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Abstract

In today’s space applications, astronauts have to per-
form a variety of tasks. An intelligent on-board monitor-
ing system that ensures uninterrupted, on time monitoring
of the astronauts would be a great support. In this paper
we want to introduce a new approach for the use of single
trial analysis of the human electroencephalogram (EEG)
that gives insight into the cognitive state of the operator.
This passive monitoring is called brain reading (BR). We
discuss the suitability of BR for operator support in space
applications regarding the achieved kind and effectiveness
of assistance. Further on, solutions for method-depending
constraints like the acquisition of training data as well as
the the need for software and hardware improvements that
will allow the integration of BR in real space applications
in the future, are explained.

1 Introduction

Today’s Man Machine Interfaces (MMIs) are widely
used in different areas of life. Most MMIs support hu-
mans to interact with machines like PCs, robots, or pros-
thesis. Seldom these interfaces are used to give the ma-
chine insight into the human to allow a better understand-
ing of his or her intention. In some cases, this is done in a
way that the human has to communicate actively with the
machine. This active communication in form of speech,
gesticulation, mimic expression, or the use of special in-
put devices demands, inter alia, cognitive resources of the
user. Since cognitive capacities are limited it is of high
interest to search for new ways for MMIs that allow the
machine to get better insight into the human’s cognitive
state and to understand their demands in certain situations
without deploying extra cognitive efforts.

A special form of MMIs are Brain Computer Inter-
faces (BCIs) [17] that allow the human to control PCs or
machines directly by brain activity. BCIs are motivated

by the need to enable individuals who cannot use any mo-
tor system (e.g. locked-in patients) to communicate [3, 4].
For several decades scientists have been working on im-
proving these interfaces regarding speed and accuracy. In
BCIs, patients do actively produce certain brain activity
that is used as a kind of control signal. The production
of this brain activity is, in the majority of BCI applica-
tions, not directly linked to the initiated action of the ma-
chine. For example, EEG activity induced by the imag-
ination of right and left hand movements could be used
as a control signal to open or close a hand prosthesis [6]
or choose a certain letter within a spelling device applica-
tion [11]. Approaches to enhance an astronaut’s capabili-
ties in space application by utilizing that kinds of BCIs in
space have been discussed [16]. However, regardless of
which type of brain activity is used as control signal, it is
always directly linked to an action of the machine or com-
puter, which constitutes a problem for the usage of these
kinds of BCI systems in critical situations (see also [16]).

In this paper, we discuss BR as a new approach of op-
erator support that is based on the passive monitoring of
EEG data. The most critical difference to classical BCI
is that in BR, brain activity is no longer directly linked
to an action of a machine. Instead, it gives insight into
processes that take place unconsciously but can be ob-
served by BR. We will discuss why this, among other
differences, makes BR usable for space applications, fo-
cussing on questions regarding training data acquisition,
transferability of models as well as the dealing with incor-
rect classification results which are unavoidable in single
trial EEG analysis. To integrate BR systems into appli-
cation scenarios, further software and hardware develop-
ments have to be tackled. Methods are introduced that
speed up EEG-data single trial analysis, since fast data
processing is a prerequisite for EEG-data based predic-
tions regarding the mental or cognitive state of the sub-
ject, which could be used for, e.g., subject-centered con-
trol decisions like situation-specific operator warnings or



general adjustments of the operator support system. Fur-
ther on we will discuss developments in EEG acquisition
and analysis hardware.

2 Brain reading

In the following, we introduce BR for the usage of op-
erator support in space applications. After a discussion of
the advantages of BR, an example will be given to explain
methods and challenges that have to be addressed to make
BR usable for space applications.

