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ABSTRACT

Egomotion tracking is since the last decades an often addressed
problem and hybrid approaches evidentially have potential to pro-
vide accurate, efficient and robust results. Simultaneous localisa-
tion and mapping (SLAM) — in contrast to a model-based approach
— is used to enable tracking in unknown environments. However,
it also suffers from high computational complexity. Moreover, in
many applications, the map itself is not needed and the target en-
vironment is partially known, e.g. in a few 3D anchor points. In
this paper, rather than using SLAM, optical flow measurements are
introduced into a model-based system. With these measurements, a
modified visual-inertial tracking method is derived, which in Monte
Carlo simulations reduces the need for 3D points and thus allows
tracking during extended gaps of 3D point registrations.

1. INTRODUCTION

The past few decades extensive research has been conducted in hy-
brid tracking. In particular visual-inertial tracking, i.e. fusing vi-
sual information with kinematic data from miniature MEMS1 iner-
tial sensors, has gained in importance. The usage and advantages
are extensively treated in literature. Many different methods with
promising results have been proposed [28, 17, 2, 5]. Corke et al [8]
give an introduction to the field.

Another successful line of work is visual simultaneous local-
isation and mapping (SLAM). New algorithms are constantly de-
veloped in order to tackle computational complexity and drift. The
approaches utilise, e.g., local bundle adjustment [25], parallelisa-
tion [20] and graph-based techniques [11]. Since the formalisation
and first solutions to the visual SLAM problem [31, 9], a variety
of extensions to the approach has emerged, e.g., FastSLAM [24, 10],
MPF-SLAM [29], Mini-SLAM [1], Divide and Conquer SLAM [26, 7]
and Treemap [12]. Visual-inertial SLAM, the combination of both
methodologies above is treated in, e.g., [27, 29, 4].

SLAM has had great success in many applications. However,
it is also often the case — e.g. in augmented reality — that (1) 3D
structure is partly known or can easily be marked in the scene and
(2) the expensive estimation of a denser map has no value in itself
besides enabling stable pose estimation. This paper investigates an
alternative strategy: instead of mapping additional structure, opti-
cal flow measurements are used to improve model-based tracking.
This approach is suitable for applications where very few 3D anchor
points are available or can be surveyed precisely in the scene. To
do this, the method makes use of the mathematics behind epipolar
constraints [22, 15]. Epipolar constraints are well-known in com-
puter vision. However, in most cases they are used to initialise a
visual SLAM process [10, 3, 19, 27] or to approximate relative cam-
era motions [30, 15]. The idea of combining very few 3D anchor
points with 2D optical flow measurements — without attempting to
recover depth [19] — has hardly been considered in this context.
This motivates the investigation in this paper.

1microelectromechanical systems

2. APPROACH

The contribution of this paper is to extend the model-based visual-
inertial tracking system presented in [5] with the capability to ex-
ploit the information in 2D optical flow measurements.

In [5] it is shown that the demand for visible features is signif-
icantly reduced when inertial sensors are used. However, lacking
vision measurements for more than half a second results in a quick
deterioration of the pose estimate due to bias and noise inherent to
inertial measurement units (IMU). As a consequence the active vi-
sion loop fails to recover reappearing features and the track is lost.
This paper utilises that optical flow measurements can be obtained
from the camera images at any time, without knowledge about the
scene structure. It is well-known that the resulting constraints do not
provide full observability. However, as will be shown, they improve
the estimates in combination with the collinearity constraints pro-
vided by the features with known depth. Furthermore, they reduce
the need for 3D features and allow tracking for extended periods of
time without any 3D point registrations.

This paper puts focus on the sensor fusion used to combine
measurements form an IMU and images. It does not address how
to obtain the image measurements from the image data. The im-
age processing literature contains many suitable algorithms for this
step, see [6, 5, 20, 19] for some alternatives.

The paper is structured as follows: Section 3 presents the archi-
tecture and functionality of the extended sensor fusion system. The
optical flow measurement model is derived in Section 3.3. Section 4
presents results from Monte Carlo simulations and Section 5 draws
conclusions and outlines future work.

