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ABSTRACT
We address the challenge of training visual concept detectors
on web video as available from portals such as YouTube. In
contrast to high-quality but small manually acquired train-
ing sets, this setup permits us to scale up concept detection
to very large training sets and concept vocabularies. On
the downside, web tags are only weak indicators of concept
presence, and web video training data contains lots of non-
relevant content.

So far, there are two general strategies to overcome this la-
bel noise problem, both targeted at discarding non-relevant
training content: (1) a manual refinement supported by ac-
tive learning sample selection, (2) an automatic refinement
using relevance filtering. In this paper, we present a highly
efficient approach combining these two strategies in an in-
terleaved setup: manually refined samples are directly used
to improve relevance filtering, which again provides a good
basis for the next active learning sample selection.

Our results demonstrate that the proposed combination –
called active relevance filtering – outperforms both a purely
automatic filtering and a manual one based on active learn-
ing. For example, by using 50 manual labels per concept, an
improvement of 5% over an automatic filtering is achieved,
and 6% over active learning. By annotating only 25% of
weak positive samples in the training set, a performance
comparable to training on ground truth labels is reached.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Retrieval and Indexing

General Terms
Algorithms, Measurement, Experimentation
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Content-based Video Retrieval, Concept Detection
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Figure 1: Sample frames from YouTube clips tagged with
“eiffeltower”. While some frames do show the concept (cen-
ter), other content is non-relevant. This poses a challenge
for concept detector training.

1. INTRODUCTION
As digital video has become an important source of in-

formation and entertainment to millions of users, databases
grow larger and larger [28], and retrieval becomes a difficult
challenge. This is particularly due to the semantic gap [22],
the discrepancy between low-level features of a video signal
on the one hand and the viewer’s high-level interpretation
of the video on the other.

To bridge this gap, concept detection has been proposed,
which aims at automatically mining video collections for se-
mantic concepts such as objects (“airplane”), scene types
(“cityscape”), and activities taking place (“interview”). Con-
cept detection has been studied intensively over the last
years (for an overview, see [23]) and is a key building block
of various video search prototypes [4, 30, 33]. However, the
effort associated with acquiring training samples for many
concepts causes a scalability problem: the size of concept
vocabularies remains limited, and keeping track to dynamic
changes of users’ information needs (e.g. as new concepts of
interest like “President Obama” emerge) is difficult.

This raises the question whether a manual acquisition of
training material can be substituted with other information
sources. One such source is web video, which is available
at a large scale from portals like YouTube1. Web video
content is usually enriched with user-generated tags, which
indicate the presence of concepts in a clip. Utilizing this tag
information as class labels, concept detection systems could
automatically harvest training material from the web and
thus perform a scalable and dynamic concept learning [10,
20, 25, 27].

Unfortunately, YouTube tags are coarse and unreliable
and therefore difficult to utilize as label information. An

1www.youtube.com



example is given in Figure 1, which illustrates that not all
YouTube material tagged with“eiffeltower”does in fact show
the concept. This is due to several reasons: first, annota-
tion behavior is subjective, and – though a concept may
seem present to a specific user with certain knowledge and
expectations – it may not be in general. Second, web video
tags – which are usually given on a global scope – do not
tell us when in a video the concept appears.

Consequently, training sets acquired from web video por-
tals are noisy and contain only a certain amount of truly
relevant material (typically, between 20% and 50%, as we
estimated using manual sample annotations). Training con-
cept detectors on such weakly labeled data must be expected
to come with significant performance loss [10, 20].

One straightforward strategy to overcome this problem
would be to manually refine the raw web-based training
set and discard non-relevant content. While this has been
demonstrated to improve the performance of the resulting
concept detectors [20], it is very time-consuming and does
not scale. To reduce manual annotation effort to some ex-
tent, active learning strategies have been proposed [1, 3]:
instead of annotating the whole dataset, manual labels are
only given for a subset of “most informative” samples. This
has been demonstrated to achieve remarkable time savings
when learning concepts from TV-based datasets [2]. In the
context of web data filtering, however, active learning does
not make optimal use of the given labels: these are employed
to update the classifier, but remain neglected as a valuable
clue for filtering noise in the training set. This raises the
question if we can extend active learning for a better filter-
ing of web-based training sets.

