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Abstract

We present a new method for infering the local 3D orientation of keypoints from
their appearance. The method is based on the idea that the relation between keypoint
appearance and pose can be learnt efficiently with an adequate regressor. Using one
reference view of a keypoint, it is possible to train a keypoint-specific regressor that
takes the point appearance as input and delivers the local perspective transformation as
output. We show that an elegant choice of regressor is a set of sparse regressors applied
sequentially in a cascade. In our case, we use a set of parametrized multivariate relevance
vector machines (MVRVM) to learn the local 8-dimensional homography from the patch
normalized pixel values. We show that using a cascade of regressors, ranging from coarse
pose approximation to fine rectifications, considerably speeds up the identification and
pose estimation process. Moreover, we show that our method improves the precision
of classical points detectors, as the location of the point is rectified together with the
homography. The resulting system is able to recover the orientation of patches in real
time.

1 Introduction
Many computer vision applications need to identify properties of points of interest, or key-
points. Keypoint matching [9], for example, associates an identity to each keypoint, creating
correspondences which can be used to compute the camera pose. Affine region detectors [11]
additionally derive an approximation of the local image transformation. In general, retriev-
ing accurate information about keypoints allows for considerably reducing the complexity
of subsequent steps and is therefore highly desirable. Recently, a learning-based method for
retrieving the local perspective warping of a patch has been presented [7]. This method uses
a classifier which classifies patches into pre-defined quantized pose estimates. An adequate
quantization of the pose space is crucial for the succes of the method.

In this paper, we advocate the use of a regressor to learn the pose as a function of the
patch appearance. Thanks to the regressor, smooth variations in the patch appearance result
in smooth variations of the pose. Our method relies on a learning stage, where examples
of randomly warped patches are used to train a set of Relevance Vector Machines (RVM)
[13]. RVMs have the clear advantage that they are described through a sparse set of a few
vectors (the relevance vectors). The sparsity allows for a very fast prediction step, with
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Figure 1: Overview of our approach. From a single reference image (top left), we train a
cascade of regressors (top right) to infer the patch orientation from its appearance (bottom).

maintained accuracy. Our method performs in several steps (see figure 1). In a first step, we
apply a first RVM, which has been trained to be fast and infer a rough pose estimate from a
local square image patch. The local neighborhood of the keypoint is warped using this first
estimate, and only a few point hypotheses are kept, based on the similarity of the patch with
the reference one. For each of the selected hypotheses, the warped patch is used as input for
a second RVM specialized in small variations. The second RVM yields a better estimate of
the patch. This last step is repeated until the changes in the pose are small (usually less than
10 iterations). We call this successive use of RVMs a Cascade of RVMs, and our method
Caspar, for CAscade of SPArse Regressors. Caspar works for multiple patches, in which
case a complete cascade of regressors has to be learnt for each patch.

In the remainder of the paper, we first discuss related work on patch rectification and use
of RVMs in computer vision in section 2. We present the different steps of our method in
section 3 and show our experimental results in section 4.

2 Related work

2.1 Relevance Vector Machine
The relevance vector machine has been proposed by Tipping [13] to adapt the main ideas
of Support Vector Machines (SVM) to a Bayesian context. The results have been shown to
be as accurate and sparse as SVMs yet fit naturally into a regression framework and yield
full probability distributions as output. RVMs learn a mapping bewteen input vectors z and
output state vectors x of the form:

x = Wφ(z)+ξ , (1)

where ξ is a Gaussian noise vector with 0 mean and diagonal covariance matrix. φ is a vector
of basis functions of the form φ(z) = (1,k(z,z1),k(z,z2), . . . ,k(z,zn))T , where k is the kernel
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function (any function that compares two input vectors), and z1 to zn are the example input
vectors from the training set. The weights of the basis functions are written in the matrix
W. In the RVM framework, the weights of each input example are governed by a set of
hyperparameters, which describe the posterior distribution of the weights. During training,
a set of input-output pairs (xi,zi) are used to learn the optimal function from equation (1).
To achieve this, the hyperparameters are estimated iteratively. Most hyperparameters go
to infinity, causing the posterior distributions to effectively set the corresponding weights to
zero. This means that the matrix W only has few non-zero columns. The remaining examples
with non-zero weights are called relevance vectors.

Tipping’s original forumlation only allows regression from multivariate input to univari-
ate output. Here, the patch appearance is used as input vector, and the 8 parameters of the
local homography is learnt as output. We therefore use a multivariate extension of the RVM,
called MVRVM, proposed by Thayananthan et al. [12], and using an EM type algorithm for
the training.

