders, we store it on
local hard-drives and share it with friends, we upload it to the internet and view
it on demand. We also use images and video as a source of information, we debate
about it, or we are simply amused and entertained by it.

Correspondingly, more visual content is being produced, published, and con-
sumed than ever before in history: web-based image and video sharing portals like
Flickr! or YouTube? are known to millions of people, who upload 65,000 video
clips [YOUOQ6] and 2.5 — 3 mio. pictures [Auc07] each day. It has been estimated
that digital video will account for 91% of all internet traffic in 2013 [Inc09]. In
parallel, Companies like Google use imaging sensors to index the world’s docu-
ments®, maps?, or cityscapes®. Millions of surveillance cameras monitor our ev-
eryday life [BBCOG], and large-scale digitization efforts produce video archives
containing decades of TV and radio broadcast [Hig06],[SOUQ9]. All these examples
show that digital images and video have arguably become an essential source of
information and entertainment to a wide community of users.

To employ all this content to its full potential, users must be supported with
an efficient search. For this purpose, several strategies have been proposed, like
“query-by-image” [M._95], where the user provides a picture and the system returns

1
2

www.flickr.com

www.youtube.com

3http://books.google.com/

4http://maps.google.com/
Shttp://maps.google.com/help/maps/streetview /index_.html



visually similar content, or “query-by-text”, where the user enters a few keywords
and retrieves content that is linked with these terms. The focus of this thesis will
be on the latter approach, i.e. on text-based retrieval. This can be considered
standard practice and is realized by services like YouTube or Flickr. However, it
requires an indexing that links the images and videos in a database with descriptive
keywords (or tags). The challenge of creating such an index has been referred to
as the semantic gap [SWSJ00], the discrepancy between low-level content in form
of raw pixel values on the one hand and a viewer’s high-level interpretation on the
other.

Current strategies towards bridging this gap perform an indexing on meta-data
like the filename (such as search engines like Google or Yahoo!) or rely on user-
generated tags and descriptions (as in case of Flickr and YouTube). Both these
strategies are fairly limited: meta-data like descriptive filenames or surrounding
text may simply not be at hand. A manual annotation comes with considerable
effort and is at the same time limited in other ways: first, users tend to use only
the first few words that come to their mind, i.e., tags are incomplete. Second, users
give descriptions with respect to their personal prior knowledge and expectations of
the clip, i.e. tags are subjective. Third, users often simply assign the same words
to complete image groups or to a video clip of several minutes length. These
descriptions do not tell us where exactly specific concepts appear, i.e. they are
inherently coarse. To some extent, these problems might be overcome by a more
careful manual indexing. This however, would be associated with considerably
more effort and is thus simply infeasible in most situations.

This opens the question whether computer systems can automatically link
low-level content with high-level semantics. Over the last few years, a break-
through of such content-based image and video understanding technology has
taken place, and some solutions have already been integrated with commercial
products: Google image search uses a content-based detection of faces, clip art,
and line drawings [GOO09], Picasa employs automatic face recognition for photo
albums [BBCO08], and video search engines like Blinkx benefit from speech tran-
script and visual features [BLI09]. Other applications where content poses a useful
information source are the detection of copyright infringement [ANV09] or object-
based retrieval [KOO09, [VIP(9).

Concept Detection

All these techniques have made their way from research into commercial prod-
ucts over the last years by solving a specific recognition task, like face detection
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Figure 1.1: These sample images illustrate for the concept “desert” that concept de-
tection poses a difficult challenge to visual recognition systems. Enormous intra-class
variation occurs due to changes in illumination (a,b), occlusion and perspective changes
(c), and variation in the concept itself (d) (pictures from YouTube).

or the search for visually similar content. This opens the question whether vi-
sual recognition can be applied to a wider range of generic concepts, including
objects (“airplane”) as well as locations (“desert”), programme types (“weather re-
port”), or actions taking place (“interview”). This challenge has been referred as
automatic tagging [DJLWQOT], image / video annotation [EMLO04], high-level feature
extraction [KOOT], or concept detection [YHOS]. Throughout this thesis, the term
concept detection will be adopted.

Given an input picture or video clip, concept detection systems use statis-
tical models over low-level features derived from its content to compute scores,
which indicate the probability for target concepts to appear. Thereby, the num-
ber of target concepts is usually high (i.e., in the range of hundreds / thousands).
This renders the development of specialized techniques (as it has been done for
faces [ZCPRO3, YKAQ2], for example) infeasible, and a generic approach is re-
quired. Also, while other visual recognition systems are applied in restricted en-
vironments, concept detection systems should work on a wide range of domains,
including photos [RvBKB0S], consumer video [CEJF07], TV [SOK06], and web
video [ZMZP08]. This poses strong robustness requirements: first, systems must
cope with well-studied phenomena in computer vision, like changing camera pa-
rameters, illumination variations, clutter, or occlusion. Further, other factors like
coding quality or high intra-class variation of concepts must be taken into account.
Finally, in some cases the presence of a concept may not even be well-defined but
prone to subjectivity. These aspects (which are also illustrated in Figure ren-
der concept detection an extraordinarily difficult challenge, and the annotation
quality achieved by state-of-the-art systems is far from the accuracy of a careful
manual annotation.



Despite these difficulties, concept detection is of practical interest, as a map-
ping of content to semantics — even if it is unreliable — can help to solve a
variety of tasks. The most important one is image and video search, which is a
vital problem [VIDO§| as data load has become massive. In this context, concept
detection is applied by first mining image and video databases for a vocabulary of
target concepts. At retrieval time, textual queries made by the user (like “lake”)
are mapped to appropriate concepts in the vocabulary (which might be “water”,
“river”, etc.), and detection results from the corresponding concepts are aggregated.
This way, a text-based search can be realized free of manual indexing on the test
data, which is why concept detection has been attributed potential to become
an integral part of video search technology [SOKO06], [SWdR™08]. Other applica-
tions include content management tasks, like video feed filtering, content-based
recommendation systems [YMH™07|, the personal delivery of image and video di-
gest, and context-sensitive multimedia advertising [MHYL07]. Further, concept
detection can support users with tagging their content (for example, by suggesting
keywords) [SvZ0§|. Finally, the detection and blocking of specific concepts (like
pornography or violence) is of interest [DPNOS [GY0S].

We conclude that if we could apply concept detection in large-scale practical
applications, we could significantly improve the accessability of image and video
data in two ways. First, more efficient search could be granted, as videos could
now be indexed on shot level: imagine a 10-minute YouTube clip showing different
sights of Paris — while a manual annotation of all scenes is time-consuming, con-
cept detection can achieve this automatically and find specific views of, say, Notre
Dame Cathedral. Second, we could access significantly more content, simply be-
cause a manual indexing becomes impractical at a certain scale but is still feasible
if done automatically. Considering the size and — more importantly — the growth
rate of image and video collections [Inc09, [Auc07], this is of vital importance.

Unfortunately, a practical large-scale application of concept detection is limited
by a fundamental scalability problem: concept detection systems are usually based
on supervised machine learning techniques [CHL™07, [Sno07, WLL™07, [YHOS] (for
an introduction to the field, please refer to Chapter , and these techniques require
training examples for any concept to be learned. Since target concepts can be
visually complex, each one might require hundreds of sample views. So far, this
problem has been overcome to some extent by acquiring ground truth labels in joint
efforts of the research community [AQO8|, INSTT06]. Yet, such a time-consuming
acquisition restricts concept detection in several ways: first, it limits the number of
concepts that can be learned, such that the size of current detector vocabularies is
a magnitude below the quantities that are probably needed for an accurate video
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search [HYLOT]. Second, it has been pointed out that detectors overfit to small
manually acquired training sets and generalize poorly [YHOS]. Third, keeping
track of dynamic changes of users’ information needs is infeasible as new concepts
of interest emerge (such as “Barack Obama” or “Olympics 2008”). From this, I
conclude that concept detection suffers from a lack of proper training data and
strategies.

Goal and Outline of this Thesis

To realize a broader applicability of concept detection at a larger scale, the goal
of this thesis is to reduce the annotation effort associated with concept learning
and thus achieve a better scalability and flexibility of concept detection. Thereby,
the focus is on the visual aspects of the problem (which does not pose a strong
limitation, since a combination with other modalities like text and audio is usually
done in subsequent fusion steps).

To achieve this goal, an approach is presented that employs a variety of novel
information sources. These can be used to substitute conventional training data
(such that annotation effort for the user is reduced) or to complement it (such
that concept detection is improved at no — or negligible — extra cost). Such
information can be found at different levels of abstraction in the video stream: on
a low level, motion information can give valuable clues for certain concepts. On
a medium level, the hierarchical structure of video content as a composition of
shots, scenes, or shows can be exploited. Finally, on a high level, novel sources of
training data can be investigated. As a successful and scalable concept detection
should ultimately exploit all information available, the work presented in this thesis
will cover all these levels. While the focus will generally be on aspects that are
characteristic to video content (like motion information), some of the presented
techniques and results apply to images as well. This will be pointed out on a
per-case basis.

More precisely, four strategies are presented for driving concept detection to-
wards less supervision:

1. The use of web video as a novel source of training data

2. The adaptation of concept learning to noisy training labels using relevance
filtering

3. The use of context information by combining concept detection with style
modeling



1.1. EMPLOYING WEB VIDEO

4. The use of motion-based segmentation for an improved recognition of
objects.

Each approach will be addressed in one chapter of this thesis, and will previously
be outlined in one of the following subsections.

1.1 Employing Web Video

A first approach to reducing the manual annotation effort associated with concept
learning is to investigate alternative sources of training data. For this purpose,
Chapter [3] of this thesis proposes web video portals like YouTube, MSN Soap-
box, Myspace, etc, from which large quantities of video content can be obtained
automatically together with descriptive user-generated tags. By employing these
tags as class labels, web data can complement manually annotated training sets
or even substitute them completely, such that a concept learning free of man-
ual supervision is performed. This offers vital advantages in terms of scalability
(more concepts can be learned) and flexibility (adaptation to changing and newly
emerging concepts can take place).

On the downside, it is to be expected that web video as a training data source
leads to lower detection rates compared to manually annotated training sets. This
is due to two reasons: first, web video as a domain is complex, including TV content
as well as home video, and potential target domains where concept detectors are
applied may differ significantly from web-based training material. Second, the
label information associated with web video is coarse and subjective, which can
have a severe impact on concept learning.

Chapter |3| investigates whether — despite these problems — visual learning
from web video can be successful. A concept detection system named TubeTag-
ger is presented that employs content downloaded from the portal YouTube for
training. The system integrates several types of visual features, like color, tex-
ture, motion information, and a patch-based description. TubeTagger is the first
concept detection system learning from web video.

An evaluation is presented in which the system is trained on YouTube content
and applied to several target domains, including standard data from the TRECVID
benchmark [SOKO06]. It will be shown that web-based concept learning can be
successful in general, and situations will be pointed out in which web video material
should complement or even substitute a manual training.
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1.2 Relevance Filtering

One characteristic of web video is that its tags are context-dependent, subjective,
and coarse, a phenomenon that will be referred to as label noise in the following.
This causes problems for concept learning, as significant amounts of training mate-
rial are not visually related to the target concept. To achieve a higher robustness,
Chapter [4]of this thesis proposes to adapt the statistical models underlying concept
detection such that label noise is explicitly taken into account. This approach will
be referred to as relevance filtering. It models the relevance of training content as a
latent random variable. During training, this variable is inferred, i.e. non-relevant
content is identified and filtered out. In contrast to relevance feedback [RLO3]
(which is targeted at a refinement of retrieval results at query time), relevance
filtering is applied at training time and combines the elimination of non-relevant
material with concept learning. This can be used as a wrapper around standard
supervised models, as is demonstrated for a generative approach (kernel densities)
and a discriminative one (Support Vector Machines).

In experiments on web video data, it will be demonstrated that YouTube tags
do in fact show significant label noise (typically, only 20 — 50% of material are
visually related to the target concept). Also, it is shown that the performance of
standard concept detection models based on supervised learning degrades severely
when trained on such data. In contrast to this, relevance filtering extensions show
a higher robustness to label noise, which is achieved by reliably identifying non-
relevant content.