A second, alternative solution is to filter noise material au-
tomatically [9, 13, 26, 32]. This approach has been referred
to as relevance learning [13] or relevance filtering [26]. Its
core idea is to identify non-relevant content automatically
based on its distribution in feature space and discard it dur-
ing system training. However, such automatic relevance fil-
tering systems do not reach the accuracy of a careful manual
labeling. Therefore, it seems reasonable to assume that rel-
evance filtering could benefit from a few manually provided
labels – the question is how improvements can be achieved
with minimal human intervention.

The key contribution of this paper is a novel combination
of both approaches – active learning and relevance filtering
– to a joint method, which we will refer to as active rele-
vance filtering in the following. We propose an interleaved
setup of active learning label refinement and automatic rel-
evance filtering. This way, the web-based training set is
refined both manually and automatically.

Using the proposed approach, we demonstrate that con-
cept detectors trained on weakly labeled web material can
be improved significantly with a minimum of human super-
vision. Also, our results show that the proposed active rel-
evance filtering outperforms both a purely automatic noise
removal and a standard manual refinement by active learn-
ing.

This paper is organized as follows: we first discuss related
work in the context of visual learning from web data (Sec-
tion 2). After this, the proposed active relevance filtering
framework is introduced (Section 3) and evaluated in quan-
titative experiments on real-world web video data (Section
4). A discussion concludes the paper (Section 5).

2. RELATED WORK
Though visual learning from web content is clearly a chal-

lenging problem, this information source has been acknowl-
edged as an attractive basis for training flexible and scalable
visual recognition systems. Its exploitation is now an active
area of research [8, 18, 20, 24, 26, 27, 34].

Similar to web video, web images as acquired from search
engines or portals like Flickr contain significant amounts of
non-relevant material. In case of Google Image Search, Fer-
gus et al. [8] and Schroff et al. [18] reported a label precision
between 18% and 77% for 7 object categories, and 39% over
18 categories respectively. Several approaches have been
proposed to overcome this problem: one group of meth-
ods is targeted at a content-based refinement of raw web
image sets [18, 24, 34]. Other methods closer to our work
combine dataset refinement with model learning using topic
models [8, 12] or a nearest neighbor analysis [13, 32].

In context of weakly labeled video content, Gargi and Yag-
nik [9] emphasized the additional problem that label infor-
mation in videos may be coarse, which they refer to as the
label resolution problem. Ulges et al. [26] presented a con-
cept learning system that employs weakly labeled web video
for concept detector training. They proposed an automatic
kernel-based approach for relevance filtering, such that the
system automatically learns relevance weights during detec-
tor training. We will adopt this approach and extend it in
this paper.

When it comes to a manual acquisition of labeled training
sets, active learning (see [19] for a survey) has been a suc-
cessful approach in the context of visual concept learning [1,
3]. Its main goal is to select only a few samples for manual
annotation, while the majority of the dataset remains un-
labeled. The core of active learning is the selection of the
“most informative” sample for the user to label. To do so,
different sample selection have been proposed, like relevance
sampling [16] – where samples are selected that are most
likely to be relevant – or uncertainty sampling [11] – where
samples closest to the current decision boundary are chosen.

Active learning has successfully been used in evaluation
campaigns like TRECVID [2], where training examples for
a concept of interest are accumulated from a completely un-
known video database. This setup (which usually starts
from very few reliable initial labels [1, 3, 5]) differs from
the one studied in this paper, as we focus on a refinement
of large and only partly non-relevant training sets. Despite
this difference, however, an application of active learning in
the context of visual learning from the web seems promis-
ing, and correspondingly we will adopt this approach in the
following. Beyond this, we propose a novel combination of
active learning sample selection with an automatic relevance
filtering, which will be demonstrated to lead to even more
robust concept detectors at less manual annotation cost.

3. APPROACH
In the following, a framework for visual concept learning

from weakly labeled web video is described. The system is
illustrated in Figure 2: to learn a concept like “basketball”,
training material is downloaded from online platforms. The
core of the system – and the focus of this paper – is a filter-
ing of this weakly labeled web content, which identifies non-
relevant material and performs a concept detector training
in parallel. This process is referred to as relevance filter-
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Figure 2: Concept learning from weakly labeled web video:
material is downloaded from online platforms like YouTube,
non-relevant content is filtered using relevance filtering, and
a concept detector is trained, which can later be used to
detect the learned concept in previously unseen videos.

ing, and is highlighted in a box in Figure 2. The procedure
yields a statistical model – referred to as a concept detector
– which can then be applied to find the concept of interest
in previously unseen video material.