3. SENSOR FUSION

Recursive filters can estimate the pose and kinematics of a mov-
ing camera-IMU system — such as the one depicted in Figure 1
— from camera and inertial measurements. The extended Kalman

Figure 1: The integrated camera and inertial sensor package used
for the experiments in [5].

filter (EKF) [18] is used to combine the information from the mea-
surements — 2D/3D point correspondences and optical flow mea-
surements from image processing, and 3D angular velocities and
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Figure 2: Filter architecture and data flow.

linear accelerations from the IMU. The architecture of the fusion
system is outlined in Figure 2.

The core of the system is the state-space model, i.e., the math-
ematical description of the problem under investigation. It has two
components: The dynamic model, xt = f (xt−∆t ,ut ,vt), describes
the evolution of the state, xt , with time, t, subject to known con-
trol input, ut . The measurement model, 0 = h(xt ,yt ,et), relates
the noisy measurements, yt , to the state. Here, vt and et de-
note time dependent stochastic process and measurement noise with
vt ∼N (0,Qt) and et ∼N (0,Rt), respectively.

For the sake of completeness, the general EKF equations are
given here. Let x̂t be the estimate of xt at time t with xt ∼N (x̂t ,Pt).
The equations for the time update are:

x̂t|t−∆t = f (x̂t−∆t|t−∆t ,ut ,0) (1a)

Pt|t−∆t = FtPt−∆t|t−∆tF
T

t +VtQtV T
t , (1b)

with

Ft =
∂ f
∂x

(x̂t−∆t|t−∆t ,ut ,0) (1c)

Vt =
∂ f
∂v

(x̂t−∆t|t−∆t ,ut ,0). (1d)

The equations for the measurement update are:

St = HtPt|t−∆tH
T
t +EtRtET

t (2a)

Kt = Pt|t−∆tH
T
t S−1

t (2b)

x̂t|t = x̂t|t−T −Kth(x̂t|t−∆t ,yt ,0) (2c)

Pt|t = Pt|t−∆t −KtHtPt|t−∆t , (2d)

with

Ht =
∂h
∂x

(x̂t|t−∆t ,0) (2e)

Et =
∂h
∂e

(x̂t|t−∆t ,0), (2f)

where St is the innovation covariance and Kt is the Kalman filter
gain.

As indicated in Figure 2, the system model takes the inertial
measurements as control input. Moreover, the camera measure-
ments, 2D/3D correspondences and optical flow, are modelled in
two separate measurement equations. Since the camera measure-
ments are assumed mutually independent the measurement updates
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Figure 3: Illustration of the different 3D coordinate systems and
how they are related. Rigid transformations are indicated by solid
lines, flexible by dashed lines.

of the Kalman filter can be simplified by using sequential updates
for each separate measurement. Compared to an all-in-one update
with the entire set of observed features, this significantly reduces
the computational time. With a minor modification to the standard
EKF measurement update rule (2) [13], the sequential update gives
an equivalent result to the all-in-one update, independently of the
feature processing order.

Section 3.1 introduces the coordinate systems involved and the
notation used subsequently. Section 3.2 presents the visual-inertial
state-space model used to start with, and Section 3.3 extends this
model with optical flow measurements.

3.1 Notation
Throughout the paper, m denotes points and m̃T

n := [mT
n ,1] their

homogenisation, T translations, and R rotations. First order time
derivatives are indicated using a dot, e.g. Ṫ denotes linear velocity.
Angular velocity is denoted ωωω . Rotations are parametrised by unit
quaternions, q, with R = rot(q). The quaternion product is denoted
�. See [31] for more information on quaternions and conversion
formulas. Cross and dot product are denoted × and 〈·, ·〉, respec-
tively. Moreover, skew-symmetric matrices are denoted S(·) with:

S(u) =

[ 0 −uz uy
uz 0 −ux
−uy ux 0

]
. (3)

The following coordinate systems are used: the world frame, w,
(fixed to the target scene model), the camera frame, c, (fixed to the
moving camera), the sensor frame, s, (fixed to the moving IMU), the
pixel frame, p, (fixed to the image plane) and the normalised image
frame, n, which is obtained from p using the relation m̃n = K−1m̃p.
The matrix K contains the intrinsic camera parameters [14]. Fig-
ure 3 illustrates the 3D coordinate systems and the transformations.