1.3 Style Modeling

A third strategy is based on the observation that pictures and video tend to come
in a context: while current standard approaches apply concept detection individ-
ually on image or shot level, users tend to produce groups of visually correlated
material in practice. Examples for this include multiple snapshots taken over
the same holiday trip or video streams coming in temporal units such as scenes,
movies, or episodes. These image groups share a certain coherence both in terms
of visual appearance and the concepts they show. While this context information
has been widely neglected so far, a well-founded probabilistically motivated way
of employing it is investigated in Chapter

To do so, concept detection is integrated with style modeling from the domain
of optical character recognition [MB02] [SN0O5]. The approach assumes the pictures
or frames in a group to belong to a latent category (or style). To learn these
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styles, I will again turn towards web portals, which offer training content enriched
with category information. Different annotation models are learned from web
categories and serve for an accurate style-specific tagging. Test images can be
mapped reliably to an adequate style using their context — this way, a more accurate
concept detection is achieved by tagging groups of correlated pictures instead of
individual ones.

This novel approach is evaluated on the COREL image dataset and real-world
photo stock downloaded from Flickr. In these experiments, different styles cor-
respond to locations and travel scenarios, i.e. the annotation of personal holiday
snapshots is simulated. It is demonstrated that style modeling helps image anno-
tation to disambiguate and improves the overall tagging performance significantly.
Compared to several baselines that label images individually, relative improve-
ments of up to 100% are reported. Also, the proposed approach achieves the best
result reported to date on the well-known COREL-5K benchmark (mean per-word
precision/recall: 25% / 39%). This is achieved by modeling context, which is not
employed by other methods from the literature.

1.4 Motion-based Segmentation

Motion is investigated as a low-level video-specific feature in Chapter [f] Most
concept detection systems make only limited use of this information source — it is
ignored entirely [CHL™07,[WLL™07] or used in form of low-level descriptors [HNO7]
Sno07, [USKBO08a]. Instead, in this thesis a concept detection approach will be
presented that uses motion in a different way, namely as a source of segmentation
information. Such a motion-based segmentation in video can separate objects from
the background, even in situations where color and texture alone are not sufficient.

However, motion segmentation is error-prone, as fundamental assumptions like
pixel constancy or spatial coherence [BA96| are often violated in practice. There-
fore, this thesis first makes two contributions targeted at an improved robustness
of segmentation. First, a novel approach for the estimation of a parametric global
motion (which is usually associated with the background region) is proposed. This
method is based on the RAST algorithm from geometric matching [Bre92], which
performs a branch-and-bound search of transformation space and thus guarantees
a globally optimal solution. Second, an extension of a direct motion segmentation
approach — which estimates motion and region boundaries in a joint process — is
presented, whereas parametric color models are used as additional segmentation
clues. In quantitative experiments on a variety of synthetic motion fields and video
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Figure 1.2: An illustration of the proposed concept detection approach applied for the

interview
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concept “elephant”. Web video content is employed for training, non-relevant content is
automatically filtered, and optionally motion-based segmentation can be used to separate
objects from the background. The resulting model is applied in testing (bottom), whereas
a style model achieves an improved annotation by making use of context.

data, both these approaches are demonstrated to give performance improvements
over several baselines.

This motion segmentation technology is finally integrated with a patch-based
recognition approach, leading to a novel approach for concept detection and object
recognition. Motion segmentation serves as a filter, such that only features from
the object region are employed for recognition. It is shown that with this approach
the robustness of object recognition and concept detection with respect to clutter
is significantly improved over the state of the art.

1.5 Framework

Altogether, the aforementioned contributions constitute a novel approach for an
efficient and widely unsupervised visual learning from web content. This frame-
work is illustrated in Figure to train a target concept (like “elephant”), the
system acquires image and video data from web portals like YouTube or Flickr.
This can be done fully automatically, or using a refined user query to guarantee a
better quality of material. A web-based training set is obtained and refined using
relevance filtering, which identifies non-relevant content and relabels it. Addition-
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ally, a user can set a flag indicating that a concept corresponds to an object, in
which case motion segmentation can be used to achieve an increasing robustness
to clutter. Finally, different versions of the framework can be instantiated for dif-
ferent categories (which are associated with different visual styles). Given a video
shot to be annotated, context from the same video is used to select an appropriate
style (like “Safari”), and a style-specific model is used for concept detection.

10



Chapter 2

An Overview of Concept
Detection in Video

Currently, most commercial video search technology relies on manually gener-
ated descriptions and tags. The problem with such an indexing is that it is
incomplete, subjective, or just not at hand in many practical situations. Also,
its creation becomes increasingly difficult as more and more content is accumu-
lated [Jun09, [Sme07] and a manual annotation becomes infeasible. This leads to
the question whether computer systems can create indices automatically by infer-
ring the presence of high-level concepts like objects (“cat”), locations (“beach”), or
activities (“dancing”), from the content of an image or video. This challenge is the
focus of this thesis, and has also been subject to intensive research in content-based
video retrieval (CBVR) over the last years. It has been referred to as concept
detection [NSO4|, high-level feature extraction [OAKSOT|, automatic video index-
ing [SWO05D, IWLL™07], or (for the domain of still images) annotation [LLMO3] or
tagging [JMO4].

In the following, a compact and general overview of research in the area will
be given, with the focus on the video domain. Other approaches that are more
specifically related to the contributions made in this thesis (including some related
approaches for still images) will be covered in appropriate chapters later. I will
start with a definition of concept detection (Section , will then address the
most important application areas in Section will survey the most frequently
used methods in Section and will finally discuss issues related to the manual
supervision required for concept learning in Section

11
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2.1 Problem Statement

The purpose of concept detection is to analyze the audio-visual content of a video
and automatically infer keywords (or tags) indicating the presence of semantic
concepts. So far, we have only stated that these concepts can be associated with
a wide variety of semantics, including objects as well as scene types or activities.
To understand the notion of a “concept” in more detail, let us refer to the term
relevance in information retrieval: we assume that a concept is matched by certain
videos or images that are relevant to it. This means that a concept is ultimately
defined by all its relevant content.

For standardization purposes, concepts have also been described by textual
definitions, like ¢; := “one or more people playing soccer” (LSCOM Concept 017,
“soccer” [LSC]). It is important to note that such a textual description is not
sufficient to fully explain a concept. For example, consider the following alternative
definitions:

to: “shots about soccer”
t3: “shots that User A would label with soccer”
ts: “shots that a YouTube user has labeled with soccer”

Obviously, these concepts are similar to ¢; but not identical. First, when comparing
t1 and to, it becomes clear that concepts need not necessarily refer to a visibility
of certain objects (as t1), but other, subtle relationships may define relevance (for
example, a soccer shoe advertisement or an interview with soccer legend Pelé may
be relevant for t9). Looking at t3, things get even more complicated: the view of a
user may differ from what others consider soccer. Even t3 itself — i.e., the view of
a single user — is not well-defined, as A’s expectations and background knowledge
may change over time (and with it his understanding of a concept).

An illustration of these problems is given in Figure for the concepts “desert”
and “eiffeltower”. In some cases (top row), most users would agree that the con-
cept is present (for example, see the “desert” shots showing sand dunes). In other
cases, different users might have different opinions (for example, a landscape might
be considered “desert” or “prairie”, or the relation between “desert” and the an-
cient Egyptian culture might be taken into account or not). Even for seemingly
well-defined concepts such as objects (like “scenes that show the Eiffel Tower”),
ambiguity occurs: the object may be difficult to recognize, and a user’s assessment
whether the concept is visually present may be different after he/she has visited
Paris and climbed the tower.

12
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i

=

Figure 2.1: Borderline cases of concept presence are frequent, as illustrated here for
the concepts “desert” (a) and “eiffeltower” (b). In contrast to obvious cases (top row), in
many situations concept presence is difficult to judge (bottom), as concepts are difficult
to recognize or prior knowledge is required (pictures from YouTube).

To some extent, this problem can be overcome by a precise textual description
of what is meant with the concept, as it has been done in concept detection re-
search [NSTT06]. An alternative for choosing less ambiguous concepts is indicated
in t4, whose definition is derived from real-world data, and user subjectivity is ad-
dressed by relating concept presence to the tagging behavior of the whole YouTube
community.

Overall, despite the aforementioned difficulties, it is usually assumed in con-
cept detection that concept presence is well-defined, and we will adopt this view
throughout this thesis. Yet, it should be kept in mind that this assumption is not
correct, and that ambiguity is inherent to practical concept definitions.

Definition “Concept Detection” Given the fact that a concept t is ulti-
mately defined by its relevant content, concept detection is the problem of decid-
ing whether a video X is relevant for ¢. The input of a concept detection system
consists of (1) the video X, which can be a long clip or a single shot (i.e. a scene
not interrupted by any cuts), and (2) a vocabulary of target concepts (or tags)
t1,...,t, as defined above. The goal of concept detection is to estimate scores
¢4, (X), ..., ¢¢, (X) indicating whether each concept appears in X. These scores
may be interpretable as probabilities, but this is not necessarily the case — it
may be sufficient that videos can be ranked by sorting them according to their
score. It is important to note that this multi-class problem is usually divided into
many binary classification problems: the score for each concept is estimated sep-
arately, and correlations between concepts are taken into account in subsequent
postprocessing steps. This approach will be followed throughout this thesis.

13
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Usually, the mapping ¢;(.) is modeled using a statistical classification algo-
rithm (e.g., a neural network or a Support Vector Machine). Previous to concept
detection, the parameters of this classifier ¢;(.) are learned in a training step. For
this purpose, training videos 1, ..., z, are given, with labels y1,...,y, € {—1,1}
denoting the presence/absence of t.

2.2 Applications

One fundamental characteristic of concept detection is its generality: concepts can
cover a wide range of semantics, including objects, scenes, activities, etc. On the
one hand, this renders the task a challenging problem with high intra-class variance
and hundreds or thousands of categories involved, and (depending on the concept)
classification accuracy can be low. On the other hand, this generality makes con-
cept detection applicable in a variety of practical use cases, where a linking of
low-level content with high-level semantic descriptions (even if it is inaccurate) is
of interest:

e Video Search: The most prominent application of concept detection is the
text-based search in video databases. For each concept in a predefined vocab-
ulary, a detector returns shots from the database that are most likely relevant
for the concept. Textual queries formulated by users are then mapped to the
concept vocabulary, which can happen manually [CHO5], by using concepts
as filters [Sme07], or employing an ontology [SHHT07|. Alternatively, con-
cepts can define a semantic space [TNSO7] and form the basis of further
machine learning techniques.

While early studies on the utility of concept detection for retrieval were
rather sceptical [CHO5], rapid improvements could be made in terms of map-
ping techniques and vocabulary size. Correspondingly, concept detection
(though not as accurate as a careful manual annotation) is now attributed
potential to become a key building block in modern content-based multime-
dia search systems [HYLO07, [Sme05, ISWAR 08|, and several CBVR systems
exploit lexicons of visual concept detectors [SWdRT08].

e Video Content Management: While video search is the main focus of
concept detection, several related use cases exist in a broader video manage-
ment context. These include the content-based personal delivery or recom-
mendation of video digest [YMHT07], or context-sensitive multimedia adver-
tising [MHYLO7].

14
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Figure 2.2: The processing pipeline of a typical concept detection system. An input
video is segmented into shots, from which representative keyframes are extracted. Shots
and keyframes are described by numerical features, which are fed to statistical models
estimating concept scores. These scores are fused over keyframes and over different fea-
ture modalities (intra-concept fusion), and are finally refined using correlations between
concepts (inter-concept fusion).

e Video Annotation: Another application of concept detection is the annota-
tion of video content. Obviously, tags can be derived directly by thresholding
concept scores. Even though the performance of current detectors may not
be sufficient for such a fully automatic keyword assignment, systems can
support users with tagging their videos in a semi-automatic fashion [SvZ08]
(for example, by suggesting keywords).

e Specific Concepts: Finally, the detection and blocking of specific concepts
(like pornography or violence) is of interest to search engines or law enforce-
ment [DPNO08, [RJB06 [GY0S].

2.3 Methods

Soon after the development of first practical concept detection systems in the early
2000s [NHO1J, the TRECVID campaign [Sme05] was established, a video retrieval
benchmark providing researchers with uniform evaluation procedures and stan-
dardized datasets. Research efforts on concept detection focus in TRECVID (with
over 40 research groups participating in the “High-level Features” task [KOO0§]),
though aside from TRECVID itself other efforts towards standardization and com-
parability are being made by sharing intermediate results like features, annotations,
and trained detectors |[SWvG™06, YCKHOT].