Relevance filtering can be performed by one of the follow-
ing three strategies (as illustrated in detail in Figure 3):

1. an automatic relevance filtering, where non-relevant
content is identified based on its distribution in fea-
ture space.

2. a manual refinement with the support of active learn-
ing, which selects the “most informative” samples for
the user to label.

3. an active relevance filtering, which is the key contri-
bution of this paper and combines the two previous
strategies by alternatingly performing automatic rele-
vance filtering and a manual label refinement

In this section, we will first introduce some basic notation
and concepts (Section 3.1). After this, the two standard
strategies will be addressed in detail, namely active learning
(Section 3.2) and automatic relevance filtering (Section 3.3).
Finally, we introduce the novel active relevance filtering ap-
proach (Section 3.4).

3.1 Basic Concepts
In the following, video content is represented by keyframes,

each associated with a feature vector x ∈ Rd. For each con-
cept of interest, we formulate a binary classification problem:
the presence of the target concept is denoted with a label
y, such that y = 1 indicates concept presence and y = −1
concept absence. The goal of concept detection is – given a
keyframe x – to estimate the associated concept label y (or
its probability P (y = 1|x), respectively).

For training, we assume a set of keyframes x1, ..., xn to be
given. Each of these is associated with a label yi ∈ {−1, 1}
that indicates concept presence. In our setup of weakly la-
beled web videos, however, this true label is latent (i.e., not
known), and we are only given a weak indicator of concept
presence (in practice, this is a tag given to the corresponding
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Figure 3: Relevance filtering, as illustrated here for the
concept “basketball”, can be performed using three strate-
gies: (1) an automatic relevance filtering [26], (2) a manual
refinement with the help of active learning [1], or (3) a novel
interleaved combination of automatic and manual filtering
called active relevance filtering, which is the key contribu-
tion of this paper.

web video clip). This information is denoted by a weak label
ỹi ∈ {−1, 1}, and forms the input to our concept learning
procedure.

It should be kept in mind that the approaches discussed
in the following – particularly, the proposed active relevance
filtering – could be applied as a wrapper around a variety
of statistical models. In this paper, we demonstrate this for
kernel densities as a well-known standard approach that has
successfully been used for concept detection before [31, 35]

Baseline We first introduce a simple supervised standard
model that does not take label noise into account and will
serve as a baseline in later experiments. This model uses
two class-conditional distributions: p1, which models posi-
tive keyframes (showing the target concept), and p0 for neg-
ative frames (not showing the concept):

p1(x) =
1

Z1
·
X
i:ỹi=1

Kh(x;xi),

p0(x) =
1

Z0
·
X

i:ỹi=−1

Kh(x;xi). (1)

Z1 and Z0 are normalization factors. As a kernel function
Kh, the well-known Epanechnikov kernel with Euclidean dis-
tance function and bandwidth h is used [7, Ch. 4]:

Kh(x;x′) =
3

4
·
„

1− ||x− x
′||2

h2

«
· 1(||x−x′||≤h)

By evaluating p1 and p0, the frame x is scored using Bayes’
rule (the class prior is assumed to be uniform):

P (y = 1|x) =
p1(x)

p1(x) + p0(x)
(2)

It is important to note that the approach – as introduced
so far – does not take the unreliability of web-based train-
ing labels ỹi into account. Instead, these labels are treated
just like in a fully supervised setup. Particularly, each pos-
itive sample (ỹi = 1) – though it does not necessarily show
the concept, as illustrated in Figure 1 – contributes to the
density of positive samples p1.

The key concern of this work, however, is to adapt concept
training to the fact that user-generated labels on the web



are inherently unreliable. In the following sections, we will
discuss several approaches for dealing with label weakness.
Our basic assumption will be that the given labels ỹi are
only unreliable indicators of the true (but unknown) labels
yi such that:

• If the weak label is negative (ỹi = −1), the true label
is negative as well (yi = −1).