RVMs have been used in association with computer vision for different tasks. Agarwal
and Triggs [1] presented a method for computing a 3D human pose from silouhettes and
shape context distributions. Williams et al. used separate RVMs to track the four param-
eters of a 2D similarity transform of an image region [15]. Both underline the sparsity of
RVMs as a noticable advantage in comparison to other techniques like Nearest Neighbor
Search, where the entire database has to be kept in memory. Zimmermann et al. also pro-
pose to solve the region tracking problem using linear regressors in [16], where the idea of
using sequentially several regressors is presented. Unlike our method however, only small
displacements between two consecutive frames are learnt.

2.2 Local patch orientation

The idea of deducing geometric information from the object appearance through learning
was proposed in [4] where Support Vector Machines are used to learn the position of the
corners of the object bounding box in relation to its appearance. The 3D orientation problem
has been adressed using affine region detectors [11], as they provide an affine approximation
of the local transformation of a patch and allow for correcting the distortions induced by
this local warping. Since the pioneering work of Baumberg [3], several approaches have
been proposed. Among them, the Hessian-Affine detector by Mikolajczyk and Schmid [11]
and the MSER detector by Matas et al. [10] have been shown to be the most reliable ones.
However, the obtained transformation is affine only, and the fully perspective transformation
(a homography in the case of a planar patch) cannot be found.

Recently, a method for computing the local homography called patch rectification has
been presented [6, 7]. In this method, as in ours, a training phase is used to learn to estimate
the local transformation of the patch. However, this method uses a classifier to learn the local
homography. To achieve this, the pose space has to be quantized in a finite number of classes,
which poses the problem of the pose space tesselation: a high number of classes increases
the classifier complexity while a small number of classes can lead to poor estimation results.

Our argumentation is that the relation between patch appearance and patch pose is con-
tinuous by nature, and we suggest in this paper the use of a regressor to infer the pose of the
patch from its appearance. In the next section we present our regression-based method and
the cascading approach.
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3 Cascade of sparse regressors

3.1 General approach
We consider a set of n 3D points of interest {Mi}n

i=1 lying on the surface of a given object.
The aim is to find for each of these points a function fi which maps the point’s appearance,
p, to the local homography of the point, hi. The homographies are parametrized using the
projected image coordinates of the 4 corners of a unit square centered at the point (as recom-
mended by [2]), and thus has 8 parameters. Let us first assume that such a set of functions is
known. In this case, we can easily identify learnt points and compute their local orientation
in a unknown image by applying following steps:

1. Apply a rotation and scale invariant corner detector on the image.

2. For each corner: Extract a orientation- and scale-corrected square patch p of size s× s
from the image. Normalize the patch intensity values and apply steps 3. through 5.

3. For each point of interest Mi: apply steps 4. and 5.

4. Estimate the corresponding homography with the mapping function hi = fi(p).

5. Using the estimated homography, unwarp the image patch and compute its normalized
cross-correlation ncci with a canonical view of the point Mi.

6. If max
i

ncci > τ then the identity of the point is I = argmax
i

ncci and its local orientation

is given by hI . τ is a correlation threshold which can be high. In practice we used
τ = 0.9.

As the pseudo-code shows, this algorithm tests every 2D corner with the mapping func-
tion of every 3D point of interest. Therefore, it can be quite time-consuming if the functions
fi are costly. We solve this problem by introducing two key ingredients in our method: sparse
regression and regression cascading. With sparse regression, we mean using a machine that
needs to retain only a fraction of the examples in the training set, like e.g. Support Vector
Machines [5], leading to an efficient prediction step. With cascading, we mean that the func-
tion fi is implemented as a cascade of functions with increasing precision and complexity,
which permits an early termination in the spirit of the Attentional Cascade of [14]. In the
next subsections, we assume a 3D point of interest M is given, and we describe our choice
for the corresponding mapping function f and its training.

3.2 Cascade levels
The input of a single cascade level k is the current estimate of the homography. For the first
level, this estimate is a (orientation- and scale-corrected) 2D square patch of a predefined
constant size s1. For the other levels, the estimate is the output of the previous level. Using
this estimate, the image patch is unwarped to a square patch, resampled to a level-dependent
size sk and normalized to have a zero mean and unit standard deviation. The normalization
adds robustness to light changes. For each cascade level, we train one Multivariate Relevance
Vector Machine (MVRVM), using a quadratic kernel functions of the form

if ‖p1−p2‖< 2, k(p1,p2) = 1− ‖p1−p2‖2

4σ2
k

,else k(p1,p2) = 0 (2)
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where σk is a level-dependent parameter governing the width of the kernel.
When building the regressor cascade, we can use the two level-dependent parameters sk