Figure illustrates the processing pipeline of concept detection as it has been
introduced in [ABCT03| and is followed by the majority of systems. Video search
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is usually done on shot level, though other possibilities have been pointed out to be
of practical interest [SmeQ7] (for example, in a video annotation scenario, concept
detection should operate on video clip level). An input video is first segmented into
shots, i.e. scenes captured by a single camera without any interruptions by cuts
or similar transitions. Afterwards, features describing the content of each shot are
extracted. This can be done by selecting representative keyframes and applying
an image-based feature extraction, or by directly extracting features like motion
patterns from the video stream.

After this, features are fed to a statistical modeling, which estimates scores
indicating the presence of target concepts. Several models and feature types have
been proposed, each giving a different score. These are fused for each concept
(intra-concept fusion). Finally, correlations between concepts are taken into ac-
count in an inter-concept fusion. These steps are discussed in processing order in
the following.

2.3.1 Shot Segmentation

Shot segmentation (or shot boundary detection) is targeted at an automatic tem-
poral segmentation of the video stream. For this purpose, shot transitions need to
be detected, which can be hard cuts, fades, wipes, or similar effects. Usually, shot
boundaries are detected as sudden changes of visual appearance within pairs (or se-
quences) of subsequent frames. Several surveys give overviews of popular features
and decision rules [Han02, [Lie0T), [YWXT07]. The problem is well understood, and
(particularly for the most frequent hard cuts transitions) a high accuracy can be
achieved.

2.3.2 Keyframe Extraction

The goal of keyframe extraction is to select frames that represent the visual content
of a shot well. This step is motivated by two reasons: first, computational cost is
reduced significantly compared to a full usage of all frames in a shot, and second,
video data is reduced to images, for which a basis of well-understood features and
statistical models exists.

Often, very simple keyframe extraction methods are used that extract a sin-
gle keyframe per shot, for example the center frame [Sme07, WCGH99]. More
elaborate techniques have been presented for video summarization, where the se-
lection of proper keyframes is critical for visualization purposes. These methods
use adaptive techniques to extract a number of keyframes per shot. One cate-
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gory of approaches estimates candidates for keyframes at points of strong content
change [ADDK99]. Others use unsupervised learning techniques and return cluster
representatives as keyframes [HMOQ, [HZ99, MRY06].

In the context of concept detection, such adaptive methods are not in the main
focus of research. However, it has been demonstrated before that increasing the
number of keyframes improves concept detection [Yua(7, SWGT05, [USKB08al.

2.3.3 Feature Extraction

A variety of features has been investigated in concept detection to describe the
content of video frames and serve as discriminative input for statistical modeling.
A full survey of descriptors is far beyond the scope of this thesis (please refer to
overview papers like [DKNOS|, [SWSJ00]). Instead, in the following a characteri-
zation of the most frequently used types of features is given. While the majority
of approaches is based on earlier work for still images, additional video-specific
features will be covered as well, like audio, motion, or overlayed text.

Color Color — a standard feature in image retrieval — is also frequently used in
concept detection. Popular examples are color histograms [WLL™07] or moments
of the RGB color channels [YHC07, [YHOS].

To include information on the spatial layout of color, features are usually binned
by partitioning frames into grids (or by segmenting them automatically), and fea-
tures for the single partitions or regions are concatenated. This principle applies
to all visual feature categories in the following.

Texture Properties of image texture like coarseness and orientation can be dis-
criminative cues for concept detection. They are represented using histograms
over Tamura features [TMY78|, or by filtering with banks of Gabor features
at varying orientation and scale (followed by an aggregation of results via mo-
ments) [YHCO7, [YHO8]. As alternative filters, Haar wavelets have been pro-
posed |[CHLT07].

Edges Edges make features that are strongly related to image texture. Descrip-
tors of this category are mostly histograms over the orientation of edges [WLL™07],
which can be extracted using a standard detector (e.g. Canny’s method [Can86]).
A soft version of this feature based on the image gradient is called histogram of ori-
ented gradients (HOG) [DT05], and has also been successfully applied to concept
detection |[CHL™07].
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Figure 2.3: An illustration of a patch-based approach (images from [SREZ05]): given
training images (a,b) showing instances of an object category (here, faces), a patch-based
approach learns the most discriminative local patches (c) for an object class (here, eye
and forehead).

Patches Over the last years, patch-based descriptions have become popular in
computer vision research, which replace global image-level features (like color his-
tograms) with representations based on collections of local image parts. With this,
a higher robustness can be achieved with respect to deformations, clutter, and par-
tial occlusions. An illustration of a typical approach is given in Figure [2.3] where
local patches associated with the concept “face” are displayed. These patches are
learned from unsegmented training images despite significant background clutter.

This development is based on novel feature detectors and descriptors with
strong invariance and robustness properties, which allow to detect and match
similar features even in case of strong changes of scale, illumination, and view-
point [BTvG06, [KBO1, [Lin98, Low04, MCMPO2, [IMS04]. Overviews and quanti-
tative evaluations of local features can be found in the literature [Rot08], Mik03]
[SMBO0Q]. Recognition systems that are based on these methods have been stud-
ied intensively in computer vision research over the last decade [BWP00, DKNO5,
[EEP05), [FPZ03, [SZ03, TVNS02].

Outstanding popularity has been achieved by a data-driven discretization of
visual features in a clustering process, which is usually referred to as the bag-
of-visual-words (or bag-of-features) model [FFP05) [SREZ05, [ZMLS07).
This approach draws an analogy to the well-known bag-of-words representation
from text processing [Lew98]: just like a document is represented by counts of
occurrences of words, a visual document (or image, respectively) is represented
via counts of wvisual words, i.e. categories of image patches. These categories are
typically estimated using a clustering (an alternative is a supervised training on
patches manually drawn from segmented image regions, as for van Gemert et al.’s

protoconcepts [yGVT06]).
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Models based on the resulting descriptors have demonstrated an excellent per-
formance in object category recognition benchmarks [EZWvGO06], and have also
recently been applied successfully to concept detection in video [JNY07, [SZB0S]|
vdSGS08§].

Motion While all features above are extracted from static keyframes, some pre-
vious work exists that employs the dynamic content of video in form of motion
features. These are usually extracted from 2-dimensional motion vectors in the
image plane, which can be obtained using a tracking of sparse features [TK91] or
a dense estimation of optical flow [BB96]. For video content, such motion fields
are also directly encoded in the video stream, which can form the basis of fast,
compressed-domain features like motion histograms [ACAB99, IMZ03]. Such fea-
tures have also been demonstrated to improve concept detection compared to static
image descriptions [HNO7, [USKB07, [USKBO08a, [Sno07].

A related idea of capturing dynamic video content is to extend patches [SMBO0]
from static images to spatio-temporal ones extracted from the video volume (the
time domain is included as a third dimension). Interest point detectors are used
which are attracted by points in the video volume showing both salient image
features and motion changes. These have been studied in the context of human
action recognition, and Schindler et al. have also tested them for web video tag-
ging [SZBO§|. Despite these efforts, the concept of motion has been studied to a
limited extent and is not used to its full potential yet. Its further investigation has
been called a key challenge of content-based video retrieval [Sme07].

Text Another valuable clue is text information in video. It appears in the scene
itself (for example on road signs or T-shirts), it is overlayed during post-production,
it is added as meta-data in form of closed captions, or it appears as spoken lan-
guage in the audio track. In all these forms, text provides a strong feature for
concept detection, even if it is degraded due to weaknesses of speech recognition
or OCR [WCGH99).

The extraction of scene text is currently an active research area of computer
vision [Luc05] and has not reached the maturity of being applicable to concept de-
tection. Key burdens are compression artifacts and strong variation of text scale
and design. In contrast to this, overlayed text can be successfully extracted at rea-
sonable recognition rates using optical character recognition (OCR) [WCGH99).
Spoken language can be extracted to some extent using automatic speech recogni-
tion (ASR), which is also used as a feature in TRECVID [HOdJOT].

19



2.3. METHODS

2.3.4 Statistical Models

We use statistical models to make a decision of concept presence based on a video’s
low-level features. Given an input feature vector associated with a keyframe or
shot, a statistical model estimates a numerical score ¢, indicating the presence of
a target concept t. In a probabilistic setting, these scores can be interpreted as
a posterior of concept presence, but this is not necessarily the case, as scores are
often only used for a ranking of items. Usually, the estimation of ¢; is treated as a
classification problem with two classes, concept presence and absence. The model
¢; is learned from a set of samples 21, ..., x,, € R? with labels y1,...,y, € {—1,1}
indicating concept presence. A variety of models has been suggested in the pattern
recognition literature [DHS00]. Since a full survey is far beyond the scope of this
thesis, only the approaches most frequently used in concept detection are briefly
outlined in the following.

e Support Vector Machines (SVMs): Support Vector Machines are one
of the most widely used classification algorithms today. They are also a pop-
ular choice in concept detection, which is empirically motivated by excellent
results obtained in standard benchmarks [KOO0g].

SVMs are based on two fundamental ideas. The first one is linear maximum-
margin classification, i.e. the decision boundary separating classes is chosen
to be a hyperplane maximizing the distance from the training samples x;.
The second idea addresses the fact that in many practical situations non-
linear decision boundaries are required. This is achieved by mapping samples
x; to a potentially high-dimensional space H using a function ® : R4 — H.
As only the computation of the inner product K(z,y) := (®(z), ®(y)) is re-
quired, we can abstract from the space H and only compute the similarity
(or kernel) K, which has been referred to as the kernel trick. An in-depth
introduction to SVMs and their theoretical properties can be found in tuto-
rials [Bur98] and in the literature [SSO1].

e Maximum Entropy: Like SVMs, Maximum Entropy follows the idea of
discriminative classification, i.e. the decision boundary between classes is
modeled directly. However, while SVMs choose this decision boundary by
margin maximization, Maximum Entropy follows a different strategy: train-
ing data is used to impose constraints on the class posterior P(c|x), but
P(c|z) is chosen to be as uninformative as possible otherwise. This can lead
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to a posterior of the form:

1
P(c|lz) = — €Xp ()\0 + Z)‘i . mi) .

3

where x is the input sample, ¢ the class, and A\ a parameter vector. An
introduction to the approach can be found in [NLM99]. The method has
been applied to concept detection [ABCT03| and image annotation [JM04].

e Nearest Neighbor (NN): nearest neighbor matching [DHS00] offers a sim-
ple, transparent, and intuitive approach: a sample is classified by finding the
most “similar” training samples and adopting their class labels. More pre-
cisely, if finding K such nearest neighbors z, ..., 2% with labels y1, ..., ¥},
the posterior for class c is set to:

{jly; = e}l
P(c|z) =~ %

A number of other models has been employed for the annotation of still im-
ages, but has not (or only marginally) been investigated for video to the best of
the author’s knowledge. Examples include generative mixture models [CCMV07],
topic models [FEP05, [MGP04], or relevance models [FML04] [LLMO03].

2.3.5 Intra-Concept Fusion

Different keyframes of a video, features associated with them, and statistical mod-
els provide different concept scores. To combine this information to a global score,
two general strategies exist: First, early fusion, where different features are con-
catenated before classification. While this strategy offers the benefit that all infor-
mation is available to the classifier simultaneously, the combined feature vectors
can be high-dimensional, such that the resulting methods are often inefficient and
prone to overfitting. Late fusion offers a simple alternative by applying keyframe-
or feature-wise classifiers and combining their scores. To do so, several strategies
have been suggested:

e Simple heuristic schemes that set the fused score to the maximum, min-
imum, median, product, or mean of the input scores. Such combinations
are simple and fast to compute. They can be motivated by a probabilistic
interpretation under score independence (for the product rule [LH02]), or by
a high robustness to incorrect outlier scores (for the sum rule [KHDMO9S]).
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2.4. LEVELS OF SUPERVISION

e Re-ranking methods, which do not operate on scores but fuse several
ranked retrieval lists to a final output list. This fusion can be done by
minimizing an average distance with respect to the input lists, or by treating
rank as a score as by Borda’s method and variants [vES00].

e Classifier combination: more generally, intra-concept fusion can be seen as
a combination of classifiers, for which we can refer to a variety of well-known
techniques. For example, Lin and Hauptmann apply standard classification
methods to the input scores [LH0O2]. Other possibilities are stacking, cascad-
ing, or boosting [DHS00, Ch. 9]. The benefit of these techniques is that —
since they are supervised and employ class labels — irrelevant features can
be identified and given lower influence on the final score.