• If the weak label is positive (ỹi = 1), the sample may
belong to the positive class, but does not necessarily
do so, i.e. the true label yi is unknown,

Briefly speaking, we assume that negative labels are reli-
able, but positive ones are not. This setup does not take
false negatives (ỹi = −1 and yi = 1) into account, which
is not strictly true (for example, a user could simply for-
get to tag a clip). According to observations we made on
real-world web video, however, the fraction of these false
negatives compared to truly negative content is negligible,
and false positives pose a much more urgent problem.

3.2 Active Learning
One strategy to overcome label noise is to manually refine

the raw web-based training set. In this context, active learn-
ing is a well-known effective approach. In this section, we
discuss different active learning strategies for detector train-
ing that are targeted at achieving a refinement at minimal
additional annotation cost. The goal is to select only the
most important samples for inspection and therefore to im-
prove concept detector performance up to the level of ground
truth expert labels with only a few manual labels.

Relevance Feedback as a Wrapper.
In the following setup, a manual label refinement of se-

lected samples is placed as a wrapper around a regular super-
vised learning method (here, the previously proposed kernel
density learning from Equation (1)).

The procedure is illustrated in detail in Table 1: itera-
tively, concept detection is applied, obtaining class poste-
rior probabilities pj = (pj1, ..., p

j
n) for all training samples,

where pji ≈ P (yi = 1|xi) (see Equation (2)). Based on these
values, a keyframe s∗ ∈ {i : ỹi = 1} is selected for manual
annotation (we focus on positive weakly labeled keyframes
because their labels are the unreliable ones). After a man-
ual labeling of the selected sample s∗, we fix its label to
either −1 or 1 depending on the received annotation result.
Note, that in case of a positive feedback (i.e., ỹs∗ = 1), no
change of the model will occur, whereas in case of negative
feedback, the associated label turns to be −1 and the model
will change in the next iteration, resulting in an improved
concept detector. This retrained concept detector will then
provide new posterior probabilities for the next iteration of
active learning sample selection. When continuing further,
this procedure acquires more and more expert labels, un-
til finally the weakly labeled dataset turns into a strongly
annotated one.

Active Learning Methods.
Obviously, the quality of active learning heavily depends

on the sample selection strategy Q (see Table 1). In the
literature, many criteria Q have been proposed [19]. Here,
we compare the most popular ones:

Table 1: Active Learning: Wrapped around concept de-
tector training, active learning selects informative samples
for refinement by a user. Once the sample is labeled, its
label is fixed to either -1 or 1 and the system is re-trained.

1. for j = 1, .,m do:

• obtain class posteriors pj = (pj1, ..., p
j
n)

from p1 and p0

• select sample s∗ according to an active
learning criterion Q:

s∗ := arg max
i:ỹi=1

Q(pji )

• get the true label ys∗ from a human expert

• fix the sample label:

ỹj+1,...,m
s∗ =


1, ys∗ = 1
−1, ys∗ = −1

Once the true label is retrieved, the sample s∗

is excluded from sample selection.

1. random sampling: samples are selected randomly
(serves as a baseline).

2. most relevant: samples are selected which are most
likely to be relevant and are therefore associated with
the highest posterior [16]:

QREL(pji ) := pji

3. uncertainty: samples are selected for which the rel-
evance filtering method is least confident, i.e. pji ≈
0.5 [11]:

QUNC(pji ) := 1− |pji − 0.5|

4. density-weighted repulsion (DWR): Our last ap-
proach enhances “most relevant” sampling with an ex-
ploratory component. This is motivated by the as-
sumption that the labels associated with clusters in
feature space are homogeneous, and therefore the re-
finement of one sample within a cluster is sufficient of
infer the remaining ones. This is realized by adding a
repulsion term that enforces the query sample xi to be
distant from previously labeled samples (which form a
kernel density p+):

QDWR(pji ) := QREL(pji ) · (p
+(xi) + ε)−γ ,

where the parameter γ determines the strength of re-
pulsion.

3.3 Automatic Relevance Filtering
While the active learning approaches introduced in the

last section perform a refinement based on manual labels of
selected samples, other systems have been introduced that
replace this refinement with a fully automatic one. The
basic idea of these automatic relevance filtering methods [26,
32] is that relevant content appears frequently and forms
clusters in feature space, while non-relevant material comes
as outliers that can be identified and relabeled.



