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Abstract

In a constructive learning setting, a robot builds up be-
liefs about the world by interacting – interacting with
the world, and with other agents. Asking questions is
key in such a setting. It provides a mechanism for in-
teractively exploring possibilities, to extend and explain
the robot’s beliefs. The paper focuses on how to linguis-
tically phrase questions in dialogue. How well the point
of a question gets across depends on how it is put. It
needs to be effective in making transparent the agent’s
intentions and beliefs behind raising the question, and
in helping to scaffold the dialogue such that the desired
answers can be obtained. The paper proposes an al-
gorithm for deciding what to include in formulating a
question. Its formulation is based on the idea of consid-
ering transparency and scaffolding as referential aspects
of a question.

Introduction
Robots are slowly making their entry into ”the real world.”
And it is slowly becoming an accepted fact of life that we
cannot possibly provide such robots will all there is to know,
out-of-the-box. So they need to learn. The point of socially
guided (machine) learning (Thomaz 2006) is that some of
that learning can be done effectively through social interac-
tion with other agents in the environment.

This paper focuses on how a robot should phrase its ques-
tions, considering a social learning setting in which situ-
ated dialogue is the main interactive modality (Kruijff et
al. 2006a; Jacobsson et al. 2007). The robot and a human
use spoken dialogue to discuss different aspects of the envi-
ronment. We consider learning to be driven by the robot’s
own, perceived learning needs. This requires dialogue to be
mixed-initiative. Both the human and the robot can take the
initiative in driving this ”show-and-tell-then-ask” dialogue.
Questions play a fundamental role in such dialogues. As-
suming a robot has the ability to raise issues in need of clari-
fication or learning for any modality, (e.g. (Kruijff, Brenner,
and Hawes 2008)), the problem thus becomes how to prop-
erly phrase a question.

Typically, a question is represented as an abstraction
over the argument of a predicate. For example, assuming
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?x.P (x) to indicate that a question regards a parameter x
of some predicate P (x), a question about the color of a ball
could be phrased as ?x.(ball(y) ∧ has−color(y, x)). How-
ever, more aspects need to be taken into account, for a ques-
tion to be posed in such a way that the addressee is likely
to understand the question and provide a suitable answer
(Ginzburg 1995b).

First of all, the phrasing needs to make transparent how
a question arises from an agent’s beliefs, what beliefs – and
what gaps in an agent’s beliefs – it refers to. It should make
clear what a question is about. Furthermore, there is a rea-
son behind raising the question. The agent has a specific
goal, it intends to obtain a particular kind of answer. Not
just any answer will do. Raising a question also needs to set
up, scaffold, the right context for answering it. This is the
why of a question, pointing to how the agent would like to
see the question resolved.

An example in (Kruijff et al. 2006b; 2007b) provides an
interesting illustration.1 The robot is capable of figuring out
when it might have mistakenly classified a particular passage
in the environment as a door. At the point where it realizes
this, it asks, ”Is there a door here?” Unfortunately, the place
where it asks this is not related to the location ”here” refers
to. To anyone but a developer-acting-as-user it is not trans-
parent what the ”here” means. This often leads to the user
giving the wrong answer, namely ”yes this room has a door”
rather than, ”no, there is no door between the trash bin and
the table.” The way the question was phrased lacked both in
transparency (location reference) and in scaffolding (specific
location, not the room as such).

The paper presents an approach to generating a content
representation for a question. These representations reflect
what is being asked after, in reference to beliefs (about-
ness, transparency) and intentions (resolvedness, scaffold-
ing). The approach explicitly regards transparency and scaf-
folding as referential qualities of a question. This way their
referential nature in the larger dialogue- and situated con-
text can be considered. Following out that idea, the ap-
proach bases its content determination algorithm on Dale &
Reiter’s incremental algorithm for generating referring ex-
pressions (Dale and Reiter 1995), in combination with algo-

1See also the video at the CoSy website’s Explorer page, at
http://cosy.dfki.de/www/media/explorer.y2.html.



rithms for referential context determination (Zender, Kruijff,
and Kruijff-Korbayová 2009; Paraboni, van Deemter, and
Masthoff 2007).