2.3.6 Inter-Concept Fusion

So far, we have addressed the design of an independent detector for each concept.
In practice, however, the occurrence of tags can be strongly correlated: for exam-
ple, the presence of the concept “car” is heavily related to the presence of “outdoor”
and “street”.

It seems reasonable that concept detection should take this information into
account. As a joint detection of concepts is infeasible due to combinatorial prob-
lems, inter-concept correlation is usually modeled in an additional postprocessing
step referred to as inter-concept fusion [WLLT07|. This can be seen as another
classification problem, where concept-wise scores serve as input features and an
overall score is to be computed. For this purpose, neural networks have been
tested [DZ07], and Jiang et al. [JCLOT] propose a probabilistic formulation based
on conditional random fields with potentials over concept pairs.

Overall, it has been demonstrated that concept detection can be improved
significantly using a context-based fusion step. Correspondingly — though it is
not the focus of this thesis and will be omitted in the following — it should be
kept in mind that inter-concept fusion could still be added as a post-processing
step.

2.4 Levels of Supervision

So far, the setup and internal structure of concept detection systems have been
characterized. Particularly, the use of adequate statistical models over content-
based features has been pointed out to be a key component. All statistical mod-
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CHAPTER 2. AN OVERVIEW OF CONCEPT DETECTION IN VIDEO

els outlined so far require training frames x1,...,z, with associated class labels
Y., yn € {—1,1} indicating concept presence. This approach is referred to as
supervised learning.

Note that — as the number of target concepts is large — the effort associated
with acquiring labeled training data is enormous. Therefore, the key question
addressed in this thesis is whether we can acquire alternative information sources
such that concept detector training can be performed with lower annotation effort.
This alternative information might come in form of more samples z; and labels y;.
In this case, we remain in the standard supervised learning setup. However, other
kinds of information might be of interest as well:

e Presence / Absence of Image Segmentation: Often, a concept in an
image or frame is not related to the whole picture, but only to a certain
region in it (like “faces” in a portrait picture). The rest of the image is
background (or clutter) which is weakly related to the concept or not at all.
Note that the standard setup mentioned above does not provide us with the
information where in the image the concept appears, i.e. concept learning
must be robust with respect to clutter.

Alternatively, if training images came with additional segmentation infor-
mation, the learning of concept models could be simplified (as clutter has
no influence) and better concept detectors could be expected. For example,
Snoek et al. [SWGT06] train a small set of generic concepts on segmented
images.

e Presence / Absence of Temporal Segmentation: An analogy to im-
age segmentation can be drawn for the temporal dimension of video. For
training, a concept detection system is usually given a set of frames with
labels indicating for all of them whether the concept appears or not. While
this information can be difficult do provide, alternatively, we might give the
system long video clips and only tell it whether the target concept appears at
some time in a video, but not when ezxactly. Compared to the supervised sce-
nario above (where each frame needs to be labeled), this setup would require
significantly less annotation effort.

Note that both these definitions take additional structure of video content into
account, namely the fact that frames are composed of pixels, and the fact that
frames come in temporal sequences. This information cannot be modeled using a
plain supervised learning setup with frames as samples and frame-level labels.
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2.4. LEVELS OF SUPERVISION

Therefore, one focus of this thesis is to drive concept detection towards less
supervision by employing information beyond keyframe level. Thereby, the under-
standing of “supervision” is a practical one: when referring to weakly supervised
concept detection, I mean that less manual annotation effort is involved in system
training or that concept detection is improved at no extra cost. This does not
necessarily refer to the fact that fewer labels are provided — it can simply mean
that label information is acquired from other sources (Chapter , that labels are
coarser (Chapter [4)), or that additional segmentation information is inferred auto-
matically (Chapter @
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Chapter 3

Concept Learning from Web
Video

The effort associated with the manual acquisition of training examples poses a key
challenge to concept detection. To overcome this problem, this chapter suggests
web video as a novel source of training data, offering a scalable and flexible concept
learning. The main contributions of this chapter are!:

1. A system is presented that learns to detect concepts by automatically down-
loading training material from the video sharing web-site YouTube. This
system performs an autonomous learning, which can scale to thousands of
target concepts and keep track of dynamic changes.

2. It is demonstrated that YouTube-based detectors generalize comparably well
to novel target domains as detectors trained on manually acquired training
sets (a moderate relative performance loss of 11.4% occurs [n = 917,662]).

3. It is shown that YouTube content can complement manually acquired train-
ing sets and improve generalization capabilities (relative performance im-
provement 11.7% [n = 917,662]).

From these results, I draw the conclusion that web video cannot only complement
manually acquired training data, but can replace it entirely when generalizing to
new domains. This way, a detection accuracy comparable to the state of the art
can be preserved, and manual annotation effort is overcome.

IThis chapter is based on the author’s work in [UKSB08, [USKB07, [USKB08al, [USKB09]
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3.1 Introduction

Several applications in video retrieval — like search or recommendation — are
based on textual representations indicating the presence of semantic concepts,
like objects, persons, locations, and activities. In many practical situations, such a
textual description is not at hand, and a complete manual labeling is infeasible due
to the enormous size of today’s video databases. To overcome this problem, concept
detection (or video tagging) systems have been developed that automatically infer
the presence of concepts directly from the video content.

While concept detection has been implemented in research prototypes [CHL™07,
YuaO7, [Sno07], it has not been applied in practical large-scale settings yet. A key
reason for this is that state-of-the-art systems are based on supervised machine
learning techniques, and that these techniques require video content labeled with
target concepts for training purposes (an overview of the most frequently used
approaches has been given in Chapter . Currently, this training information is
acquired manually, i.e. operators annotate video data according to precise visual
criteria [NSTT06]. The quality of the resulting training content is high in the sense
that the annotated concepts are carefully selected with respect to usefulness and
feasibility of detection, that clear, restrictive definitions of concepts are specified,
and that a precise annotation is done on shot level [NST™06].

On the downside, the effort associated with such data acquisition is enormous:
first, each target concept may be visually complex and thus require hundreds of
training samples. Second, the number of tags to be learned is high (in the range of
thousands) [HYLO07]. Finally, concept detection systems tend to overfit to training
sets and generalize poorly to video content unseen in training, a problem that
is even more severe if a switch between different video domains takes place (for
example, from news video to home video) [YHOS].

While concept detection research has strongly focused on news video so far,
other web-based video collections have emerged over the last years, like YouTube?,
Blinkx®, Myspace*, and many others. These services allow users world-wide to
share all kinds of video, ranging from TV news and documentaries over movie
scenes to home user content, like holiday clips or video blogs. Also, they have set
the platform for entirely new genres like interactive web-based series [Pat08]. For
retrieval purposes, these portals rely on textual descriptions and keywords (tags)
provided by users during video upload.

2http://www.youtube.com
3http://www.blinkx.com
4http://www.myspace.com
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Web video offers a large-scale, publicly available information source enriched
with tags and descriptions, which are provided by a community of millions of users.
The key idea of this chapter is to employ this information for concept learning. A
system is presented that implements this approach and performs a visual learning
from YouTube (correspondingly, the prototype is named TubeTagger). When trig-
gered to learn a concept, the system downloads videos tagged with the concept
and uses them for training. This way, web video can complement other training
sets or substitute them entirely, such that an autonomous concept learning free of
manual annotation effort takes place.

On the downside, training on web video poses a difficult challenge compared to
learning from state-of-the-art datasets specifically acquired for research purposes.
This is due to the enormous diversity of web video material, and due to its coarse
and unreliable label information. Therefore, the key question addressed in this
chapter is whether — using a state-of-the-art concept detection approach — visual
learning from web video can be successful. To answer this question, a quantitative
evaluation is presented in which the TubeTagger prototype is trained and tested
on a variety of video data, including web video as well as standard datasets from
the TRECVID benchmark [SOKO06]. In these experiments, it will be demonstrated
that concept learning from web video is feasible, and that YouTube-based detectors
generalize comparably well to different domains as the ones trained on manually
acquired data.

The chapter is organized as follows: First, an overview of standard datasets
and annotations is given, and benefits and limitations of manual training data
acquisition are discussed (Section . Second, the idea of concept learning from
web video is introduced in more detail (Section [3.3). Related work in the context
of learning from web data is presented in Section The TubeTagger prototype
is introduced in Section [3.5] and quantitative experiments are described in Section
A discussion concludes the chapter (Section [3.7)).

3.2 State of the Art

The machine learning techniques underlying concept detection systems require
training sets of video data with labels indicating the presence of target concepts.
The standard approach is to acquire this information manually. As this is a time-
consuming (and thus cost-intensive) process, the research community has estab-
lished joint annotation efforts on standard datasets [NST ™06, [KOO0S|, [AQ08]. This
information is shared for evaluation purposes, which allows a straightforward com-
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parability of results and makes it possible for researchers to participate without the
overhead of manual labeling. Concept detection has made large steps forward due
to this approach, and significant progress on increasingly difficult datasets could
be recorded over the last years [KO05], [KO0OG, [KO07, [KOOg].

3.2.1 Datasets

Standard datasets for concept detection have been acquired for evaluation pur-
poses in the TRECVID benchmark [SOKOG] or by related efforts from inside the
research community. The resulting datasets are of a high quality in the sense that
precise shot-level annotations are provided according to relatively clear criteria,
and that concepts are selected with respect to a feasible detection. Fore example,
operators assign labels on shot-level according to definitions like “shots that take
place (outdoors) at night. [...] Excluded are sports events under lights” (concept
“nighttime”, LSCOM dataset [NSTT06]).

Since the focus of TRECVID has long been on news video, concepts are often
chosen to be characteristic for this domain [NSTT06]. Accordingly, annotations
are provided on news video data, which applies for all of the following datasets:

e TRECVID: TRECVID’s “High-level Feature Extraction” task addresses
concept detection as a building block of video retrieval. Each year, par-
ticipating research groups submit detection results for a small number of
concepts (usually 10— 20), which are then manually assessed on video collec-
tions of news or documentary TV. The resulting pool of annotations is made
publicly available®.

e LSCOM: Concept detection researchers do not only use common video data,
but have also designed common vocabularies of semantic concepts to be de-
tected. One such vocabulary called LSCOM (Large-scale Ontology for Multi-
media) has been created in 2005. It consists of 1,000 concepts enriched with
semantic relations forming a multimedia ontology. Concepts for the lexicon
were manually selected by a consortium from research and industry accord-
ing to the following criteria [NSTT06]: (1) utility — concepts should support
typical real-world retrieval use cases (2) coverage — the semantic space of
potential user interest should be covered well (3) feasibility — an automatic
detection of concepts from video content should be possible in general, and
(4) observability — concepts should occur frequently in standard datasets to

Shttp://www-nlpir.nist.gov/projects/trecvid /trecvid.data.html
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Detecting the Concept "Dog"
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Figure 3.1: Detecting the concept “dog”. (a) Sample pictures showing dogs (left) or
not (right). Strong intra-class variation can be observed. (b) The equal error plotted
against the number of training samples (n = 4, 000, please note the logarithmic z-scale).
Recognition error converges at several hundreds of training samples (pictures taken from
petfinder.com and Flickr).

allow for statistically significant benchmarking results. Annotations on the
TRECVID’05 video data are available for 449 concepts [LSC].

e LSCOM-lite: As an interim result of the LSCOM effort, a smaller test
vocabulary called LSCOM:-lite has been published [NKKT05]. 39 concepts
related to news video retrieval were selected in order to cover a diversity
of potential user interest. Concepts include program categories (“weather”),
scene settings (“outdoor”), objects (“airplane”), and activities (“people run-
ning”). Annotations on the TRECVID’05 video data are available [LSC].

e Mediamill: Researchers from Amsterdam University have designed a chal-
lenge problem for a component-based evaluation of video retrieval called
Mediamill Challenge [SWvGT06]. The challenge provides a lexicon of 101
concepts obtained by enriching the 39 LSCOM-lite concepts with further
sample tags. Detectors, baseline results, and extensive annotations are pro-
vided on the TRECVID’05 video collection.
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3.2.2 Limitations

The manual acquisition of datasets like LSCOM can be considered state-of-the-
art in concept detection research, and joint community effort has lead to concept
vocabularies of hundreds of tags. Further, a high comparability of research results
has been achieved and driven the field towards an applicability in practical video
search scenarios. Yet, concept detection remains strongly limited by the cost and
time associated with manual annotation.