In this section, we will discuss an automatic relevance fil-
tering approach based on a weighted kernel density model [26,
31]. The class-conditional densities from Equation (1) are
replaced with weighted kernel densities:

p1
β(x) =

1

Z′1
·
nX
i=1

βi ·Kh(x;xi),

p0
β(x) =

1

Z′0
·
nX
i=1

(1− βi) ·Kh(x;xi),

(3)

where Z′1 =
P
i βi and Z′0 = n − Z′1 are normalization con-

stants. Compared to the fully supervised setup from Equa-
tion (1), the key difference is that p1 and p0 are now param-
eterized by a vector β = (β1, ..., βn). This vector consists of
relevance scores βi := P (yi = 1|ỹi, xi), meaning that each
training sample is weighted according to its probability of
being relevant: if a sample is likely to be relevant, it has a
strong influence on the distribution of positive samples p1

β

but low influence on p0
β . This way, the uncertainty of label

information is taken into account.
To compute the class-conditional densities p1

β and p0
β , the

vector of relevance scores β must be inferred in system train-
ing, i.e. potentially relevant frames must be divided into
actually relevant ones and non-relevant ones.

The relevance scores β are estimated in a training proce-
dure that – starting from a vector β0 – iteratively updates
the parameter vector βk to a new version βk+1 by plugging
it into the class-conditional densities p1

βk and p0
βk (Equation

(3)). From these densities, new estimates of relevance scores
can be obtained using Bayes’ rule:

βk+1
i := P (yi = 1|xi, ỹi = 1)

≈ P (yi = 1|ỹi = 1) · p(xi|yi = 1)P
y∈{−1,1} P (yi = y|ỹi = 1) · p(xi|yi = y)

(4)

≈
α · p1

βk (xi)

α · p1
βk (xi) + (1− α) · p0

βk (xi)

(5)

This is repeated until convergence. Training is regulated
by the relevance fraction α := P (yi = 1|ỹi = 1), which
determines how many of the positively labeled samples do in
fact show the target concept (if we choose α = 1, the model
degenerates to the supervised case as in Equation (1)). In
the following, we assume a sufficiently good estimate of this
parameter to be given.

Intuitively, this training procedure identifies regions in
feature space where positively labeled frames concentrate
and assigns high relevance scores to them, while outliers
similar to negative content are given low relevance scores.
The approach resembles the well-known Expectation Maxi-
mization (EM) algorithm [6], which maximizes the data like-
lihood in the presence of latent variables (here, the true con-
cept labels y1, ..., yn). Also, a similar training procedure has
been used by Wang et al. [31]. For more information on the
approach, please refer to a previous publication [26].

3.4 Active Relevance Filtering
The relevance scores β1, ..., βn in Section 3.3 captured

the uncertainty of the given web-based label information.
They have been fitted using an automatic training proce-
dure, which has previously been shown to improve concept

Table 2: Active Relevance Filtering: Wrapped around
relevance filtering, active learning selects informative sam-
ples for refinement by a user. Once the sample is annotated,
the system is re-trained and the remaining relevance scores
are adapted.

1. for j = 1, ...,m do:

• apply automatic relevance filtering, ob-
taining relevance scores βj = (βj1, ..., β

j
n)

• update the class-conditional
densities p0

β and p1
β (Equation (3))

• obtain class posteriors pj = (pj1, ..., p
j
n)

from p1
β and p0

β

• select sample s∗ according to an active
learning criterion Q:

s∗ := arg max
i:ỹi=1

Q(pji )

• get the true label ys∗

• fix the sample label:

ỹj+1,...,m
s∗ =


1, ys∗ = 1
−1, ys∗ = −1

Once the label is fixed, its relevance score is set
to the true value, and the sample is excluded
from further automatic relevance filtering.

detection to some extent [26]. Yet, significant label uncer-
tainty remains, which is why we propose to combine rele-
vance filtering with active learning to enhance the system
with a limited amount of manual feedback. This active rel-
evance filtering is outlined in the following.

We propose an iterative manual labeling of selected frames,
which is alternated with a retraining of relevance scores β.
This way, the previously introduced active learning mech-
anism is enhanced by an automatic relevance filtering step
after concept detector training. Again, to reduce annotation
effort, active learning strategies are used to select only the
most informative samples for annotation.