Central to the approach is establishing the information
pertaining to the question. A description logic-like formal-
ism is used to represent such information, as a conceptual
structure in which propositions have ontological sorts and
unique indices, and can be related through named relations.
A question can then be represented as a structure in which
we are querying one or more aspects of such a representa-
tion (Ginzburg 1995b; Kruijff, Brenner, and Hawes 2008).
The formalism allows everything to be queried: relations,
propositions, sorts. Around the formulation of a question
we construct a nucleus, comprising the situation (the ”facts”)
and the beliefs that have led up to the question, the question
itself, and the goal content which would resolve the ques-
tion. The question nucleus integrates Ginzburg’s notions of
aboutness, and (potential) resolvedness.

Based on the question nucleus, the algorithm starts by
determining to what extend the different aspects are cov-
ered by the (dialogue) common ground between the robot
and the human. For this, contextual references are resolved
in a dialogue context model (Kruijff et al. 2007a), and it
is established how these can be related to inferences over
domain knowledge and instances (Kruijff et al. 2007b).
The question nucleus is extended with these connections
– or rather, with indications of the information structure
or informativity of individual content – so that it includes
an explicit notion of what is shared, and what is privately
held information (cf. (Lochbaum, Grosz, and Sidner 1999;
Grosz and Kraus 1999)).

The algorithm next decides what aspects of a question
nucleus to include in the content for phrasing the ques-
tion. For each aspect of the nucleus (facts, beliefs, ques-
tion, goals) the algorithm uses the informativity of the as-
pect’s content, in conjunction with similarly related but con-
trasting content in the dialogue context model, to determine
whether to include it. Essentially, new or contrastive con-
tent will be considered, whereas salient ”old” information
will not. The form in which the content will be included
is determined by content-specific algorithms for generat-
ing referring expressions (e.g. (Kelleher and Kruijff 2006;
Zender, Kruijff, and Kruijff-Korbayová 2009)). The deci-
sions to include particular content can be weighted accord-
ing to a comprehensibility ranking as e.g. in (Krahmer, van
Erk, and Verleg 2003).

The contributions the approach aims for are, briefly, as
follows. Purver and Ginzburg develop an account for gen-
erating questions in a dialogue context (Purver, Ginzburg,
and Healey 2003; Purver 2004). Their focus was, however,
on clarification for the purpose of dialogue grounding. A
similar observation can be made for recent work in HRI
(Li, Wrede, and Sagerer 2006), We are more interested in
formulating questions regarding issues in building up situ-
ation awareness, including the acquisition of new ways of
understanding situations (cf. also (Kruijff, Brenner, and
Hawes 2008)). In issue-based (or information state-based)
dialogue systems (Larsson 2002), the problem of how to
phrase a question is greatly simplified because the task do-

main is fixed. There is little need for paying attention to
transparency or scaffolding, as it can be assumed the user
understands the task domain.

An overview of the paper is as follows.The paper starts
with a discussion of basic issues in modeling questions and
their semantics, based on (Ginzburg 1995b). Then the ap-
proach is presented. The approach starts from the assump-
tion that a question is a dialogue, not just a single utterance.
Discussed is how the content plan for such a question dia-
logue can be determined, providing definitions, representa-
tion, and algorithms. The paper ends with a discussion of
how the approach could be integrated, evaluated, and points
for further research.

Background
What is a question? Ginzburg (1995b) discusses a variety of
linguistic approaches. All of them aim to provide an invari-
ant characterization of the semantics of a question. Broadly,
they have proposed the following aspects as crucial to that
definition.

First, several approaches propose to see a question as an
n-ary relation. The relation puts together the question with
one or more contributions pertaining to answering it. The
point here is to take into account the fact that a question
can be discussed over several turns in a dialogue. Second,
there is a sense of aboutness to a question. Each question
can be associated with a collection of propositions, which
are –intuitively– related to the question. And, finally, each
question can be considered to be associated with a (possibly
complex) proposition which provides an exhaustive answer.
In other words, an exhaustive answer resolves the question.