and σk to create regressors with different properties: Using a small patch size sk reduces the
size of the input vector and thus increases the prediction speed, but reduces the regressor
precision as the input patch has a smaller resolution. On the contrary, a large patch size sk
will produce a slower but more precise regressor. The parameter σk governs the width of
the kernel and thus the sparsity of the RVM: If it is large the number of relevance vectors
is reduced and the regressor faster, at the cost of possibly poor results. Conversely, if σk is
smaller, the RVM is more precise while being slower. However, care has to be taken that σk
is not too small to prevent overfitting, which leads to poor generalization properties. Figure 2
shows the effect of σk on the precision and the number of relevance vectors.
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Figure 2: (a): Effects of the kernel width σk on the training / validation error and on the
number of relevance vectors. Increasing the kernel width slighlty increases the validation
error, but significantly reduces the number of relevance vectors needed, up to a critical point
(here around 300). (b): Predicition time for 150 candidate keypoints w. r. t. the number of
relevance vectors for different patch sizes. The computation time is experimentally shown
to be proportional to the number of RVs and to the square of the patch size. Using such tests
allows us to find an optimal σk for a given regressor.

Our idea is to design the cascade in such a way that the first regressor is very fast while
providing a very coarse estimate of the homography. A similarity test based on the normal-
ized cross correlation rejects most of the candidate already after the first step. The remaining
hypotheses are then pushed to more complex regressors with a increasing precision upon
several levels. More specifically, let p1 be a orientation and scale corrected patch of size s1
found in the image. We start by applying the first, fast and coarse regressor f1:

h1 = f1(p1) (3)

and compute the score of the patch

S1 = ncc(p∗,u(p1,h1)) (4)

where u(p,h) is the function unwarping the patch p using the homography h, ncc is the
normalized cross correlation between two patches, and p∗ is a canonical view of the patch. If
S1 is smaller than a threshold τ1, then the patch is rejected. Otherwise, the patch is processed
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Figure 3: Training data. The yellow patch is the true homography. The red squares are
the 2D patches used as input for the first cascade level. The blue patches are the disturbed
homographies used to learn the subsequent cascade levels. Several red squares indicates that
the point has been detected at several scales.

by the next cascade level. Thus, the entire cascade can be described by repeated applications
of tests:

if ncc(p∗,u(pk,hk)) > τk, then hk+1 = fk+1(u(pk,hk)), else reject patch (5)

Thus, each level is governed by the set of parameters (sk,σk,τk). These parameters are
set during learning as described in the next subsection.

3.3 Learning a cascade of regressors
The training set consists of examples obtained by randomly rendering hundreds of views
of the object with known random poses, adding realistic noise level and intensity changes,
and storing the normalized unwarped patch as input and the known homography as output.
Figure 3 shows examples of training data. In practice, we collect 200 examples for training
and 200 for verification for each point of interest. We distinguish between the first cascade
level where no homography approximation is known and the subsequent levels where an
estimate is provided.

For the first level of the cascade, the input is simply the 2D square patch. We store as
output the real homography computed from the known pose. For the subsequent levels, we
construct rectification regressors by adding a given level of disturbance to the real homogra-
phy. To this aim, we simply add Gaussian noise to the real patch center and to the real patch
corners.

During learning, we automatically adapt the kernel width σk through training/validation
experiments to achieve a given type of regressor: the first level should be fast, so we set a
small value for s1 and adapt σ1 to keep the number of relevance vectors under a given max-
imum. Figure 2 shows the precision and number of relevance vectors obtained for different
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values of σk. Using such tests allows us to choose an optimal value for σk. In practice, we
used s1 = 20 and a maximum number of relevance vectors of 25. The correlation threshold
τ1 is set to keep the number of hypotheses lower than 5 (in practice we used τ1 = 0.4). For
the remaining levels (k = 2 to 10), the patch size is set to sk = 30 and we add Gaussian noise
to the patch corners and center with σ r

k = 2. The kernel size σk is automatically adapted to
keep the number of relevance vectors under 100.

4 Evaluation and results

In this section, we present the experimental results of our tests with different objects. For a
given object, a set of points of interest have to be defined first. In order to find good points
of interest, we render a large number of views of the object and apply the rotation and scale
invariant point detector of [8] on the rendered image. The found 2D points are back-projected
onto the object and feed a 3D point accumulator. The 3D points accumulating the most votes
are selected as good points of interest, having a large probability to be found by the 2D point
detector. We then train our casade of regressors for one or several points of the object. In
all our experiments, we use a cascade trained for tilts up to 70 degrees, using a set of 200
random examples for the training.