The procedure is illustrated in Table 2 (modifications com-
pared to the active learning procedure in Table 1 are high-
lighted in bold): in each iteration, an automatic relevance
filtering is performed, from which the class-conditional den-
sities are updated, obtaining class posteriors pj1, ..., p

j
n for

all training samples. Based on these posteriors, the most
informative weakly labeled keyframes are selected for man-
ual annotation (the same selection strategies as for active
learning can be used, see Section 3.2). The received label
information will now again serve as additional ground truth
for the next iteration of automatic relevance filtering, pro-
viding improved relevance scores for the next iteration of
sample selection. With more iterations of such combined
relevance filtering and active learning, the procedure sepa-
rates relevant content from non-relevant one more reliably.

Note that this approach alternates automatic and man-
ual filtering: in contrast to a purely automatic filtering, the
method uses an additional wrapper in which a human op-



erator contributes more accurate labels than the purely au-
tomatic approach can estimate by itself. The key difference
to active learning is that the labels are not only used to
update the classifier, but also for further relevance filtering:
each time a new label is given, it influences relevance scores
on the training set and helps to filter non-relevant content
more precisely. This provides an improved basis for the next
active learning sample selection – alternatingly, automatic
and manual refinement boost each other.

4. EXPERIMENTS
Experiments are performed on a dataset of real-world web

video content downloaded from YouTube. For this, we select
ten test concepts from the YouTube-22concepts2 dataset,
including objects (“cats”, “eiffeltower”), locations (“beach”,
“desert”), and sports (“basketball”, “golf”). For more details
on the test concepts, please refer to our dataset definition3.
For each concept, 100 video clips were downloaded by query-
ing the YouTube API with an appropriate combination of
keywords. Keyframes were extracted and manually assessed
according to canonical concept definitions. For each con-
cept, we sampled a training set of 1, 000 negative sample
frames and 500 noisy positive frames. The label precision of
these positive samples was set to 20% (which was validated
to be a typical value for web video in previous annotation
experiments). This means that the 500 positive samples con-
tained only 100 true positives and 400 false positives (which
were also sampled from YouTube clips tagged with the tar-
get concept, but were manually assessed to be non-relevant).
To evaluate the concept detectors trained on this weakly la-
beled content, a test set of 500 positive and 1, 500 negative
frames was sampled (it was made sure that training and test
content was drawn from different clips).

As a feature representation of keyframes, we refer to the
well-known bag-of-visual-words approach [21, 29]: a regular
patch sampling was conducted at several scales, patches were
described by SIFT [14], and finally clustered to a 2, 000-
dimensional vocabulary using K-Means. After this, a PLSA
dimensionality reduction [15] to 64 dimensions was applied
for efficiency purposes.

We tested the relevance filtering system with a kernel
bandwidth of h = 0.0275 (which was previously optimized
using cross-validation). The parameter α of automatic rel-
evance filtering (Equation (4)) was set to 20%. For DWR
sampling a value of γ = 0.1 proved to work best. As a per-
formance measure, mean average precision (MAP) is used.
All results are averaged over all 10 test concepts and over 5
trials using different randomly sampled datasets.

Three main experiments were conducted to quantify the
effects of different refinement strategies: first, we validate
the impact of an automatic relevance filtering and demon-
strate that this approach gives some improvements but does
not reach the performance of a complete manual annotation
(Section 4.1). After this, we evaluate a manual refinement
using plain active learning (Section 4.2) and compare this
with the novel active relevance filtering approach (Section
4.3).

2https://madm.dfki.de/research/youtube-22concepts
3http://www.dfki.uni-kl.de/˜ulges/MIR2010-
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Figure 4: Results of Experiment 1, showing potential per-
formance ranges for further refinement strategies. Though
automatic relevance filtering provides some performance
gain, its performance is far from the ground truth opti-
mum. Note that ground truth label information is not given
and should here only demonstrate the potential performance
gain of a perfect relevance filtering.