This is due to several reasons. First of all, the intra-class variance of many
concepts is high. For example, pictures showing the concept “dog” vary significantly
with background clutter, object pose, camera perspective, and lighting. Further
variation occurs between instances of a concept, like in the case of “dog” between
different breeds. The consequences for concept detection are illustrated in a small
experiment: a training set of images showing dogs was acquired from the web®
and classified against non-dog pictures randomly sampled from Flickr. A state-
of-the-art concept detection approach was applied (visual word features, SVM
classifier — for details, please refer to Section 7 and the equal error rate was
measured on a held-out test set of 4,000 images. Sample pictures and results
are given in Figure It can be seen that the error (averaged over 5 runs of
resampling) decreases with a growing number of training samples. For example by
increasing the training set size from 100 to 2000, classification error can be reduced
by 40%. This indicates that — for state-of-the-art methods and semantic concepts
of intermediate complexity — training sets of several hundred positive samples are
required. Annotating datasets of this size is a time-consuming task: estimates for
labeling a single concepts are in the range of 15 — 45 hours, as has been reported
in TRECVID’08 annotations” and confirmed in experiments conducted for this
thesis. For the LSCOM effort (where annotations for a vocabulary of 449 concepts
were acquired) a cost of 6,000 man hours has been reported [KHNT06].

Further, the number of concepts required for practical applications like video
search is high, as a wide range of potential user queries needs to be covered by
concept detectors. For example, Chang et al. [CHJT06| reported that increasing
concept lexicon size from 39 to 374 concepts improves the number of queries to
be answered by 50% and the overall retrieval performance by 100%. An outlook
on what numbers of concepts might ultimately be required for practical high-
quality video search is given by Hauptmann et al. [HYLO7]. It lies in the range
of 3,000 — 5,000 concepts, and has been restricted to the domain of news video.

Shttp://www.petfinder.com
"http://mrim.imag.fr/tvca/
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While for general-purpose video search a significantly higher number of concepts
is probably beneficial, current prototypes utilize no more than a few hundred
concepts [NSTT06, [YCKHO7] simply because training sets are time-consuming
and cost-intensive to acquire.

When taking these facts into account, it is obvious that — though techniques
for reducing the annotation effort exist based on active learning [AQ07] — an
explicit annotation of training datasets is impractical. Even if we could acquire
annotations for thousands of concepts, significant drawbacks remain. One prob-
lem is that ground truth annotations are always bound to an underlying video
dataset. Current concept detection systems are mostly trained on specific news
TV programmes and only perform well on this data source. It has been demon-
strated that systems tend to learn degenerate nearest neighbor solutions, i.e. they
simply memorize shots and strongly overfit to the datasets they are trained on.
Correspondingly, the generalization capabilities of concept detectors are severely
limited [YHOS], even between different news channels. To some extent, this prob-
lem can be overcome using cross-domain techniques [CIYZ07, YYHO7], which
adapt classifiers trained on a source dataset using only few annotations on the
target domain. These techniques have been tested when switching between dif-
ferent news channels [YYHO7] and different genres like news vs. documentary
programme [CJYZ07]. Yang et al. [YYHO07] and Chang et al. [CIYZ07] report
improvements by cross-domain adaptation steps. Yet, generalization capabilities
— and with it the utility of manually acquired training data — remains limited.

Another severe problem is that annotations are static, and so are the concept
detectors trained on them. In contrast to this, the world’s video content and users’
information needs are constantly evolving. New concepts of interest pop up, like “9-
117, “secondlife”, or “Barack Obama”, and concept detection systems should adapt
accordingly. Keeping track of these changes is infeasible using explicit manual
annotations.

3.3 Web Video as Training Data

In the last section, it has been pointed out that state-of-the-art concept learning
is performed on small-scale sets of manual annotations. The limitations of this
approach with respect to the scalability and flexibility of concept detection have
been discussed.

In the following, a different data source for concept detector training is inves-
tigated, namely web video. Web video is a rapidly growing market, which has
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Figure 3.2: Concept learning from web video: a system autonomously downloads a
set of training videos from portals like YouTube. From these videos, statistical models
for the appearance of semantic concepts are learned, which can then be applied to tag
previously unseen videos.

brought up new forms of interactive, highly dynamic video databases linked with
textual descriptions and discussions. These portals — YouTube, Blinkx, Myspace,
and many others — host content ranging from TV news and documentaries over
movie scenes to home videos, like holiday snapshots or video blogs.

From a video retrieval perspective, web video has only been subject to limited
study. Yet, it is highly interesting both as an application and as an information
source for concept detection. When viewing it as an application, concept detec-
tion could offer an improved keyword search, help to group videos into semantic
categories®, or support users with tagging their videos. As an information pool,
web video offers a large-scale dynamic source of video data, which is enriched with
label information provided by a large community of users.

Surprisingly, web video has not been subject to intensive research so far. Only
a few contributions regarding web video as an application exist [SZB08|, [ZMZP0g],
and as a source of training data it remains unstudied. To fill this gap, this chapter
investigates web video for concept detection. This setup is illustrated in Figure[3.2
when given a target concept to be learned, the concept detection system acquires
a collection of training videos from web portals like YouTube. Tags associated
with this content can be used as ground truth labels for concept detector training:
if a video clip is labeled with the target concept, it is used as a positive training
sample, otherwise it is used as a negative one. Based on this information, machine
learning techniques build statistical models for the appearance of each target con-
cept. When applying these models to a previously unseen video, scores can be
inferred that indicate the presence of target concepts.

8http://www.scils.rutgers.edu/conferences/mmchallenge/2009/02/02/google-challenge/
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Figure 3.3: Quantity of training material obtained from YouTube for some randomly
selected Mediamill concepts [SWvG™06].

The main characteristic of this setup is that an entirely autonomous concept
learning is performed, and only minimal manual interference is required. This
offers two fundamental benefits:

e Scalability: Concept detection can seamlessly scale up to thousands of con-
cepts if enough processing power is available.

e Flexibility: Web video portals are highly dynamic, with users uploading
20 hours of video every minute [Jun09]. This content is astonishingly up-
to-date: for example, clips of the opening ceremony of the Olympics Games
2008 in Beijing were available a few hours after the event. As web video is
constantly updated by its users, the concept detectors trained on it can keep
track of new interesting concepts.

To realize such a concept learning, a sufficient quantity and quality of training
data must be obtained from web video portals. In the following, a brief discussion
of these two issues will be provided. Experiments presented later in this chap-
ter (Section |3.6) will then provide quantitative results of concept detection when
training on web video.

3.3.1 Quantity of Training Data

Web video portals offer a tremendous, constantly growing amount of video data.
For example, the market leader YouTube hosts 83.4 Mio. videos [YOU], and 65, 000
new clips are uploaded each day [USA06]. However, the distribution of concepts
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present in this material is highly biased towards popular tags (like “funny”; “love”,
or “girl”), and it is not clear a priori whether enough material can be obtained for
the training of certain target concepts.

Therefore, a small experiment was conducted for two standard sets of concepts
(20 concepts from the TRECVID’08 benchmark [KOOQ8], and 101 concepts from
the Mediamill Challenge [SWvGT06]). Each concept was manually assigned a
canonical YouTube category to obtain training data of higher quality. For exam-
ple, the concept “sailing” was restricted to the category “Travel&Places”, such that
erroneous content like the music video by Rod Stewart (category “Music”) was not
downloaded. The YouTube API? was used to download videos for each combina-
tion of category and concept, obtaining up to 1,000 video clips per concept (this
upper limit is imposed by YouTube). For the resulting content, the number of
shots per concept was estimated by multiplying the video length with the average
number of shots per minute (4.79, estimated on a set of 2,200 YouTube videos).
Figure plots the estimated number of shots obtained for some random sample
concepts. It can be seen that a fair amount of content can be obtained for most
concepts (9,031 on average). This quantity is significantly higher than the num-
ber of samples used in the TRECVID’08 and Mediamill datasets themselves (1,667
annotations). Some outliers occur: for the concepts “two_people” (21,337 shots)
and “meeting” (37,291) many shots can be obtained, and for the concepts “over-
layed_text” (401), “waterscape” (569), “Emile_Lahoud” (530), “Duo_Anchor” (107),
and “Tyad_Allawi” (988), less than 1,000 shots were found. Generally, this experi-
ment reveals that web video portals offer a sufficient quantity of training content
for typical concepts of interest, and that significantly more training content can be
acquired than currently used in standard benchmarks. When inspecting the results
on a per-concept basis, it also becomes clear that the amount of available material
is strongly correlated with user interest. YouTube users tend to upload videos
that they find interesting, surprising, funny, or worth presenting otherwise. This
can cause problems for certain concepts. For example, the tag “overlayed_text” is
given infrequently — though overlayed text appears very often, the tag is simply
not used. Other concepts like “waterscape” may not be found interesting enough
for filming, editing and uploading videos about them.

3.3.2 Quality of Training Data

While the last section provided a purely quantitative analysis of web video content,
it did not address the question whether its quality allows a successful concept

9http://youtube.com/dev
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learning. In the following, an informal discussion on this issue is provided based
on a visual inspection of web video content, and key problems for concept learning
are pointed out.

The first and most prominent observation is that web video shows a high vari-
ability of production style. Portals like YouTube host almost all kinds of video,
ranging from TV snippets to home video. The purpose of this content may be to
entertain, to inform, to educate, or even to shock. The target audience can range
from a few close friends to a broad world-wide community. Correspondingly, the
budget and time invested into the production of a clip may vary significantly, as
well as other important parameters such as camera and coding quality. Doubtlessly,
all this affects the visual appearance of a video, and with it the concept detectors
trained on it.

Second, web tags are coarse: users only provide tags information on clip level,
and no shot-accurate label information is given. For example, imagine a user
producing a video of his latest sailing trip. Though the video is labeled “sailing”,
it may also show content that is not visually related to sailing, like trips to towns
and nightly parties.

Third, tags are subjective and context-dependent: while standard datasets are
annotated according to precise visual criteria, the motivation with which YouTube
users assign tags to their clips can be very subtle. For example, a YouTube
search for videos tagged with “airplane” returns many shots of airplanes, but also
videoblogs about airplane safety, instructions to build paper airplanes, and views
from inside an airplane cockpit. Inferring the presence of the concept “airplane”
from this visual content may require extra knowledge or may simply be impossible.
Obviously, these characteristics of web video content have an influence on concept
detectors. Accordingly, web-based concept learning can be characterized as...

e ...A Weakly Supervised Learning Problem: While the strong annota-
tions used for current concept detection systems guarantee that a concept ap-
pears in a shot, web tags are subject to label noise. This is illustrated in Fig-
ures for the concept “boat_ship”: compared to sample frames from a stan-
dard dataset (TRECVID’08), training material downloaded from YouTube
contains significant amounts of non-relevant content. We will address the
issue of weak labels more explicitly later (Chapter [4)).

e ...A Cross-domain Learning Problem: Another problem is that web
video may differ significantly from the material that concept detection is
applied to. For example, concept detectors resulting from training could
be applied to news video. In contrast to this target domain, web video
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Figure 3.4: Concept learning from web video as a weakly supervised learning problem
and as a cross-domain learning problem: illustrations of training samples for the concept
“boat_ship” are given when (a) using a standard training set (TRECVID’07), and (b)
using web videos downloaded from YouTube. The web video training set shows significant
label noise. (c) Filtered frames from YouTube that have been manually assessed to show
the concept. Domain differences between the standard dataset ((a), mostly ships) and
YouTube ((c), mostly rafting) can be observed.

is a mizture of several video sources, including news video as well as home
video, documentaries, etc, and is has been reported previously that significant
performance loss is to be expected when generalizing from one domain to

another [YHOS].

Due to these two reasons, concept learning from web video content can be
considered a challenge of significantly higher difficulty than training on manual
annotations. Yet, web-based concept detection is appealing due to its benefits
regarding scalability and flexibility. Therefore, this chapter will address the ques-
tion how much performance degredation is to be expected by replacing expensive
high-quality datasets with weakly annotated web video content.

