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Abstract

Patch-based methods, which constitute the state of

the art in object recognition, are often applied to video

data, where motion information provides a valuable

clue for separating objects of interest from the back-

ground. We show that such motion-based segmenta-

tion improves the robustness of patch-based recognition

with respect to clutter. Our approach – which employs

segmentation information to rule out incorrect corre-

spondences between training and test views – is demon-

strated empirically to distinctly outperform baselines

operating on unsegmented images. Relative improve-

ments reach 50% for the recognition of specific objects,

and 33% for object category retrieval.

1 Introduction

Over the last years, visual recognition methods have

experienced a break-through due to novel strategies for

the covariant detection and robust description of distinc-

tive image regions [9, 13]. The resulting patch-based

methods have been subject to extensive research, of-

fering a high robustness with respect to clutter, varia-

tions of scale and perspective, as well as illumination

changes [4, 8, 15].

In this paper, we study whether the robustness of

patch-based object recognition can be increased further

by a segmentation of objects of interest. While this

turns out to be a difficult challenge for static images,

motion information in video provides a strong clue for

meaningful segmentations of real-world objects [3, 14].

On the one hand, such a segmentation could help

rule out false positive correspondences caused by clut-

ter. On the other hand, motion segmentation remains

a challenging problem with potentially error-prone and

inaccurate results, and background information might

provide a valuable clue for the presence of an object

(for example, visible roads hint at the presence of cars).

Therefore, the influence of motion segmentation on

patch-based object recognition needs to be studied.

To do so, we present a patch-based approach that

uses motion segmentation as a filter for correspon-

dences (Section 3). Using this framework, the com-

bination of motion segmentation with object recogni-

tion is studied in two quantitative experiments (Sec-

tions 4 and 5) – one regarding the recognition of spe-

cific objects, the other object category retrieval in video

databases. Our results demonstrate that motion segmen-

tation – even if inaccurate – gives significant improve-

ments over baselines operating on unsegmented images.

2 Related Work

While motion segmentation [3, 16] and object recog-

nition [10, 11] have both been subject to extensive

study, less work can be found on their combination.

Some approaches enhance segmentation with top-

down object knowledge [2, 6], mostly by penalizing

deviations from a pre-learned object shape. Such ap-

proaches also have also employed motion information

in video [7], but are focused on improving segmenta-

tion, and their recognition capacity is usually not evalu-

ated against competitive unsegmented baselines.

Kühne et al. [5] have fed foreground regions result-

ing from a motion segmentation to a shape-based recog-

nition (again, no comparison with baselines free of seg-

mentation was made). Rothganger et al. [12] have used

structure-from-motion to infer 3D patch models, and

demonstrated improvements over a patch-based recog-

nition from 2D images. We validate similar benefits

without a full 3D reconstruction, using a simpler and

more efficient 2D motion segmentation.



Figure 1. Our approach accepts local

matches in object regions obtained from

motion segmentation (green) but discards

them in the background (red).

3 Approach

We follow a state-of-the-art patch-based approach in

a sense that recognition is carried out as a search for

correspondences between local features in the image to

be recognized and in labeled training views [4, 8, 15].

Our key contribution is a filtering of the resulting cor-

respondences on the basis of motion segmentation (see

Figure 1 for an illustration).

Features and Matching As a robust patch-based fea-

ture representation, SURF features [1] are chosen (other

detectors and descriptors [9, 13] could be used equiv-

alently). We test two strategies for determining cor-

respondences between patches x in a test image and

patches x′ in training images:

1) Full Patch Search: for each test patch x, the near-

est neighbor x′ among all training patches is found, and

both are assumed to form a match.

2) Visual Words: a popular speed-up strategy is to

cluster patches previous to recognition (typically using

K-Means), obtaining visual words [15]. Two patches

are then assumed to match whenever mapped to the

same closest visual word.