Ginzburg suggests that all these aspects together make
up a characterization of a question – not just one of them,
as most approaches suggest. Furthermore, these aspects
are to be understood as being relative. What a question is
about, and how it can be resolved, should be understood rel-
ative to an agent’s goal and belief/knowledge state (cf. also
(Ginzburg 1995a)). The following example illustrates this.

(1) Context: a robot drives around campus, and is about
to enter the DFKI building.
a. Janitor: Do you know where you are?

Robot: DFKI.
b. Janitor believes the robot knows where it is.

(2) Context: a robot drives around the DFKI building,
to get a cup of coffee.
a. Janitor: Do you know where you are?

Robot: DFKI.
b. The janitor is not convinced the robot really

knows where it is.

What counts as an answer to a question may thus vary
across contexts. What a question is thus cannot be reduced
to an analysis of just what counts as its answers. Instead,
Ginzburg starts with setting up an ontology in which ques-
tions, propositions and facts are considered as equal citizens.
This makes it possible to consider a question in relation to



possible answers for it. The ontology is defined using sit-
uation theoretic constructs, which we will adopt through-
out this paper. (All definitions as per (Ginzburg 1995a;
1995b).)

Definition 1 (SOA, Situation, Fact). A SOA (State Of Af-
fairs) describes possible ways an actual situation might be.
SOAs are either basic, or built up from basic ones using al-
gebraic operations. A basic SOA is an atomic possibility,
written as 〈R, f : i〉 with R a relation, f a mapping assign-
ing entities to the argument roles of R, and i is a polarity i.e.
i ∈ {+,−}. A situation s supports the factuality of a SOA
σ iff s |= σ. The SOA σ is then considered a fact in s. To
enable complex SOAs, SOAs can be structured as a Heyt-
ing algebra under a partial order ’→’, which is closed under
arbitrary meets (

∧
) and joins (

∨
). Situations and SOAs to-

gether form a SOA-algebra:

1. If s |= σ and σ → τ then σ |= τ

2. s 6|= 0, s |= 1 (FALSE,TRUE)

3. If Σ is any finite set of SOAs, then s |=
∧

Σ iff s |= σ
for each σ ∈ Σ

4. If Σ is any finite set of SOAs, then s |=
∨

Σ iff s |= σ
for at least one σ ∈ Σ

Finally, an application operator is defined, to allow for vari-
able assignment (and reduction):
λx.〈R, a : b, c : x : +〉|x 7→ d| = 〈R, a : b, c : d : +〉 2

Using Definition 1, we can now consider a proposition to
be an assertion about the truth of a possibility relative to a
situation.

Definition 2 (Proposition). A proposition p is a relational
entity, asserting a truth regarding a SOA τ in a particular
situation s: p = (s : τ). A proposition p = (s : τ) is TRUE
iff τ is a fact of s, denoted as s |= τ . 2

Before defining what a question is, the notions of re-
solvedness and aboutness need to be defined. Resolved-
ness, or rather the broader concept of potentially resolving a
question, is defined as follows. The definition distinguishes
whether a (possibly complex) fact resolves a question de-
pending on whether the question is polar, asking for the truth
of an assertion (e.g. ”Is the ball red?”), or factive, asking af-
ter a value (e.g. ”What color is the ball?”).

Definition 3 (Resolvedness conditions). A SOA τ poten-
tially resolves a question q if either

1. τ positively-resolves q (for ’polarity p’: any informa-
tion that entails p; for a factive question: any informa-
tion that entails that the extension of the queried predi-
cate is non-empty)

2. τ negatively-resolves q (for ’polarity p’: any informa-
tion that entails ¬p; for a factive question: any informa-
tion that entails that the extension of the queried predi-
cate is empty)

2

We will leave the notion of aboutness for the moment.
Essentially, Ginzburg (1995a; 1995b) defines this as a col-
lection of SOAs which can be associated with the content of
a question q, with a SOA being about q if it subsumes the
fact that q is either positively or negatively resolved. (For
subsumption, recall Definition 1.)