Subscripts (according to above) are used to indicate, in which
frame a quantity is resolved. For transformations, subscripts with
two letters denote the mapping and superscripts indicate direction.

3.2 Model-based Visual-Inertial Sensor Fusion
The inertial measurements, 3D angular velocities, yω

s , and 3D lin-
ear accelerations, ya

s , are considered to be known control input to
the system model. Assuming a constant acceleration and constant
angular velocity model, this gives a compact state vector,

xT =
[
TwsT

w ṪwsT
w qT

sw bωT
s
]

(4)

where Tws
w denotes position, Ṫws

w linear velocity, and qsw orientation
of the IMU. Moreover, bω

s denotes slowly time varying gyroscope
biases. These parameters must be estimated in order to obtain rea-
sonable tracking precision. The camera pose is obtained from the
state vector using

qcw = qcs�qsw (5a)

Twc
w = Tws

w +RwsTsc
s , (5b)



where qcs and Tsc
s denote the hand-eye rotation and translation be-

tween the rigidly coupled camera and IMU. These quantities are
calibrated once, e.g. using the method described in [16].

The inertial measurements are treated as control input. The sys-
tem model is then

Tws
w,t+∆t

Ṫws
w,t+∆t

qsw,t+∆t

bω
s,t+∆t

=


Tws
w,t +∆tṪws

w,t +
∆t2

2 Rws,t(ya
s,t+∆t −va

s,t)+ ∆t2

2 gw

Ṫws
w,t +∆tRws,t(ya

s,t+∆t −va
s,t)+∆tgw

exp
(
− ∆t

2 (yω
s,t+∆t −bω

s,t −vω
s,t)
)
�qsw,t

bω
s,t +vbω

s,t

,
(6a)

where va
s,t ,vω

s,t , and vbω

s,t are mutually independent process noises, gw
is the gravity vector, and exp(q) denotes the quaternion exponential
with:

exp(q)T =
[
cos‖q‖ qT

‖q‖ sin‖q‖
]
. (6b)

In a model-based camera tracking system, 2D/3D point corre-
spondences are obtained by registering features with known 3D po-
sitions in the camera images. An appropriate measurement model
for incorporating such measurements is given in the following. Let
yT

1,t := [mT
n,t ,mT

w,t ] be a 2D/3D point correspondence with mutually
independent measurement noise eT

1,t := [eT
n,t ,eT

w,t ]. An implicit mea-
surement equation based on the well-known perspective projection
function:

mn =
[mc,x

mc,z

mc,y
mc,z

]T

with

mc = Rcwmw +T cw
c

is then:

02 = h1(xt ,y1,t ,e1,t) = [I2 −(mn,t + en,t)]

Rcs
(
Rsw,t(mw,t + ew,t −Tws

w,t)−Tsc
s
)
. (7)

Here, I2 denotes the 2×2 identity matrix and Rcs, Tsc
s are again the

hand-eye rotation and translation, respectively. Note that in (7) the
perspective division with the depth of the 3D point, mc,z, is avoided.
This is preferred from a probabilistic point of view, since the divi-
sion of two normal variables results in a Cauchy distribution, which
has infinite second and higher order moments. As mentioned above,
multiple feature observations are processed sequentially, each in a
separate EKF measurement update step.

More details and variations of the above system can be found
in [5].

3.3 Incorporation of Optical Flow Measurements
Optical flow is here defined as the velocity, ṁn, of image location
mn. It can be measured by computing the movement of a distinc-
tive patch in subsequent camera images, e.g. by using a Kanade-
Lucas tracker (KLT) [21] or other block matching methods, see for
instance [9, 23, 20].