2.1 Advantages of brain reading for MMI
For the use of brain activity in MMI it is fundamen-

tal that one can differentiate between states of the sub-
ject that are correlated with certain brain activity patterns.
Those patterns are quite often overlaid by stronger brain
activity that does not correlate with the searched mental
or cognitive state of the subject. Besides, even the state-
specific brain activity itself is different for different sub-
jects and depends, for example, on the subject’s training
status or on the stress level in a given situation. There-
fore it is not possible to achieve 100 percent correct clas-
sification results even by using machine-learning methods
combined with certain strategies that do improve adapt-
ability (see, e.g., [1]). Due to this, brain activity cannot
always be interpreted correctly. Therefore, classical BCIs
that link brain activity directly to actions of a PC or a ma-
chine are only of limited suitability for space applications,
since a misinterpretation of brain activity leads directly to
unwanted action, which could possibly lead to uncontrol-
lable situations (see [16] for a discussion).

However, EEG data could be used in a different way.
Instead of using brain activity to directly control ma-
chines, one could analyze EEG data in a way that allows
insight into the current mental and cognitive state of the
subject such as, e.g., in the case of EEG-based lie detec-
tors where brain activity can be used to prove the cor-
rectness of statements of subjects in criminal investiga-
tions [5]. Here the subject does not produce brain activity
for artificially creating a control signal. On the contrary,
brain activity is directly correlated with the situation-
dependent cognitive state of the subject. However, in this
example, misclassifications, which are not avoidable with
today’s methods for single trial EEG analysis, might still
lead to critical wrong decisions. To avoid this, a carefully
chosen set of rules has to be defined for each application
and has to be implemented into a context-sensitive control
system.

Our approach is therefore to analyze brain activity, us-
ing the electroencephalogram to obtain insights into cog-
nitive and mental states of a subject, and hence to facilitate
a passive monitoring, called brain reading. This passive
monitoring does, in comparison with the functionality of,

e.g., a lie detector, not even require any active participa-
tion and therefore no extra cognitive efforts of the mon-
itored subject. BR integrated into an intelligent support
system that acts in the background and is guided by cer-
tain situation-specific rules could enable automated assis-
tance. For example, intelligent warning systems could be
developed that would allow to warn astronauts only sub-
liminally and in a way that distractions from the main task
(e.g. , the manipulation of a robotic device or the perfor-
mance of an experiment) are minimized. More specifi-
cally, if brain activity recorded after the presentation of
a warning does show a certain pattern that is typical for
the case that a warning was understood, and provided that
the required response of the subject is not too urgent, the
support system can give the operator more time to react
before the warning is repeated. In the opposite case, a
warning could be repeated more vividly. Here it is most
important to stress that for BR, in contrast to most BCI
applications where stimulus repetition is possible, classifi-
cation must be based on real single trial EEG analysis and
has to be fast to be applicable as will be explained later
on. Also, since BR is observing processes of the brain
that take place unconsciously, it is not possible to apply
feed-back sessions [6] for the subject.

2.2 Experimental set up for brain reading
To give an illustrative example for BR, we want to in-

troduce an experimental setup that allows to reproduce a
situation, during which a subject is performing a manipu-
lation task and is at the same time responding to important
messages while ignoring unimportant ones.

Figure 1. Experimental setup

In short, the experimental setup Labyrinth Oddball

paradigm, as displayed in Figure 1, can be described as



follows: A subject plays a virtualized BRIO R� labyrinth
game and reacts to rare warnings (first and second target
stimuli, see Figure 1) by pressing a buzzer. Second targets
are presented in case that first targets were missed. Inter-
stimulus interval (ISI) is 1000 ms with a random jitter of
±100 ms. The visual presentation (shape and color) of
unimportant stimuli that require no response (standards)
and first target stimuli is kept very similar in order to avoid
differences in early visual processing and to make sure
that differences in the EEG recorded after the presentation
of both stimuli types are actually due to higher cognitive
processing.