Refinement by Motion Segmentation The corre-

spondences we obtain are error-prone, containing false

positives due to local similarities between different ob-

jects or clutter. To discard such erroneous matches, the

core concern of this paper is to employ motion segmen-

tation. Our approach first uses motion segmentation to

segment dynamic scenes into a foreground and back-

ground layer. Inspired by Schöenemann’s and Cremer’s

approach [14], both layers are assumed to move accord-

ing to a parametric (affine or constant) motion model,

and segmentation is carried out by an iterative refine-

ment using graph cut. We further add a color extension

such that pixels are mapped to layers not only based on

their motion but also on their color [17].

This information is then used to filter correspon-

dences: only matches are accepted for which both the

training patch and the test patch belong to the fore-

ground (i.e., object) region.

Other Refinement Strategies A variety of other re-

finement strategies have been suggested previously

based on patch appearance and spatial arrangement.

A key question is whether motion segmentation has

the potential to substitute and complement these ap-

proaches. We compare our motion segmentation filter-

ing with two other strategies:

1) Nearest Neighbor Ratio: This strategy rejects

inconfident correspondences [8]: besides each nearest

neighbor x′, we also find a second nearest neighbor x′′

from all patches with a different object label than x′.

The match x ∼ x′ is accepted only if the ratio
|x−x

′|
|x−x

′′|

is lower than a certain threshold λ ∈ [0, 1] (i.e., if the

match for one object is significantly closer than for all

others). If λ = 1, no filtering takes place, and the fur-

ther λ is decreased the more matches are rejected.

2) Spatial Constellation: While correct matches are

spatially constrained, false positives tend to be scat-

tered all over an image. To make use of this fact, fea-

tures in the test view are assumed to map to their cor-

respondences in training views by an affine transforma-

tion, which is estimated using an approach by Lowe [8].

Matches that deviate more than five pixels from the es-

timated transformation are discarded.

Scoring Finally, we use the (potentially refined) set

of correspondences to infer object scores [4]. Matches

x ∼ x′ induce votes for the object labels of x′, which

are aggregated using a simple sum rule fusion: an ob-

ject’s score corresponds to the number of correspon-

dences with its label divided by the overall number

of correspondences. This score can either be used for

recognition or for retrieval (i.e., to rank test items).

4 Experiment 1: Controlled Setup

The goal of the first experiment is to recognize ob-

jects presented to a camera. By using the same back-

grounds for all objects, we decorrelate clutter from the

object class. Also, a static camera is used, which allows

us to obtain a close-to-perfect segmentation using back-

ground subtraction [17]. In this sense, our first setup is

controlled.

The dataset for this experiment was manually gener-

ated by presenting 12 books to a camera at 12 indoor

locations, obtaining 144 short video clips (sample in

Figure 2(a)). 3 − 4 keyframes were used showing each

object at each location. We obtain about 600 SURF fea-

tures on average per frame.
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Figure 2. Results of Experiment 1 indicate improvements by using motion segmentation: (a)

sample result without (left) and with (right) motion segmentation – red patches indicate correct

matches. (b) Quantitative results of full patch search. (c) Results using visual words.

Our approach was tested using one-shot learning:

videos taken at one location were used as training sam-

ples, i.e. their patches were stored and matched against

the one from all other test videos. By repeating this ex-

periment with all 12 locations, 1, 584 object decisions

were obtained, over which we measure the error rate.

Three setups were tested: one not using segmentation

at all, one with our motion-based approach (Section 3),

and one using even more accurate background subtrac-

tion that, however, requires a static camera.

Figure 2(b) illustrates results of full patch search (er-

ror plotted against the nearest neighbor ratio λ). We

see significant improvements by nearest neighbor ratio

filtering, but also further ones by motion segmentation:

compared with unsegmented images, motion segmen-

tation gives a statistically significant (t-test, level 99%)

reduction of error from 8.1% to 4.4%, an even more ac-

curate background subtraction (green) gives 2.5%. A

sample result is illustrated in Figure 2, for which stan-

dard patch matching, despite filtering nearest neighbor

ratio, suffers from false positive matches (which are fil-

tered by motion segmentation).