Table 3: Detailed Results of Experiment 1. Average preci-
sion is displayed for each concept and each of the three runs.

concept no rel. filt. auto. rel. filt. ground truth

basketball 0.570 0.606 0.651
beach 0.398 0.449 0.504
cats 0.320 0.333 0.388

desert 0.587 0.636 0.655
eiffeltower 0.425 0.421 0.526
helicopter 0.362 0.392 0.418

sailing 0.440 0.466 0.493
soccer 0.562 0.575 0.740

swimming 0.448 0.491 0.647
tank 0.441 0.457 0.543

MAP 0.455 0.482 0.557

4.1 Experiment 1: Weak Label Impact &
Automatic Relevance Filtering

The first experiment evaluates several concept learning
approaches when trained on weakly labeled web video ma-
terial. We compare three systems: first, one that does not
perform relevance filtering at all, which corresponds to a
standard supervised system using plain kernel densities (this
baseline is denoted with no relevance filtering and has been
outlined in Section 3.1). Second, an automatic relevance
filtering as outlined in Section 3.3, and third a control run
using ground truth labels (note that such label information
is not available in practice).

When comparing these three runs (Figure 4 and Table 3
for detailed concept-dependent results), we see that the sys-
tem without relevance filtering performs worst, with a mean
average precision (MAP) of 0.455. The automatic relevance
filtering achieves a slight improvement (MAP: 0.482). How-
ever, a strong gap of 7% remains compared to the ground
truth run (MAP: 0.557) – this indicates that we could im-
prove concept learning from the web significantly if we were
able to perform a more accurate filtering of non-relevant
content. This motivates semi-automatic refinement strate-
gies as evaluated in the next sections.
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Figure 5: Results of active learning. The accuracy of the
resulting concept detectors is plotted against the number of
manually annotated training samples.

4.2 Experiment 2: Active Learning
In the second experiment we quantify the performance of

a manual refinement of web-based training sets using ac-
tive learning. The results of this experiment are illustrated
in Figure 5, where the performance of the trained concept
detectors on the test set is plotted against the number of
training samples annotated with active learning (different
curves correspond to different sample selection strategies).
To establish a relation to the last experiment, the three au-
tomatic runs (no relevance filtering, automatic relevance fil-
tering, and ground truth labels) are plotted as dotted lines in
Figure 5. We see that all sample selection methods start at
an MAP of 0.45 (which equals the previously shown “no rel-
evance filtering” system, as no automatic relevance filtering
is done. However, as we collect more training labels manu-
ally, the quality of the training set (and with it the accuracy
of the resulting detectors) improves. Sample selection stops
when all weakly labeled samples are manually refinement
i.e. after 500 annotations. Here, the MAP is the same for
all selection methods and equals the “ground truth” run in
Section 4.1 (which is not surprising, as the whole training
set is now manually annotated).

When comparing the different sample selection methods,
we see that different sampling strategies lead to a very differ-
ent performance. Surprisingly, well-known samplings meth-
ods like uncertainty sampling are performing worse than a
simple random sampling baseline. The best overall result
is achieved by DWR sampling, which gives strong improve-
ments over all other strategies. Yet, the improvements by
active learning remain limited: even the best method re-
quires a substantial amount of manual samples to give sig-
nificant improvements over the automatic relevance filtering.
To reach a performance close to a ground truth labeling, all
methods require a manual annotation of wide parts of the
training set.

4.3 Experiment 3: Active Relevance Filtering
In this experiment, the performance of the proposed ac-

tive relevance filtering approach (a novel combination of a
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Figure 6: Results of active relevance filtering. Performance
is plotted against the number of manually annotated train-
ing samples. It can be seen that – if using a proper sample
selection – it is sufficient to annotate only 30−40 weakly pos-
itive training samples to achieve a significant performance
improvement.

manual and automatic label refinement) is evaluated. Re-
sults of this experiment are illustrated in Figure 6. Just like
in Figure 5, concept detector performance is plotted against
the number of manual annotations used in training.

We first compare the different active learning strategies
in Figure 6. It can be seen that all used sample selection
methods outperform the random sampling baseline signifi-
cantly. Systems based on most relevant sampling perform
best, which can be explained by the fact that this approach
helps to identify false positives that are “surprising” to the
system and thus lead to strong model changes. For low num-
bers of annotations, the exploratory component of DWR
leads to further improvements.