Ginzburg’s definition of what a question is then works out
as follows.
Definition 4 (Question). A question is an entity (s?µ) con-
structed from a situation s and an n-ary abstract SOA µ =
λx1 , ..., xnσ(x1 , ..., xn) (n ≥ 0):

1. µ constitutes an underspecified SOA from which the
class of SOAs that are about q can be characterized.

2. Those SOAs which are facts of s and informationally
subsume a level determined by µ constitute a class of
SOAs that potentially resolve q.

2

The definition includes references to the relational charac-
ter of a question (the abstract), and the notions of aboutness
(intuitively, the space within which we are looking for an
answer) and of resolvedness (the space of possible answers
we are looking for, one of which will -hopefully- establish
itself as fact). Finally, we already indicated above that re-
solvedness is an agent-relative notion. Ginzburg suggests to
do so using Definition 3 as follows.
Definition 5 (Agent-relative resolvedness). A fact τ re-
solves a question (s?µ) relative to a mental situation ms iff

1. Semantic condition: τ is a fact of s that potentially re-
solves µ

2. Agent relativisation: τ =⇒ msGoal − content(ms),
i.e. τ entails the goal represented in the mental situation
ms relative to the inferential capabilities encoded inms.

2

Approach
The previous section presented a formal (but relatively ab-
stract) notion of what a question is. It made clear that a
question is more than a predicate with an open variable, or
(alternatively) just another way of characterizing a set of
propositions that would serve as exhaustive answer. Instead,
a question is a relational structure, tying into a larger con-
text. For one, this “context” provides a set of beliefs (SOAs,
in Ginzburg’s terms), a background within which potential
answers are sought. An agent’s goals help motivate to fo-
cus which beliefs are associated with the question. Another
point about this “context” is that a question isn’t just a sin-
gle utterance, or just forming a unit with an utterance that
answers it. There is a dialogue context in which this ques-
tion is phrased. The question itself, and whatever utterances
contribute to help clarify, refine and answer that question,
may (though need not) refer to content already established
in that context.

Phrasing a question, in other words, means we need to
provide the possibility for such contextual factors to influ-
ence how the content of a question is determined. Once the



agent has determined that it needs to raise a question, and
about what (e.g. cf. (Kruijff, Brenner, and Hawes 2008) for
questions in situated forms of learning), it needs to estab-
lish how best to communicate the question. In this paper,
we suggest to do this as follows. We will begin by further
explication of the notion of question, using a structure we
term the question nucleus. The question nucleus captures
more explicitly the relation between beliefs and intentions
that are active in a current context, and how they determine
the space of possible answers (or complexes of those). Then,
we sketch several algorithms. The first group of algorithms
concern context determination. Intuitively, these algorithms
determine what beliefs and potential answers form the rele-
vant background for the question. The background specifies
what can be assumed to be known, (and can thus be referred
to or even silently assumed), both in terms of content and
intentions in the the dialogue- and situated context. How a
question is to be phrased relies on what it needs to expli-
cate relative to that background, to effectively communicate
it. This is then finally done by the content determination
algorithm. The result of this algorithm is a logical form, ex-
pressed in a (decidable) description logic. The logical form
specifies the core content for the question, which a content
planner subsequently can turn into one or more fully-fledged
utterances.

The following definition defines more precisely what
we mean by a logical form, based on (Blackburn 2000;
Baldridge and Kruijff 2002). We will use the same formal-
ism to describe SOAs (cf. Definition 1).

Definition 6 (Logical forms). A logical form is a formula
φ built up using a sorted description logic. For a set of
propositions PROP = {p, ...}, an inventory of ontolog-
ical sorts SORT = {s, ...}, and a set of modal relations
MOD = {R, ...}, φ = p | i : s | ψ∧ψ′ | 〈R〉ψ |@i:sψ. The
construction i : s identifies a nominal (or index) with onto-
logical sort s. The at-operator construction @i:sψ specifies
that a formula ψ holds at a possible world uniquely referred
to by i, and which has ontological sort s. 2

A standard Kripke-style model-based semantics can
be defined for this language (Blackburn 2000). Intu-
itively, this language makes it possible to build up rela-
tional structures, in which propositions can be assigned
ontological sorts, and referred to by using i as in-
dices. For example, @b1 :entity(ball ∧ 〈Property〉(c1 :
color ∧ red) means we have a “ball” entity, which we
can uniquely refer to as b1, and which has a (refer-
able) color property. (An alternative, equal way of view-
ing this formula is as a conjunction of elementary pred-
ications: @b1 :entityball ∧ @b1 :entity〈Property〉c1 :
color ∧ @c1 :colorred.)