3.4 Related Work - Concept Learning
from Web Data

Related work on web-based data sources has been targeted at images, video, and
also text. For all these modalities, web data provides content at a large scale
and interesting application areas — tasks like image and video search, recom-
mender systems, and content filtering could benefit from the automatic infer-
ence of semantics. Finally, web data can also be viewed as real-world and un-
biased: for example, earlier object recognition benchmarks (which have been criti-
cized as overly simplifying ﬂmm have been replaced with data acquired from

Flickr [EZWvG06, PBE*06].
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Overall, though web-based data has not been exploited to its full potential so
far, the research community has recognized the benefits, and visual recognition
on web content is an emerging field'?. First approaches have been developed for
visual learning from noisy datasets of web images. For this purpose, topic models
have been suggested [FFEFPZ05, LWFF(07], which identify visual aspects related
to objects and separate them from the ones associated with non-relevant images.
A similar approach by Yanai and Barnard [YB05] uses Gaussian mixture models
over segmented image regions. Pictures acquired from Flickr or image search en-
gines have also been used to complement manually annotated training data for
the video domain |[CHJ"08], and it has been studied under which conditions this
can be successful [KCKO06] (for example, if a low number of manually annotated
training samples is available). This chapter will demonstrate that a similar use of
web video is possible. Beyond this, it will also be shown that we cannot only sup-
plement manually acquired data, but that we should drop a cost-intensive manual
annotation for cross-domain concept detection.

Researchers have also investigated the textual annotations of web video and
images as a knowledge source. Negoescu and Gatica-Perez [NGP0O§| applied topic
models to image tags to analyze photo groups at Flickr. Based on their model, a
keyword search for groups can be realized. Haubold and Natsev [HNO§| employed
web-based text corpuses for an improved semantic reasoning.

Web video — which is the focus of this chapter — is just beginning to attract
researchers’ attention. Zelnik-Manor et al. [ZMZP08| and Schindler et al. [SZB0S]
presented studies on shot boundary detection and categorization of web video
content, and emphasized the difficulty of the domain due to enormous content
variance and weakness of labels. Chang et al. [CEJT07| presented a study targeted
at consumer video, which also included material downloaded from the web. Yang
et al. have presented a multi-modal recommender system for web video [YMH™07].
All this work is targeted at web video as an application domain for video retrieval.
This chapter includes similar results for concept detection, but addresses web video
not only as an application field but more generally as an information source for
concept learning.

10JEEE Workshop on Internet Vision, ICME Workshop on Internet Multimedia Search and
Mining
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Figure 3.5: The TubeTagger prototype: using training material downloaded from
YouTube, models of concept appearance are learned in several feature pipelines. These
models are then applied to previously unseen videos, obtaining concept-specific scores.

3.5 The TubeTagger Prototype

This section describes a prototype that implements the idea of concept learning
from web video. The system learns to tag videos by autonomously training on con-
tent downloaded from the portal YouTube and has thus been called TubeTagger.
The key novelty of the approach lies in the data used for concept learning (Tube-
Tagger is the first concept detection system learning from YouTube). Regarding
aspects of system architecture, feature representations, and statistical models, best
practice in concept detection is followed closely. The system pipeline is illustrated
in Figure [3.5] TubeTagger can be run in two modes, one for training concept
detection models and one for applying them to previously unseen videos. In train-
ing, the system is given a semantic concept by the user and downloads training
videos from YouTube (alternatively a conventional manual data acquisition is pos-
sible). These videos are preprocessed, i.e. shot boundary detection is performed
and keyframes are selected. Keyframes and shots are fed to four feature pipelines,
each employing visual features of a certain type (for example, color histograms).
In each feature pipeline, a supervised classifier is trained, whereas keyframes from
videos tagged with the target concept serve as positive samples and frames from
all other videos as negative ones.

To detect a target concept in previously unseen videos, the same preprocessing
and feature extraction are conducted. Feature-specific scores indicating concept
presence are obtained from all keyframes and feature pipelines, and are fused to
obtain the final concept score. The system components are described in the order
of processing in the following.
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3.5.1 Training Data Acquisition

TubeTagger can be run in two modes of training data acquisition: first, the user can
provide video data with manually acquired annotations, similar to other concept
detection systems. This setup will be used for quantitative comparisons in later
experiments.

Alternatively, TubeTagger can contact YouTube for training material and de-
rive class labels from user-generated tags. In this case, only a textual description of
the target concept must be provided. Optionally, the quality of training material
can be improved using the fact that videos at YouTube are organized in categories
such as “Sports”, “Travel&Places”, or “People&Blogs”. This is done by restricting
video downloads to a certain category.

3.5.2 Shot Segmentation and Keyframe Extraction

Each input video is segmented into shots, and for each shot representative keyframes
are extracted. This reduces data load significantly but also causes a certain infor-
mation loss. Correspondingly, keyframe selection should adapt to the content of
a video: for long shots containing strong scene activity, multiple keyframes might
be appropriate, while short or static scenes can be represented by a single frame.
For this purpose, an adaptive two-step procedure is used. First, the video is
segmented into shots by thresholding differences of MPEG-7 color layout descrip-
tors (CLDs) [MOVYO0I]. Second, for each of the resulting shots, a clustering is
applied similar to the one by Hammoud and Mohr [HMO00]: a Gaussian mixture
model is fitted using a K-Means clustering over frames. For each mixture compo-
nent, the frame next to the cluster center is extracted as a keyframe. The optimal
number of components is determined using the Bayesian Information Criterion
(BIC) [SchT8]. The resulting method gives 1 — 5 frames per shot depending on the
visual content (an average of 1.75 was estimated on a set of 2,200 video clips).

3.5.3 Feature Pipelines

Like most concept detection systems [WLL™07, [YCKHO7, [Sno07], TubeTagger
employs several visual features and statistical models. Four types of features and
models are integrated in feature pipelines Fi, ..., Fy. Each feature pipeline F} rep-
resents a type of visual feature (like color histograms) and gives a specific score
P, (t|z;) for each keyframe z;. The feature pipelines are outlined in the following:
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Pipeline 1 - Visual Words (SIFT)+SVM This patch-based approach uses
the popular bag-of-visual-words representation [DKNO5| [FFFPZ05] [SZ03|, which
clusters local features according to their appearance into patch categories called
visual words. From an input image I, a set of local patches is sampled using an
interest point detector [SMBO0] or random or regular sampling [NJT06]. Patch
are represented by local descriptors fi, ..., fx, which are matched with a codebook
of representative patch prototypes f, ..., f/, obtained from a clustering of patch
descriptors. This gives a sequence of patch category entries (so-called visual words)
Cly...,CK:
cp = argmin || fr, — fi|2
j=1,....m

The frequency with which visual words appear in I is stored in a histogram

zb, ..., x™, the so-called bag-of-visual-words feature:
n
v = Z d (.]7 Ci)
i=1

The model draws an analogy to the well-known bag-of-words model from text
retrieval [Lew98]. It provides a good tradeoff between a robust description on the
one hand and computational feasibility on the other. Some sample visual words
are illustrated in Figure it can be seen that the patches belonging to a
visual word share a common appearance, and sometimes also coherent semantics:
for example, some visual words tend to contain parts of faces (line 4) or facets
of the horizon (line 5). Obviously, their presence in an image is an indicator of
semantic concepts such as “interview” or “outdoor”.

By combining bag-of-visual-words features with SVMs [SSOI] as a statisti-
cal model, recognition systems have been very successful in a variety of visual
recognition tasks, like object category recognition [EVGW™07], scene categoriza-
tion [LSP06, QMO™07], or the filtering of pornography [DPNOQS]. The method has
also given excellent results on a standard concept detection benchmark [vdSGSO0§].

This bag-of-visual-words approach is also adopted in the TubeTagger frame-
work. Since it has been demonstrated that performance is strongly correlated with
the number of patches per image [NJT06], a dense regular sampling at several
scales is done that gives a large number of 3,600 patches per frame. Each patch
is described by its 128-dimensional SIFT representation [Low04], which consists
of localized gradient direction histograms over the patch area. Optionally, SIFT
descriptors can also achieve rotation invariance by normalizing patches to a canon-
ical angle. However, this normalization is omitted here as many concepts tend to
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Figure 3.6: (a) Visual words from a codebook of visual words (sample patches in a line
belong to the same cluster). Some clusters can be associated with certain semantics (for
example, they tend to contain parts of faces or of the horizon). (b) Sample results of
nearest neighbor matching: two matches for the concepts “dog” and “mountain”. Query
frames are in the top row, nearest neighbors in the bottom one (pictures from YouTube).

come with a characteristic angle and additional invariance reduces the discrimina-
tive power of features. The resulting patches are mapped to a 2,000-dimensional
codebook previously trained using a K-Means clustering.

For each target concept, a two-class SVM is trained using the libsvm implemen-
tation [CLOT]. As a kernel function, the x? kernel is used, which has empirically
been demonstrated to be a good choice for visual word features [ZMLS07]:

2
d x,
X2( y)

K(z,y)=e 2

The scale parameter v is estimated using cross-validation. d,2 is the x? distance
between visual word histograms = and y:

Pipeline 2 - Light-weight Visual Words (DCT) 4+ SVM Like the first
pipeline, this one uses a bag-of-visual-words approach. However, since the ex-
traction of a high number of SIFT features is time-consuming (the standard im-
plementation!! requires about 15 seconds per frame), a light-weight alternative is
investigated based on DCT coefficients associated with video macroblocks. This in-
formation is fast to compute (and is alternatively available in the compressed video

Mhttp:/ /www.robots.ox.ac.uk/ vgg/research/affine/
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dy dy

Figure 3.7: An illustration of motion features: frames are divided into tiles. For each
tile, a histogram of MPEG-4 motion vectors is stored, and all histograms are concatenated
to a motion descriptor. Two histograms are illustrated: one captures the bottom-left
motion of the airplane, one the absence of motion in a background tile.

stream, such that only a partial decompression is required). Patches of size 16 x 16
pixels are sampled at regular steps of size 16, which gives 234 patches per frame.
These are described by low-frequency Discrete Cosine Transform (DCT) coeffi-
cients in YUV color space. A motivation for this description is given in [KO?)], where
DCT base functions are demonstrated to show an strong resemblance with princi-
pal components learned from natural images. The DCT representation can thus be
interpreted as an approximation to Principal Component Analysis (PCA) [DHS00)
without requiring an additional training step. 78 coefficients are extracted for each
block in a zigzag pattern, 36 for the intensity and 21 for each chroma component.
Like in Pipeline 1, a vocabulary of 2,000 visual words is learned using K-Means,
and SVMs with a x? kernel are used as a statistical model.

Pipeline 3 - Color and Texture (“CT”) This feature pipeline uses global
frame-level descriptors based on color and texture. Color is represented by RGB
histograms with 82 bins, and texture by similar histograms over the Tamura tex-
ture properties coarseness, contrast, and directionality [TMYT8]. Both features are
combined using early fusion (i.e. concatenated), obtaining a joint 1024-dimensional
feature vector. As a statistical model, nearest neighbor matching is used as illus-
trated in Figure 3.6} given a keyframe z; and a training set of labeled keyframes
Y, we find the nearest neighbor z/ := argminycy||ly — z;||2, and the score for a
concept t equals a vote for the tag of this neighbor. To realize fast matching, an
approximate search with a kd-tree is used [PPCO1]:

Py (tlai) := 6(t, t(x7))
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Pipeline 4 - MPEG Motion Vector Histograms (“Motion”): For some
concepts, motion can be a more appropriate representation than color or texture.
For example, while the appearance of frames showing the concept “interview” may
vary strongly, interviews may be characterized well by the fact that the interviewee
in the frame center makes occasional gestures, while the background remains static.
A simple feature of MPEG-4 block motion vectors extracted by the codec XViD!2
is used to describe what motion occurs as well as where it occurs. The spatial
domain is divided into 4 x 3 regular tiles, and for each tile a two-dimensional 7 x 7
histogram is computed over the 2D components of all motion vectors in the tile
(vectors are clipped to [—20, 20] x [—20,20]). By concatenating those histograms,
a 588-dimensional descriptor is extracted on shot level. For an illustration, see
Figure Like for color and texture, nearest neighbor matching is used as a
statistical model.

3.5.4 Fusion

From several keyframes and feature pipelines, weak pieces of evidence are obtained
indicating the presence of semantic concepts. These are fused in two steps to obtain
the final concept score P(t|X). First, a fusion over the keyframes z1,...,z, of a
video X is done using the well-known sum rule from classifier combination:

(11 X) = ZPF (t]a;)

This approach outperformed other standard fusion methods (like the max, prod-
uct, and min rule) in previous tests, which confirms earlier theoretical results that
claim a good robustness with respect to noise in the input scores [KHDM98]. Such
robustness is crucial in the context of web video tagging, since many keyframes
may not be visually related to the target concept and thus give misleading scores.