While nearest neighbor ratio and motion information

resulted in a highly effective filtering, a refinement by

spatial arrangement did not give any further improve-

ments. Our impression was that – while in some cases

this approach helped to filter outliers – it also tended to

discard correct matches. For visual words (Figure 2(c)),

which do not allow a filtering by nearest neighbor ratio,

error is much higher. However, accuracy can again be

improved by motion segmentation: for the best code-

book size (10, 000, which is comparable to using no dis-

cretization at all), a significant (t-test, level 99%) error

reduction from 31.31% (no segmentation) to 12.31%

(motion segmentation) is achieved.

5 Experiment 2: Object Retrieval

While Experiment 1 provided a controlled setup

(with a static camera and decorrelated clutter), we also

studied the proposed framework in a real-world sce-

nario. As a test domain, the detection of four animal

categories (“tiger”, “zebra”, “giraffe”, “elephant”) in

video databases was chosen. Test content was down-

loaded from YouTube, small shots of 1 − 2 seconds

length were sampled, and the data was manually filtered

such that only one shot per video was kept, showing a

single moving animal at sufficient size. 29 − 50 shots

per animal category were obtained (160 shots total), and

combined with 1, 000 random shots sampled from the

YouTube-22Concepts Dataset showing none of the four

animals1. Keyframes were sampled at regular steps of

6 frames, and votes for a video were accumulated from

all keyframes. For efficiency reasons, only the visual

words approach was tested (using 5, 000 clusters). Eval-

uation was done in a leave-one-out fashion: each shot

was scored using the rest of the dataset as a training set.

We measure retrieval performance by the average pre-

cision over the ranked retrieval list.

Results are illustrated in Figure 3: the top 4 detec-

tion results for the concept “tiger” are shown when us-

ing segmentation (top) and when not (bottom). While in

the unsegmented case no hits are found, the system with

segmentation detects two tigers correctly, and the other

two detections show dark vertical bars similar to tiger

fur. Quantitative results (Figure 3(b)) indicate that – for

all animals – the average precision of retrieval can be

improved significantly by segmenting foreground ob-

jects. Lower improvements for the “elephant” cate-

gory can be explained by more frequent failures of seg-

1http://madm.dfki.de/research/youtube-22concepts



(a)

avg. precision (%)

segmented

category no yes

tiger 15.6 34.5

zebra 27.2 34.1

giraffe 27.2 42.5

elephant 53.7 55.3

MAP 30.9 41.6

(b)

Figure 3. (a) The top 4 detection results for “tiger” with motion segmentation (top) and without

(bottom). (b) Quantitative Results of Experiment 2 (pictures from YouTube).

mentation (often, only certain body parts like legs or

trunks are segmented). Overall, mean average precision

(MAP) is improved significantly (sign test over rank im-

provement, level 99%) from 30.9% to 41.6%. Random

guessing on this challenging dataset would correspond

to 3.5%. Note that results are improved despite a cor-

relation between object category and clutter, which in-

dicates that segmentation serves as a stronger clue for

recognition than context (for manually segmented ob-

jects, Zhang et al. have made similar findings [18]).

6 Conclusions

In this paper, we have suggested motion segmenta-

tion as a filter for false correspondences in patch-based

object recognition. Our empirical results demonstrate

that even a simple approach (based on affine or trans-

lational motion) can improve robustness with respect

to clutter, even in situations where clutter is correlated

with the object class (see Experiment 2). Possible fu-

ture directions along this line of research include bench-

marks for more elaborate segmentation models (e.g., al-

lowing the segmentation of multiple objects) and com-

parisons with sparse, feature-based approaches [16] and

structure-from-motion representations [12]2.
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