Question nucleus
We start by defining the notion of question nucleus. The
function of a question nucleus is twofold. First, it should
capture the question’s background in terms of associated be-
liefs and intentions, and what space of expected answers
these give rise to. An expected answer is naturally only as
specific (or unspecific) as is inferable on the basis of what

the agent knows.
Definition 7 (Expected answer). An expected answer a for
a question q is a proposition a = (s : τ), with τ potentially
resolving q as per Definition 3. τ is a logical formula (Def-
inition 6) which can be underspecified, both regarding the
employed ontological sorts, and arguments. 2

Effectively, assuming that the agent has a collection of
ontologies which provide a subsumption structure (a = b
meaning a subsumes b, i.e. b is more specific), an expected
answer can be said to define a “level” of specifity (Defini-
tion 4) according to subsumption. Following up on the ball
example, assume the agent has an ontology which defines
material − property = {color, shape}. An expected an-
swer to a question, what particular shape the ball has, would
take the form @b1 :entity(ball ∧ 〈Property〉(s1 : shape)).
All the proposition specifies is that there is an identifiable
shape. If the question would be about any, or some un-
known, property of the ball, an expected answer could be
phrased as @b1 :entity(ball ∧ 〈Property〉(m1 : material−
property)). Using the available ontological structure, and
relational structure between formulas, we can formulate ex-
pected answers at any level of specifity without requiring the
agent to already know the answer (cf. also (Kruijff, Brenner,
and Hawes 2008)).
Definition 8 (Question nucleus). A question nucleus is a
structure qNucleus = {r,BL,XP,AS} with:

1. A referent r relative to which the question q (part of XP)
is phrased.

2. BL (Beliefs) is a set of private and shared beliefs, about
agent intentions and facts in the current context (cf.
(Lochbaum, Grosz, and Sidner 1999; Grosz and Kraus
1999)).

3. XP (Execution Plan) is a continual plan with an exe-
cution record (Brenner and Nebel 2008) for resolving a
question q = (s?µ).

4. AS (Answer Structure) is a finite =-structure over
propositions p1 , ... which potentially resolve q, and
which are implied by BL.

The beliefs BL specify what the agent knows about r, what
the agent presumes to be shared knowledge about r, and
what the agent presumes other agents could know about r.
BL is based on the dialogue leading up to the question, any
previous actions involving r, and a domain model of agent
competences (Brenner and Kruijff-Korbayová 2008). XP
makes explicit that phrasing a question constitutes a dia-
logue, with an associated plan for communicating the ques-
tion and a record for how far the question has been fully
answered. This record maintains which aspects (elementary
predications) of the question are still open (“under discus-
sion,” similar to the Question-Under-Discussion construct of
(Ginzburg 1995b)). The AS is a set of propositions, relat-
ing those propositions to the aspect(s) of the question they
would potentially resolve (and thus to the execution record
in XP ). AS is based on propositions implied by BL (rel-
ative to r, q) and is =-structured according to ontological
structure. 2



Contextually determining aboutness
Asking a question starts with the agent having determined
what it is it needs to know about some referent r, e.g. an
area in the environment, an object – or, more specifically,
relations or properties. (To allow for group referents, we
will consider r to be a set.) Next the question nucleus is
built up, starting with the beliefs about the question, BL.