The pose and kinematics of a camera are directly related to the
optical flow. Hence, optical flow measurements can be used to ex-
tract information about the camera movements. This section derives
a measurement equation for optical flow measurements, which can
be added directly to the state-space model introduced in Section 3.2.

Start by differentiating the point transformation mc = Rcwmw +
Tcw

c — Rcw and Tcw
c form the camera pose — with respect to time:

ṁc = Ṙcwmw +Rcwṁw + Ṫcw
c

= Ω
cw
c︸︷︷︸

ṘcwRwc

Rcwmw + Ṫcw
c = Ω

cw
c (mc−Tcw

c )︸ ︷︷ ︸
Rcwmw

+Ṫcw
c , (8)

where Ωcw
c := S(ωωωcw

c ) is the skew-symmetric matrix obtained from
the angular velocity ωωωcw

c .
Since optical flow is measured in the image plane and the depth

of the 3D point, λ := mc,z, is unknown, it must be eliminated
from (8). Let mc = λm̃n using the homogenisation of mn, then
(8) can be reformulated as:

˙̃mn = ωωω
cw
c × m̃n +

1
λ

vcw
c −

λ̇

λ
m̃n, (9)

where vcw
c := −Ωcw

c Tcw
c + Ṫcw

c and per definition ˙̃mT
n = [ṁT

n ,0].
Now, λ can be eliminated by applying 〈·,vcw

c × m̃n〉 to both sides
of (9), resulting in the continuous epipolar constraint,

0 = ˙̃mT
n (vcw

c × m̃n)+ m̃T
n
(
ωωω

cw
c × (vcw

c × m̃n)
)
. (10)

The last step required to obtain a measurement equation is to
rewrite (10) in terms of the known and estimated quantities, i.e.,
the IMU pose and kinematics in (4), the IMU measurements and
the hand-eye parameters in (5). Analogously to (8), using the fact
that the hand-eye rotation and translation are rigid, i.e. q̇cs = 04
and Ṫsc

s = 03, the expressions follow from (5) and its time deriva-
tive. The final relations between the quantities used in (10) and the
known quantities are:

ωωω
cw
c =−qcs� (yω

s −bω
s )�qsc (11a)

Tcw
c =−RcsTsc

s −RcsRswTws
w (11b)

Ṫcw
c =−S(ωωωcw

c )RcsRswTws
w −RcsRswṪws

w . (11c)

In (11a), yω
s denotes the angular velocity measured by the gyro-

scopes. This information is used as known input to the system
model (6a), but is considered a noisy measurement for the optical
flow model.

Let yT
2,t := [yωT

s,t ,ṁT
n,t ,mT

n,t ] be a measurement made at time t
comprising the angular velocity, yω

s,t , provided by the gyroscopes,
and the optical flow, ṁn,t , at image location, mn,t , provided by im-
age processing. Moreover, let eT

2,t :=[eωT
s,t ,eT

ṅ,t ,eT
n,t ] denote mutually

independent measurement noise. The final measurement equation is
then obtained by inserting (11) into (10) and adding measurement
noises:

0 = h2(xt ,y2,t ,e2,t) = ( ˙̃mn,t + eṅ,t)T (vcw
c,t × (m̃n,t + en,t)

)
+(m̃n,t + en,t)T

(
ωωω

cw
c,t ×

(
vcw

c,t × (m̃n,t + en,t)
))

. (12)

By adding this equation to the state-space model of Section 3.2, op-
tical flow measurements can be processed at any time as a comple-
ment to the registered image positions of known 3D feature points.
Moreover, the computational complexity of processing such mea-
surements is low, since the one-dimensional equation (12) reduces
the matrix inversion in the EKF measurement update (2b) to a divi-
sion with a scalar.

4. EXPERIMENTAL SETUP AND RESULTS

In order to evaluate the proposed method, i.e., the value of extend-
ing the 2D/3D point correspondences with 2D optical flow measure-
ments, the filter described in Section 3 is applied to a known data
set.