Second, to combine scores obtained from several feature pipelines, a range
normalization of all scores to [0, 1] is applied [NNT05], and the normalized scores
are combined using a weighted sum fusion:

P(t|X) = ijij (] X). (3.1)

The feature weights (wy,ws,ws,wy) € [0,1]* are learned by a grid search opti-
mization on a validation set (the same weights were used for all concepts).

2 www.xvid.org
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Table 3.1: The 22 concepts of the Youtube-22Concepts dataset. Each concept is assigned
a canonical YouTube category to refine the downloaded material.

l concept [ youtube category H concept [ youtube category
basketball | Sports hiking Travel&Places
beach Travel&Places interview News&Politics
cats Pets& Animals race Autos& Vehicles
concert Music riot News&Politics
crash Autos& Vehicles sailing Travel&Places
dancing People&Blogs secondlife Gadgets&Games
desert Travel&Places soccer Sports
eiffeltower | Travel&Places swimming | Sports
explosion How-to&Do-it-yourself || talkshow People&Blogs
golf Sports tank Autos& Vehicles
helicopter | Autos& Vehicles videoblog People&Blogs

3.6 Experiments

In this section, experiments with the TubeTagger prototype are presented in which
the challenge of concept learning from web video is addressed. Two experiments
are conducted in which TubeTagger is trained on YouTube material:

1. Testing on Web Videos: First, TubeTagger is both trained on and applied
to web video content. When used in this scenario, concept detection can
support an automatic content-based indexing and search for web video.

2. Testing on Other Domains: This experiment addresses the question
whether concept detection systems trained on web video can be applied suc-
cessfully to different domains. Here, the system trained on YouTube is tested
on news video and documentary TV, and comparisons with systems trained
on manually annotated standard datasets are provided.

3.6.1 Experiment 1 - Web Video

In a first experiment, the TubeTagger prototype is both trained on and applied to
web video content. The purpose of this experiment is to give a first impression of
the performance that can be achieved when learning concepts from web videos, and
to provide a quantitative comparison of several types of visual features. Tests are
performed on a dataset of real-world web videos downloaded from YouTube, which
is described first. After this, the experimental setup is outlined, and quantitative
results are presented.
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Figure 3.8: Youtube users produce series of videos sharing a common production style.
These keyframes are sampled from different clips but show the same actors and similar
overlayed text. The fact that concept detection systems overfit to such redundant material
leads to biased benchmarking results (pictures from YouTube).

The Youtube-22Concepts Dataset A web video dataset was collected by
downloading YouTube clips for 22 semantic concepts. The concepts were manually
chosen, and no standard concept list like LSCOM or Mediamill was used as a
basis (comparisons with such standard concepts will be outlined in Section.
The following standard criteria [NSTT06] were taken into account when selecting
concepts: (1) feasibility — the semantic concepts should be inferable from the
visual video content. Abstract terms like “love” or “humor” were excluded. (2)
coverage — a variety of concepts should be included, like locations (e.g., “desert”,

“beach”), activities (e.g., “hiking”, “interview”), objects (e.g., “cat”, “eiffeltower”),

and sports (e.g., “swimming”, “soccer”). (3) availability — visually related content
should be available, which was briefly checked by inspecting the first pages of a
YouTube search result. Each tag was assigned to a canonical YouTube category
to improve the quality of downloaded material. See Table for a complete list
of all 22 concepts and categories.

The dataset was downloaded in summer 2007. The top 100 videos were down-
loaded for each tag, obtaining a database of 2,200 clips with a total length of
about 194 hours. The whole set was separated into a training set (50 videos per
concept), validation set, and test set (both 25 videos per concept). This dataset
is referred to as the Youtube-22Concepts dataset in the following. It has been
made available on request!? to support research on web video retrieval (including
video data, YouTube URLs, and all meta-data available).

The Role of Redundancy Videos at YouTube contain lots of redundant con-
tent uploaded multiple times. While some forms of redundancy are easy to identify

B3http://tagmyvids.com/project.html
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(like duplicate videos), others are subtle and difficult to uncover automatically.
Four levels of redundancy can be identified, listed in the order of an increasingly
difficult automatic detection:

e Exact Duplicates: Videos that have been uploaded multiple times, whereas
slight differences of coding quality may occur.

e Near-duplicates: Users upload the same video but modify it slightly (for
example by adding or replacing title strips).

e Shot Re-use: Users recompile popular video scenes, which appear multi-
ple times in collections like “Funniest Soccer Moves” or “Best Harry Potter
Moments”. Here, redundant content appears in different combinations and
compositions.

e Series: Like TV, YouTube hosts actual series of video clips sharing a homo-
geneous production style (for an example, see Figure [3.8)).

Obviously, such redundancy has an influence on benchmarking results: if the
same content appears in both training and testing, a concept detection system
having learned the training version can easily assign the correct tag to the test
version. Note that in some scenarios, this influence is wanted: for example, if
tagging a users’ individual video collection, it seems reasonable to exploit redun-
dancy for a personalized tagging. When targeted at measuring the performance
of general-purpose concept detection systems, however, evaluation results may be
biased by the influence of redundancy, and duplicates should be removed as far as
possible. While this issue is not taken into account in the TRECVID campaign,
at least the first two kinds of redundant material were eliminated here. For this
purpose, a two-step procedure was used. First, duplicates were identified automat-
ically by matching clip signatures of color and motion with an edit distance [ZT06].
Second, near-duplicates were identified as they typically caused suspiciously good
concept scores, i.e. top-ranked clips were compared with their nearest neighbors in
the dataset and were eliminated manually if appropriate (on average, ca. 5 videos
per concept were removed this way).

Performance Measure As a performance measure, average precision (AP) is
used, which is standard practice in concept detection research [KOO0§|. Videos are
sorted by descending concept score, obtaining a ranked retrieval list x1, ..., x,, with
ground truth labels yi,...,y, € {—1,1}. If this list is thresholded at rank T, the
retrieval system only returns videos x1,...,zp. In this set of retrieved items, we
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Tagging Performance on the YouTube-22Concepts Dataset
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Figure 3.9: Quantitative results of YouTube tagging. A patch-based approach using
SIFT features achieves a high performance, which can be improved further using addi-
tional pipelines such as color+texture and motion.

assume to have rp relevant items, and NN relevant items in the whole collection.

Then recall Ry and precision Pr are defined as quality measures of a retrieval
result:

PT :TT/T
RT ZTT/N

Recall measures the coverage of the system’s feedback, whereas precision measures
its purity. Ideally, Pr = Ry = 1. By thresholding at all positions of the ranked
retrieval list corresponding to relevant items, the recall-precision curve is obtained.
The average precision (AP) corresponds to the area under this curve:

1
AP = — > Pr (3.2)
T:yr=1

The average precision measures the quality of the retrieval result for a single
concept. To obtain an overall performance measure, the mean average precision
(MAP) over all concepts is used.
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Figure 3.10: Detecting the difficult concept “beach”. Top: YouTube clips that give the
highest scores. Bottom: false negatives, i.e. beach clips with the lowest scores. Only one
clip is visually related to the target concept (pictures from YouTube).

System Parameters The TubeTagger system was run for all four pipelines de-
scribed in Section SIFT visual words with SVMs (SIFT), their light-weight
DCT equivalent (DCT), as well as motion (M) and color+texture (CT) with near-
est neighbor matching. SVM training requires the estimation of the parameter
v (Equation ), and of a cost parameter C associated with training sample
misclassification (please refer to [SSOI] for more information). Both parameters
were estimated using a grid search maximizing the cross-validated average preci-
sion [HCLO3|. A practical problem is that the training sets in concept detection are
often extremely imbalanced, i.e. the number of negative samples usually outnum-
bers the number of positive ones by far. This causes difficulties for many classifiers,
including SVMs [AKJ04]. To overcome this problem, the dominant class was sub-
sampled to obtain a roughly balanced training set, with the number of negative
samples fixed to 6, 000.

Results Quantitative results in Figure [3.9 reveal that concept detection in web
video is challenging but feasible in general. A mean average precision of 52.2%
(n = 12,100) is achieved for a system that combines all four feature pipelines,
which is a 11.6-fold improvement over a random sorting of the ranked retrieval list
(4.5%). An inspection of the single feature pipelines reveals a dominance of the
SIFT+SVM approach, which outperforms light-weight DCT visual words signifi-
cantly and gives a mean average precision of 48.7% (DCT by itself gives 26.1%).
Adding other features leads to further performance improvements (1.1% for mo-
tion, 1.9% for color and texture, 0.5% for DCT visual words), which are moderate
but significant according to a sign test over the rank improvement of positive items
(level 99%). Overall, this confirms earlier results, which report an excellent perfor-
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Figure 3.11: The concept detection performance (MAP) of TubeTagger plotted against
the weights for SIFT+SVM and Motion. Similar performance can be observed on the
validation set (a) and on the test set (b), which indicates that feature weights can be
learned reliably.

mance for visual word approaches for the domain of news video [vdSGS08] — ob-
viously, similar observations hold for web video content. Exceptions are some con-
cepts for which the color+texture pipeline improves performance strongly. These
are mostly sports concepts, like “golf”, “basketball”, and “swimming”, for which
color is obviously a strong clue. Also, sports-related concepts reach the highest
overall performance, obviously because they come with a static global frame layout
and low intra-concept variance (an average precision of up to 86.5% [“soccer”] is
reached). In contrast to this, for the most difficult concept “beach” only 15.9%
are achieved. A closer look at this concept is taken in Figure [3.10] including the
5 “beach” videos with the lowest scores (false negatives). Only one of these false
negatives is visually related to the tag “beach”, while the others show videoblogs
tagged with “beach” and nightly parties in Miami Beach. Obviously, the reason
for system failure in these cases is that the relation between a clip and its tags is
subtle and extraordinarily difficult to infer from the visual content only.

To test whether the feature weights wy, ..., w4 (Equation ) can be learned
reliably on the validation set, performance is plotted in Figure both for the
validation set and the test set (note that DCT features were left out, and that the
weight of the C+T pipeline adds up to 1). Though the performance is lower on the
test set, a similar behavior of tagging performance can be observed for validation
and testing, which indicates that feature weights can be learned reliably.
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Table 3.2: The concepts used in Experiment 2. These are 19 of the 20 concepts used in
the TRECVID’08 benchmark. Columns 2,3,5, and 6 provide details on how information
was downloaded from YouTube.

concept YouTube YouTube concept YouTube YouTube
query category query category
Classroom classroom & - Telephone phone & de- -
school -secret vice
Bridge bridge Travel&Places Street street & paved | -
-crossing
-ship
Em._Vehicle | emergency & Autos&Vehicleg| Demonstr. protesting -
vehicle -driver
-ride
Dog dog Pets& Animals Hand hand & daft -
Kitchen kitchen -knife Howto&Style Mountain mountain Travel&Places
-remodel &panorama
Airplane_fl. | airplane & fly- Autos&Vehicle§| Nighttime by & night Travel&Places
ing -jefferson
-indoor -school
-kids
Bus bus -van -suv Autos&Vehicleg| Boat_Ship ship & (queen Autos&Vehicles
-vw -ride | freedom |
royal)
Driver car & vehi- | Autos&Vehicle§| Flower flower & ( bou- | -
cle & driver quet | bloom )
-simulator
Cityscape cityscape Travel&Places Singing singing & -
-slideshow (gospel |
-emakina choire)
Harbor harbor & in- | -
dustry & ship

3.6.2 Experiment 2 - Other Domains

In Experiment 1, the TubeTagger prototype has been both trained on and ap-
plied to web video content downloaded from the portal YouTube, and the general
feasibility of concept learning from web video has been demonstrated. Yet, a fun-
damental key question remains unanswered, namely how taggers trained on web
video perform on other domains.

To answer this questions, the following experiment provides performance com-
parisons for the TubeTagger prototype when training and testing on web video
material as well as standard datasets of news and documentary TV from the
TRECVID benchmark. This experiment requires video data and corresponding
concept annotations, which are available for several video sources and concepts

from joint efforts of the research community. In the following, these datasets are
described:
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mountain

cityscape

singing

telephone

Figure 3.12: The top 5 detections of the YouTube-based system for several concepts on
the TRECVID’07 dataset. While the system works well for some concepts (“mountain”,
“cityscape”), it suffers from a mismatch between YouTube and the target domain for
others (“telephone”).