We adopt the approach to belief modeling described in
(Brenner and Kruijff-Korbayová 2008). Beliefs are formu-
lated as relational structures with multi-valued state vari-
ables (MVSVs). These state variables are used for several
purposes. First, they can indicate domain values, as illus-
trated by the sorted indices in the examples above. The
color c1 would be a Property-type state variable of the en-
tity b1, and could take domain values in the range of that
ontological sort. Important is that the absence of a value
for an MVSV is interpreted as ignorance, not as false-
hood: @b1 :entity(ball ∧ 〈Property〉(s1 : shape)) means
the agent does not know what shape the ball has, not that
it has no shape (as per a closed-world assumption). In a
similar way, state variables are used for expressing private
beliefs, and mutual or shared beliefs (Lochbaum, Grosz,
and Sidner 1999; Grosz and Kraus 1999). A private be-
lief of agent a1 about content φ is expressed as (K{a1}φ)
whereas a mutual belief, held by several agents, is expressed
as (K{a1 , a2 , ...}φ). Secondly, MSVSs can be quanti-
fied over, for example using the ? to express a question:
?s1.@b1 :entity(ball ∧ 〈Property〉(s1 : shape)) represents
a question regarding the shape of the referent b1.

As an agent perceives the environment, we assume it
builds up beliefs about the instances it perceives, and what
relations can be observed or inferred to hold between them.
For example, see (Brenner et al. 2007) for a robot manipu-
lating objects in a local visual scene, or (Kruijff et al. 2007b)
for a robot exploring an indoor environment. Furthermore,
we assume that the agent’s planning domains include mod-
els of agent capabilities – what another agent is capable of
doing, including talking (and answering questions!) about
particular aspects of the environment (Brenner and Kruijff-
Korbayová 2008). Finally, if the agent has been engaged in
a dialogue with another agent, and discussed the referent-in-
question r before, we assume that the (agreed-upon) content
discussed so far constitutes shared beliefs, held by all agents
involved.

Algorithm 1 : Determine(BL) (sketch)

Require: BELs is a set of private and mutual beliefs the
agent holds, (including beliefs about capabilities); r is the
referent (set) in question

BL = ∅
for b ∈ BELs do

if b includes a MVSV m ∈ r then
BL = BL ∪ b

end if
end for

return BL

Algorithm 1 sketches the basis of the algorithm for estab-
lishing BL. Those beliefs are gathered which refer explic-
itly to the referent the question is about. Note that BL may
end up being empty. This means that r has not been talked
about, nor does the agent know whether another agent could
actually offer it an answer to what it would like to know
more about.

Contextually determining resolvedness
The beliefs BL about the referent in question r state what
the agent already believes about r (privately, or shared), and
what it believes about another agent’s capabilities. Next,
these beliefs need to be structured such that potentially re-
solving answers can be derived. We assume that we can
make use of the ontological sorts, and the structuring over
these sorts provided by domain ontologies, to organize be-
liefs. The organization we are after first of all relates a belief
to a potentially resolving answer, by combining it (inferen-
tially) with the ?-quantified, ontologically sorted MVSVs in
the question to yields a partially or completely reduced log-
ical form (Definition 1). Secondly, the organization relates
beliefs by (sortal) subsumption over the potentially resolv-
ing answers they generate.

For example, consider a question about the color of a ball:
?c1.@b1 :entity(ball ∧ 〈Property〉(c1 : color)). Let us as-
sume the robot holds several beliefs with regard to b1, and
the variable c1. A robot learning more about visual prop-
erties of objects through interaction with a human tutor (Ja-
cobsson et al. 2007) typically holds at least beliefs about
what the tutor is capable of telling it. Thus, assume the
robot believes the tutor can tell it about material properties,
colors, and shapes. Using tell-val (tell value action)
we can model these beliefs as (K {a1} tell − val(a2 ,m :
material− property), (K {a1} tell− val(a2 , c : color).
The variables m, b are existentially bound in these beliefs.
Using the inference that material − property = color
and introducing bound variables m′, c′ for m and c respec-
tively, the beliefs can be combined with the question to
yield the potentially resolving propositions c′ : color,m′ :
material − property. Furthermore, subsumption yields
m′ : material − property = c′ : color. Thus, by com-
bining the beliefs with what the agent already knows, it can
expect to know something it doesn’t yet know by asking a
question. And by making use of the way its knowledge is
ontologically structured, it can determine how precise that
answer is likely to be.