The test simulates camera translations and rotations in all di-
mensions at various speeds. The trajectory is constructed in a way
such that the camera focuses on one point of interest and then moves
around it in the shape of an eight while rotating to keep the point in
view direction. This is typical for close range camera localisation
and visual servo applications. From the ground truth poses, inertial
measurements are simulated and sampled at 100 Hz, by calculat-
ing angular velocities and linear accelerations — assuming 10 m/s2

acceleration due to gravity — and adding gyroscope biases. The tra-
jectory is shown in Figure 5(a) and the inertial signals can be found
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Table 1: Simulation and estimation parameters: The 3D points are
assumed known. The intrinsic camera parameters model a wide-
angle lens with 95◦ horizontal field of view and VGA resolution.
During estimation, the noise affecting the optical flow measure-
ments has been approximated as additive measurement noise, et ,
with standard deviation, σet = 0.3. The noises in the table are given
as standard deviations assuming equal noise in all dimensions.

Simulation Estimation
σep,t 0.5 1.5 [pixel]

σva
s,t - 0.1 [m/s2]

σvω
s,t

- 0.01 [rad/s]

in Figure 4. Camera measurements are simulated by projecting 3D
points using realistic intrinsic parameters, quantising the pixel co-
ordinates to simulate the effects of digitalisation and feature extrac-
tion, adding noise, and transforming back into normalised image
space. Optical flow measurements are simulated using (9).

For evaluation, the inertial and camera measurements are
utilised to recover the trajectory using the sensor fusion system out-
lined in Figure 2. The simulation and estimation parameters are
provided in Table 1.

Figures 5 and 6 demonstrate promising improvements obtained
by incorporating optical flow as proposed in Section 3.3. Figure 5
shows: when observing only one single 3D feature — the focus
point — at 25 Hz, the filter fails to estimate the gyroscope biases,
which results in a huge drift in the camera trajectory.2 By adding
four optical flow measurements, distributed over the corners of the
camera images, the gyroscope biases are properly estimated and
high accuracy is obtained.

Figure 6 demonstrates another benefit. Here, two 3D features
are observed, with different frequencies ranging from 10 to 1 Hz.
The plot shows how the optical flow measurements significantly
improve the results, as the velocity estimate otherwise degenerates
rapidly with an observation rate below 2 Hz.

The results described above allow for the following conclu-
sions. Though not individually providing full observability, optical
flow measurements reduce the required quantity and frequency of
observing features with known depth. Hence, they allow for track-
ing with minimal 3D knowledge about the target environment —
especially when a wide-angle lens is used — and increase the ro-
bustness of the system against temporarily missing 3D feature ob-

2In [5] it is concluded that at least two to three visible 3D anchor points
are required to obtain an accurate results.
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Figure 5: Tracking results from 100 Monte Carlo simulations. Note
how in all cases the optical flow measurements reduce the error to
almost zero, whereas the results quickly drift off when observing
only one single 3D point as complement to IMU measurements.

servations, for instance due to occlusions.

5. CONCLUSION AND FUTURE WORK

This paper extends the model-based visual-inertial tracking system
developed in [5] with optical flow measurements. Adding such
measurements achieves two goals: First, camera pose and kinemat-
ics can be estimated correctly also during extended gaps of 3D point
registrations. Second, under normal operation the need for 3D fea-
tures is reduced. This allows for tracking using minimal knowledge
about the geometry of the scene. This way, robust and efficient
tracking is obtained with very few 3D anchor points that could be
installed or surveyed manually with reasonable effort. As such, the
method provides an interesting alternative to a complete and com-
putationally intense SLAM process. The benefits of using optical
flow measurements have here been demonstrated in Monte Carlo
simulations. In the next, the method should be evaluated with ex-
perimental data. Moreover, observability of the camera pose and
kinematics obtained from different configurations and numbers of
such measurements will be studied and outliers will be handled.
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