Concepts Since for some of the concepts from the Youtube-22Concepts dataset
no publicly available annotations exist, a different set was used, namely 19 of the
20 concepts used in the TRECVID’08 benchmark (the concept “two_people” was
omitted, as one of the video datasets used lacked publicly available annotations).
These concepts stem from the LSCOM ontology for multimedia retrieval and can
thus be considered a standard test case. The full list of concepts can be found in
Table For detailed descriptions, please refer to the LSCOM website [LSC].

Video Data and Annotations Three video datasets were used in this exper-
iment, whereas corresponding annotations were acquired from publicly available
standard datasets or from YouTube:

1. TVO05: This dataset, used in the TRECVID’05 “High-level Feature Extrac-
tion” task, is the most frequently used test dataset for concept detection,
and extensive manual annotations are available [KHNT06, SWvGT06]. The
dataset contains video data from 13 news programmes, including US, Chi-
nese, and Arabic broadcast [OIKS05]. It consists of a predefined development
set of 86 hours and test set of 85 hours. Annotations for the 19 test concepts
were downloaded from the LSCOM website [LSC]. As these cover only the
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development set, the test set was neglected, and the development set was
split into a training set and test set of equal size (the split was done between
different broadcast dates). Keyframes were extracted using the adaptive ap-
proach described in Section To reduce data load, only one keyframe per
shot was kept, which gave a total of 75, 000.

2. TVOT7: In 2007, TRECVID’s “High-level Feature Extraction” task used data
provided by the Netherlands Institute of Sound and Vision [KOQT7]. This
dataset contains news magazines, science news, news reports, documen-
taries, educational programming, and archival video, in a development set
and test set of 50 hours each. Annotations have been acquired at the Chinese
Academy of Sciences and were used by participants in TRECVID’08. The
adaptive keyframe extraction approach described in Section was used,
which resulted in about 113,000 keyframes.

3. YOUTUBE: Like in the previous experiment, a dataset of videos down-
loaded from YouTube was used. 100 clips were acquired for each concept.
Only short videos of up to 3 minutes length were used to reduce data load.
Queries were also manually refined to guarantee a certain quality of the re-
sulting content (for example, the query “classroom” was replaced with “class-
room+-school” to obtain content that is closer to the description of the original
TRECVID feature). This refinement was done without knowledge of concept
appearance in the TRECVID video data. Like in the first YouTube exper-
iment, YouTube search results were also filtered by category. A full list of
the YouTube queries used can be found in Table The dataset has a total
length of about 42 hours, which corresponds to 36,000 keyframes extracted
using the adaptive approach from Section To get a broader coverage of
negative samples, 30,000 frames from the Youtube-22Concepts dataset were
added, obtaining an overall of 66,000 frames.

Setup The results of Experiment 1 indicate that a visual words approach pro-
vides a high performance, and that by fusing it with other features moderate
performance improvement can be achieved. For the sake of computational effi-
ciency — and since the focus of this experiment is on the relative performance
when training on different data sources — in this experiment only the best feature
pipeline (SIFT visual words) was used. Also, SIF'T descriptors were replaced with
128-dimensional SURF features [BTvG06], a faster approximation. Again, a fixed
number of samples was used for the negative class to roughly balance the training
set — for the TRECVID’07 and TRECVID’05 datasets with fewer annotations
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Table 3.3: Concept detection performance when training and testing on YouTube
and two TRECVID datasets (TV05 and TV07). The detectors trained on the tar-
get domain outperform the others significantly (n = 573,154 [TV05], 344,508 [TV07],
11,913 [YOUTUBE)).

MAP[%]

training / testing | TV05 | TV07 | YOUTUBE
TVO05 18.40 | 3.82 14.68

TVO07 3.32 9.65 16.49
YOUTUBE 2.83 3.51 31.33

(median: 291/273 annotations, minimum: 22 for “airplane” / 51 for “kitchen”),
the number of negative samples was set to 1,500. For the youtube data (median:
1332, minimum 374 for “mountain”), it was set to 6, 000.

Results The TubeTagger engine was trained on all three training sets, obtaining
three different statistical models for each of the 19 target concepts: two standard
models trained on the manually annotated TV05 and TVO07 training sets, and
one trained on videos downloaded from YouTube. Each of the three models was
applied to all three test sets, obtaining 9 concept detection runs. These were
evaluated to investigate (1) which model performs best for concept detection in
web video, (2) which training sets lead to the best performance on the TVO05
and TVO7 standard test sets, and (3) how the YouTube-based tagger compares to
state-of-the-art detectors when generalizing to a domain unseen in training.

Some sample results of YouTube-based detectors on the TVO07 test set are
illustrated in Figure 312} It can be seen that the system works well for some
concepts (like “mountain”), while for others (like “telephone”) no hits are found.
An in-depth inspection revealed that this difference is caused by a strong variation
of the quality of YouTube training material: while for “mountain” lots of panoramic
mountain views were obtained, the “telephone” training set tends to show close-
ups of the latest smartphone gadgets, and correspondingly computer screens and
similar structures are detected. This leads to a poor result, as “telephone” scenes
in the TVO7 test set show mostly phones on office desks.

Quantitative results are provided in Figure[3.:14] and the mean average precision
for all runs is also given in Table [3:3] Let us first study concept detection on the
YouTube test set. Here, it can be seen that the YouTube-based system outperforms
the two standard detectors (MAP 31.33% compared to 14.68% and 16.49%). This
indicates that for tagging YouTube videos, YouTube as a training set, as could be
expected, outperforms standard datasets.
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“airplane”[TV05] “dogs”[TVO07] “flower” [ YOUTUBE]
test shot  match  test shot match  test shot match

Figure 3.13: Specialized detectors trained on the target domain significantly outperform
all others. One reason for this are duplicates in the datasets: these keyframes are from
the shots giving the highest scores for the top-rated concepts in TV05 (“airplane”), TVO7
(“dogs”), and YOUTUBE (“flower”), together with nearest neighbors from the training
set. For all these test frames, a (near-) duplicate is found in the training set (note that
“airplane” shot no. 4 shows the object only at a very small scale).

More generally, it can be seen that each detector performs best on the data
source it was trained on, i.e. on TV05 and TV07 the YouTube-based tagger is sig-
nificantly outperformed by the “specialized” detectors trained on the corresponding
training sets. This indicates that the acquisition of manual annotations on the tar-
get domain improves performance significantly. An in-depth analysis reveals that
one reason for this dominance of the specialized detectors is redundancy. This is
illustrated in Figure for the concepts achieving the best performance on each
of the test sets. In all cases, the 4 shots achieving highest scores are illustrated
on the left, and their nearest neighbors from the training set on the right. Obvi-
ously, all concept detectors implicitly match test content with (near-) duplicates
in the training set: for “airplane” in TV05, matches include very small airplanes
in the background that could probably not be detected without redundancy. For
“dogs” in TVO08, the system overfits to a single shot including a street sign and a
dog. For “flower” in YOUTUBE, the system makes use of two series about flower
arrangements. It is obvious that redundancy leads to biased and overly positive
benchmarking results. Yet, it should also be noted that — if duplicates are not
filtered — this effect cannot be separated from other factors like production style.

Finally, the YouTube-based detector is compared with standard ones (TV05 /
TVO07) when testing both on a third, novel data source (TV07 / TV05). We can
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observe that all systems generalize poorly to domains not seen in training, which
confirms earlier results by Yang and Hauptmann indicating that concept detectors
strongly overfit to the domain they are trained on [YHOS]. Also, results reveal that
the YouTube-based detector generalizes only slightly worse to novel domains than
the standard detectors. On the TVO07 test set, a performance of 3.51% is achieved
compared to 3.82% (training on TV05). On the TVO05 test set, 2.83% are achieved
compared to 3.32% (training on TV07). This corresponds to a moderate relative
performance loss of 11.4% compared to a cost-intensive manual annotations.

The conclusion I draw from this experiment is that if annotations on the target
domain are available, they definitely help to increase performance. However, if
this is not the case, concept detectors perform poorly for any training sets, i.e.
also if using manual annotations. Here, training on YouTube (which can be done
without any manual annotation effort) offers an appealing alternative.

In a final test, the question is addressed whether enriching standard training
sets with material downloaded from YouTube leads to an improved generalization
of concept detection. Therefore, the TV05 and TV07 training data were combined
with YOUTUBE samples. The concept detectors trained on these joint train-
ing sets were then applied to third domain unseen in training (TV05 in case of
TV07+YOUTUBE, TVOT in case of TV05+YOUTUBE). The average precision
achieved in both cases is plotted in Figure by adding YouTube data to the
training set, in one case (when testing on TV05), only a minor improvement from
3.32 to 3.36% is achieved. In the other case (when testing on TVO0T7), mean average
precision is improved from 3.82% to 4.67%. On average, this corresponds to a rel-
ative performance improvement of 11.7%, which is significant according to a sign
test over the rank improvement (level 99%). This shows that additional training
data from YouTube can help concept detection systems to generalize better to
novel domains.

3.7 Discussion

The effort associated with the manual acquisition of training annotations is a
key problem with respect to the practical application of concept detection, as it
limits the size of detector vocabularies and the adaptation to changes in users’
information needs. To overcome this problem, it has been proposed in this chapter
to learn concepts from user-tagged web video. This setup allows a scalable and
flexible concept learning, as class labels can be derived automatically from user-
generated tags.
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Figure 3.14: Quantitative results of concept detection when (a) testing on YOUTUBE,
(b) testing on TV07, and (c) testing on TV05. All detectors perform best on the domain

they are trained on, and generalize poorly to different datasets.

On domains unseen

in training, the YouTube-based tagger performs comparable to a training on manually

annotated standard data.
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Figure 3.15: Quantitative results of cross-domain concept detection. By enriching
standard training sets with material from YouTube, the generalization performance of
concept detectors can be increased.

A concept detection prototype named TubeTagger has been presented, which
is capable of using YouTube data directly as training material. Our experimental
results with the system have first shown that the resulting detectors work well
when applied on the same domain as they were trained on (i.e., YouTube). This
shows that visual learning from web video is possible in general. We have then
applied TubeTagger to datasets from the TRECVID campaign. It could be seen
that, on these different domains, YouTube-based detectors are outperformed by
“specialized” systems trained directly on the target domain. Though this was
to some extent caused by the presence of duplicate material in the benchmark
datasets, the result suggests that — if manually acquired ground truth on the
target domain is available — it is to be preferred over YouTube-based training.
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However, the situation was found to be different when generalizing to domains
unseen in training. Here, significant overfitting was a key problem for all systems,
and surprisingly detectors trained on web video performed about as well as the ones
trained on strongly annotated data. Also, detection rates could be improved in
this situation by supplementing conventional training sets with YouTube content.

Overall, these results demonstrate that web video is a highly interesting data
source for concept detector training. With large-scale readily annotated data of-
fered by services like YouTube, concept detection systems can be trained under
less supervision, can scale up to more concepts, and thus provide better support
for video search. Compared to the proposed web-based concept learning, a man-
ual annotation of training sets may not really be worth the effort, as it only gives
improvements on the restricted training domain. For a practical application in
which a concept detector is applied to video sources unseen in training, it seems
preferable to automatically bootstrap detection from web video and then perform a
light-weight manual refinement on the target domain, for example using relevance
feedback [RLO3].
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Chapter 4

Relevance Filtering for
Weakly Labeled Video

In this chapter, the idea of concept learning from web video is pursued further. The
problem of label noise is addressed, which refers to the fact that user-generated
tags are subjective and coarse, such that training examples contain non-relevant
material. To overcome this problem, a novel approach called relevance filtering
is suggested, which views web tags as weak indicators of true, latent class labels.
During concept learning, these labels are inferred, and non-relevant training con-
tent is discarded. The key contributions of this chapter are':

1. It is demonstrated that web video training sets show significant label noise
— typically, only 20 — 50% of training content downloaded from YouTube
do actually show the target concept (n = 89,500).

2. Also, it is shown that this label noise degrades the performance of detectors
severely, with a relative performance loss of up to 33% (n = 100, 000).

3. A novel approach called relevance filtering is suggested, which combines con-
cept learning with an elimination of non-relevant training content. This
approach can be integrated with 