Algorithm 2 provides a first sketch of the algorithm for
establishing AS. (In the current version, propositional con-
tent and additional relational structure pertaining tom in the
context of b is not yet included into AS.)

Content determination
Finally, once the beliefs about q and the potentially resolving
answers for q have been established, we can turn to deter-
mining the exact content for communicating q. The purpose
of content determination is to establish what, how much,
should be communicated for the agent to get an appropri-
ate answer – how much content it needs to communicate to
ensure proper scaffolding and transparency. For example,



Algorithm 2 : Determine(AS) (sketch)

Require: BL is a set of beliefs relative to r, q is a question
about r, and ONT is a collection of ontologies supporting
subsumption inferences on sorts used in BL and q.

AS = ∅ (empty subsumption )
for b ∈ BLs do
φ = >
for MVSV m ∈ r existentially bound in b do

introduce a bound variable m′

φ = φ ∧ m′ : sort(MV SV )
end for
AS = AS t φ, under =

end for

return AS

consider again the question about the color of the ball. How
the question should be phrased, depends on whether e.g. the
ball has already been talked about, what goals are involved
(are we learning how this ball looks like, or how objects
roll?), etc. Example 3 provides some illustrations.

(3) Asking about the color of a single ball on a table ...
a. If the robot is not sure whether the other agent

knows about colors:
“Could you tell me about the color of this ball?”

b. If the robot believes the other agent knows about
colors:
“ Could you tell me what color this ball is?”

c. If the robot is not sure whether asking about
color is relevant to the current goal:
“I would like to know more about the color of
this ball. Could you tell me what it is?”

d. If the ball is under discussion, and asking for
color is relevant:
“What’s the color?”

Example 3 particularly illustrates how scaffolding and
transparency come into play. We connect these terms ex-
plicitly to the question nucleus. We see scaffolding primar-
ily as appropriately embedding a question into an intentional
setting, relating to AS and the extent to which available be-
liefs lead to specific (potentially resolving) answers. Trans-
parency relates to the referential setting of the question nu-
cleus, relating r to BL in the sense of what the agent can
already assume to be mutually known about the referent un-
der discussion. Planning the question as a dialogue, then,
means determining relevant beliefs, and the information sta-
tus of relevant content. Relevant beliefs are those which are
associated with maximally specific, potentially resolving an-
swer(s). A distinction needs to be made between private and
mutual believes, particularly as beliefs about competences
are first and foremost private beliefs. Furthermore, it should
be determined whether these beliefs fit into the current in-
tentional context. (For the purposes of the current paper, we
will consider learning goals only, and consider them to spec-

ify what ontological sorts the agent is trying to learn.) Infor-
mation status regards whether content, pertaining to r, can
be assumed to be mutually known – most notably, whether
r is mutually known (i.e. mutually identifiable in context).

Algorithm 3 : Content determination (sketch)

Require: BL is a set of beliefs relative to r, q is a question
about r, ONT is a collection of ontologies supporting sub-
sumption inferences on sorts used in BL and q, AS is a
structure over potentially resolving answers

RelBL = ∅
for a ∈ AS do

if a is maximally specific, i.e. there is no a’ s.t. a =

a’ then
RelBL = RelBL ∪ { b }, for b yielding a

end if
end for
MutualRelBL = mutual beliefs in RelBL
ScaffoldingBL = ∅
TransparencyBL = ∅
for MVSV m in q do

if there is a b ∈ MutualRelBL associated to m then
TransparencyBL = TransparencyBL ∪ { b }

else
ScaffoldingBL = ScaffoldingBL ∪ { be-
liefs associated to most specific answers for m }

end if
end for
return ScaffoldingBL, TransparencyBL

Algorithm 3 first determines what beliefs are relevant to
achieve a maximally specific answer, and which of these be-
liefs are mutual. How much scaffolding needs to be done de-
pends on whether these mutual beliefs imply all potentially
resolving answers to the questioned MVSVs in r. If not, the
algorithm backs off by constructing a belief set which needs
to be communicated for appropriate scaffolding. The basis
for transparency is formed by the mutual beliefs about r.