4.1 Robustness to viewpoint change
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Figure 4: Robustness to viewing angle variations. (a) Percentage of correctly retrieved
orientations. (b) Mean corner reprojection error for Caspar and a direct regression approach
(Single RVM). See text for details.

In a first experiment, we measure the robustness to viewpoint change by generating syn-
thetic views with random orientation and a given tilt angle ranging from 0 to 75 degrees.
For each view, we apply our method to identify a patch and find its orientation. We repeat
this test 2000 times for each tilt angle, and report the percentage of correctly computed ho-
mographies. In figure 4 (a), we measure the ratio of correctly retrieved orientations for two
cases: the red curve (Caspar) shows the success rate obtained by Caspar only, i.e. the ratio
of correctly retrieved orientations among all test images where at least one point has been
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found by the corner detector in the vicinity of the real position. The blue curve (Point de-
tector of [8] + Caspar) shows the success rate obtained when considering the corner detector
and Caspar (including the cases where no corner has been found in the vicinity of the real
point). Caspar has a high succes rate when a corner has been found, even for large tilts:
For a tilt of 60 degrees, our method retrieves the right homography over 98.9% of the time.
This is much better than the method of [6] which reports convergence rates between 79%
and 95% for the same tilt. Note the good convergence rate of 50% for extremely large tilts
of 75 degrees. However, when considering the point detector of [8] and Caspar together, the
convergence rate drops when the tilt exceeds 50 degrees. This shows that the point detector
of [8] is not adequate for large tilts, as it does not detect the point of interest robustly in this
case. Figure 4 (b) shows the mean reprojection error for the 4 corners of the patch using one
single RVM and our cascaded approach. Our method has a mean reprojection error of less
than 1 pixel over almost the entire tilt range, whereas a single RVM achieves at best 5 pixels
reprojection error (an up to 13 for large tilts). This justifies the use of a convergence cascade.

4.2 Improving the point detector’s precision
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Figure 5: (a) Improving the point detector’s precision. Our method converges to the right
point even if up to 4 pixels displacement is added to the correct point. (b) Our method applied
to a covered image of a jaguar.

To assess the robustness to point detector imprecision, we applied our method to a ground
truth keypoint with a small amount of displacement, for different ranges of distances. Fig-
ure 5 shows the reprojection error after convergence for increasing distance means (for each
mean, random keypoint locations were generated in a unit range centered on the mean).
The graph shows the mean reprojection error for the center of the patch after convergence,
and twice the standard deviation around this mean. This experiment clearly shows that our
method is able to recover from point detector errors up to 4 pixels.

4.3 Application
We applied our method to identify a patch and infer its orientation for objects with differ-
ent textures. Figure 1 shows the example of an image from the Graffiti set of [11], figure 5
(b) shows a patch retrieved on a picture of a jaguar even under severe occlusion, and fig-
ure 6 shows several frames of a video sequence with fast movements, motion blur and large
scale variations. Several complete video sequences are available on the authors’ website at
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http://av.dfki.de/~pagani. Please note that every frame is treated independently,
whithout using information from the previous frames. Nevertheless, our method does not
produce jitter, which usually affects such single-frame methods. In the examples, the red
patches are the hypotheses detected by the first cascade level. The yellow patch is the result
returned by our system. The time needed to learn a patch is about 1.5 minutes for the first
RVM and 3 minutes remaining levels. Once the system has been trained, our system is able
to detect one patch and find its orientation in video real time (28 frames /sec).

Figure 6: Estimation of the local patch transformation. Our system detects the learnt point
and estimates its pose in real time, even in presence of large scale variations. A full video is
available on the authors’ website at http://av.dfki.de/~pagani.

http://av.dfki.de/~pagani
http://av.dfki.de/~pagani
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5 Conclusion
We have introduced a novel method for computing the local homography of an object that
uses directly its appearance as input for a regression scheme. The efficiency of our method
relies on two key ideas: first, the usage of sparse regressors (in our case, multivariate rel-
evance vector machines), and second, the design of the regressor as cascade. Both ideas
contribute to speeding up the orientation recovery process. We have shown that using a cas-
cade instead of a single regressor improves the precision, and that the main bottleneck of
our approach is the lack of repeatability of the point detector for large tilts. In our future
work, we will therefore investigate the use of better point detectors. Because we use Baysian
regressors, another direction of research is the the fusion of multiple patches orientations for
the computation of the global camera pose.
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