Overall, it can be seen that active relevance filtering —
if combined with the right sample selection strategy — is
highly efficient, giving strong improvements of concept learn-
ing even for very low numbers of manual annotations. For
example, with as few as 50 annotations, a performance in-
crease of 5% is achieved compared to automatic relevance
filtering. When continuing with annotation, we can see
that concept detection performance converges to the ground
truth case at 125−150 iterations (which corresponds to only
25−30% of the positive weakly labeled training set and 10%
of the whole training set).

Figure 8 provides a visual impression of active relevance
filtering performance. Here, the top 20 test set classifica-
tion results are shown for the three concepts “basketball”,
“tank” and “eiffeltower”. For each concept a separate re-
sult list is displayed for a) non relevance filtering, b) au-
tomatic relevance filtering and c) active relevance filtering
(50th iteration of DWR). The border of each keyframe is
colored according to its true label (green=concept present;
red=concept absent). Comparing the different lists, we can
see that significantly better results can be achieved for c)
compared to b), which itself shows improvements over a).
Note that particularly for such challenging concepts as “eif-
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Figure 7: Comparing active learning and active relevance
filtering, using random sample selection and DWR. The pro-
posed active relevance filtering leads to better concept de-
tectors at lower annotation cost.

feltower” – for which automatic relevance filtering is difficult
due to lots of non-relevant YouTube content showing views
from the tower but not the tower itself – active relevance
filtering improves classification results significantly.

Finally, we compare the proposed active relevance filter-
ing with pure active learning as discussed in Section 4.2.
Again, we plot detection performance against the number of
manual annotations (Figure 7). We plot the best systems
for active relevance filtering and active learning (Section 4.2
vs. Section 4.3), namely the DWR-based runs, and also (as a
baseline) random sampling. The results clearly indicate that
active relevance filtering significantly outperforms a pure ac-
tive learning. We see for both sample selection strategies
that active relevance filtering starts with a higher MAP as
it utilizes automatic relevance filtering. Also, system per-
formance of active relevance filtering improves quicker than
for pure active learning, which can be explained by the fact
that active relevance filtering makes better use of user feed-
back: if a manual sample is provided, the additional rele-
vance filtering mechanism propagates this label over neigh-
bor samples. For example, after refining only 50 samples
manually, active relevance filtering clearly outperforms pure
active learning, resulting in an absolute improvement of 7%.

Concluding, active relevance filtering – particularly if com-
bined with appropriate sample selection strategies – can im-
prove concept learning on the difficult domain of web video
content better than both an automatic relevance filtering
and a manual label refinement using standard active learn-
ing techniques.

5. DISCUSSION
In this paper, we have addressed the challenge of learning

visual concepts from web video, which offers a scalable al-
ternative to the conventional manual acquisition of concept
detection training data. On the downside, the tags coming
with web video are only weak indicators of concept presence,
and web-based training sets come with significant amounts
of non-relevant content. To achieve robustness with respect

to this label noise, we have combined relevance filtering –
which discards non-relevant content automatically – and ac-
tive learning – which is targeted at an efficient manual re-
finement. The resulting approach – called active relevance
filtering – performs a highly efficient learning using a few
manually labeled samples.

In quantitative experiments with real-world web content
downloaded from YouTube, we have demonstrated that ac-
tive relevance filtering improves concept learning significantly.
Particularly, we outperform both a purely automatic re-
finement and standard active learning, reaching a perfor-
mance comparable to ground truth training by refining only
25− 30% of weak positive labels in the training set.

Regarding future directions along this line of research, the
next step is to integrate active relevance filtering with other
statistical learning methods. In this paper, we have used a
simple generative standard approach (namely, kernel densi-
ties). It remains to be investigated whether active relevance
filtering could be used as a wrapper around other machine
learning methods in a similar fashion, including generative
ones (e.g., Gaussian mixture models, histograms) as well as
discriminative ones (e.g., SVMs [17]).
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Figure 8: Results for the three concepts “basketball” (top), “tank” (center), and “eiffeltower” (bottom). The top 20 results
are displayed for a) no relevance filtering, b) automatic relevance filtering and c) active relevance filtering (50th iteration
of DWR). Each keyframe is colored according to its true label (green=concept present; red=concept absent). Results are
improved significantly in c) compared to b) which itself gives improvements over a). Overall, active relevance filtering improves
classification results significantly.
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