On the basis of these sets of beliefs, and q itself, the com-
munication of q can be planned. We do not provide an in-
depth discussion of dialogue- and content-planning here, for
space (and time) reasons. We refer the interested reader to
(Brenner and Kruijff-Korbayová 2008; Kruijff et al. 2009).
In brief, beliefs in the scaffolding set are specified as as-
sertions (Brenner and Nebel 2008). The plan for communi-
cating the question starts by verifying these assertions, and
then raises the question itself. It is a matter for content fu-
sion whether such verification can be done in conjunction
with the question itself (Example 3, a–b) or as preceding ut-
terances (Example 3, c). For the realization of the question,
the transparency beliefs are used to determine information
status. Content planning then turns information status into
decisions about how to refer to r and the asked-after prop-
erties – e.g. using pronominal reference (Example 3, c) or
even omitting explicit reference, by eliding any mention of
r (Example 3, d).



Conclusions
The approach presented in this paper is still under develop-
ment. The key technologies it is based on (planning, mo-
tivation, dialogue processing, and ontological inferencing)
are already available in the system architecture the approach
will be integrated into. We will describe the full integration,
with working examples, in a full version of this paper. We
will then also consider how this approach can be applied in
related settings, such as performance requests.

We are currently considering various alternative ways to
evaluate the approach. User experiments are just one option
here. The problem is that an approach as presented here,
and the overall architecture it will be integrated into, present
a large parameter space. Consequently, it is difficult to en-
sure a controlled setting for a user experiment – and, only
a very limited part of the parameter space can be effectively
explored. An alternative way we are therefore currently con-
sidering is to use techniques from language evolution. In
simulations we would like to explore what the effects of dif-
ferent parameter settings would be on how agents are able to
communicate, and what this consequently means for mea-
surable parameters such as learning performance. Examples
of such experiments can be found in (Ginzburg and Macura
2006).

There remain for the moment plenty of open issues to be
investigated further – this paper really only provides a first
description of the approach we are developing. It does aim to
make clear how notions such as scaffolding and transparency
can be folded into a characterization of how a system can
phrase a question – seeing a question, in fact, as a subdia-
logue to be planned, not just a single utterance paired with
a possible answer. Basic issues remain in the construction
of the various belief sets, and the associated structures over
potentially resolving answers. Although an “unweighted”
approach as followed here will work for most simple sce-
narios, it remains to be seen whether associating costs with
beliefs (and assuming them, in a plan for communicating a
dialogue) could provide a more adaptive, scalable approach
in the long run. Furthermore, the current formulation of the
construction of the answer structure AS (Algorithm 2) does
not cover polar questions (though this is an easy extension).
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sity, Göteborg, Sweden.
Li, S.; Wrede, B.; and Sagerer, G. 2006. A computa-
tional model of multi-modal grounding. In Proc. ACL SIG-
dial workshop on discourse and dialog, in conjunction with
COLING/ACL 2006, 153–160.
Lochbaum, K.; Grosz, B.; and Sidner, C. 1999. Discourse
structure and intention recognition. In Dale, R.; Moisl, H.;
; and Somers, H., eds., A Handbook of Natural Language
Processing: Techniques and Applications for the Process-
ing of Language as Text. New York: Marcel Dekker.
Paraboni, I.; van Deemter, K.; and Masthoff, J. 2007.
Generating referring expressions: Making referents easy
to identify. Computational Linguistics 33(2):229–254.
Purver, M.; Ginzburg, J.; and Healey, P. 2003. On the
means for clarification in dialogue. In Smith, R., and van
Kuppevelt, J., eds., Current and New Directions in Dis-
course and Dialogue, volume 22 of Text, Speech and Lan-
guage Technology. Kluwer Academic Publishers. 235–255.
Purver, M. 2004. The Theory and Use of Clarification
Requests in Dialogue. Ph.D. Dissertation, King’s College,
University of London.
Thomaz, A. L. 2006. Socially Guided Machine Learning.
Ph.D. Dissertation, Massachusetts Institute of Technology.
Zender, H.; Kruijff, G.; and Kruijff-Korbayová, I. 2009.
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