While the subject was performing the task, the EEG
was recorded continuously (62 electrodes, extended 10-20
system with reference at FCz), using a 64 channel actiCap
system (Brain Products GmbH, Munich, Germany). The
two remaining electrodes were used to record EMG (elec-
tromyography) signals of muscles of the lower arm. EEG
and EMG signals were sampled at 1000 Hz, amplified by
two 32 channel BrainAmp DC amplifiers (Brain Products
GmbH, Munich, Germany) and filtered with a low cutoff
of 0.1 Hz. Impedance was kept below 5 kΩ.

Targets, as opposed to standards or missed targets,
evoke the event-related potential P300, a positive fluc-
tuation in the EEG with a maximum amplitude at elec-
trode Pz (see Figure 1). Peak latency of the P300 can
range between 300 and 1000 ms. The P300 is evoked by
infrequent, important (task-relevant) stimuli that are at-
tended, recognized, and cognitively evaluated by the sub-
ject. Thus, P300 can be used as a marker for successful
information processing of the user. The actual task for the
BR system is to discriminate between the EEG pattern as-
sociated with either the correct or with the incorrect cog-
nitive processing of target stimuli. Correct cognitive pro-
cessing results in the understanding of the stimulus’ mean-
ing by the user while incorrect processing leads to mis-
classification of the stimulus by the brain, meaning that
the subject does not recognize the target stimulus. Non-
recognized targets were labeled as missed targets (see Fig-
ure 1). The task of the BR system was therefore to predict
whether the subject processed a target stimulus correctly
(and will respond accordingly) or whether the subject pro-
cessed the target stimulus incorrectly.

Since subjects do not often miss target stimuli, all pre-
sented investigations were performed on a similar task,
namely to discriminate EEG trials recorded after the pre-
sentation of standard stimuli and first target stimuli. This
is based on the assumption that EEG patterns induced by
the incorrect or incomplete processing of target stimuli are
similar to EEG patterns that are induced by unimportant
frequent standard stimuli (see discussion in [9] for a justi-
fication and Figure 1 for an example).

Figure 2. Structure of the data sets

2.2.1 Data set
The data set used in this paper consists of the labeled

EEG data recorded in five sessions from three male sub-
jects who had experience performing the experiment; sub-
ject A performed one session and subjects B and C two
sessions each. All sessions were recorded on different
days. Each of these sessions consists of five repetitions
(called runs) of the Labyrinth Oddball paradigm intermit-
ted by short breaks of 15 min (see Figure 2). The first
run was used for adaption of the subject1. Together with
the recorded EEG, information about stimulus presenta-
tion and response was stored.

2.2.2 Single trial data processing
In this section, we present the overall architecture of

our software framework for single-trial classification of an
operator’s mental state. As stated above, in this scenario
the single-trial brain reading device has to make a decision
whether an operator did perceive an important message or
whether he did not. The processing system is structured
as follows: (1) EEG data acquisition, (2) windowing, (3)
signal preprocessing and feature generation, (4) classifi-
cation. See Figure 3 for an overview.

EEG Acquisition EEG data was recorded with a certi-
fied medical device. It is a continuous stream of the raw
signal data, to which markers were added to label special
events, such as the stimulus presentation and subject re-
sponse.

Windowing For each message presented, exactly one
decision has to be made. All information that can be used
for this decision is usually contained in a certain fixed time
range around the message presentation. Here, the decision
can be based solely on the EEG recorded in the second af-
ter message presentation. The process of extracting this
time window is called windowing. Windowing simplifies
computation, since it allows to work always on instances
of the same shape (length of the signal frame).

1Initially, standard and target stimuli are all considered to be new and
potentially important for the subject such that also standards might result
in a P300.



Figure 3. Data processing scheme

Preprocessing and feature generation Preprocessing
refers to operations aimed at increasing the signal-to-noise
ratio. Data preprocessing was performed in several steps,
see Figure 3. Here, detrending means the channel-wise
subtraction of the mean signal value of the given win-
dow followed by a decimation with an anti-aliasing filter
to reduce the sampling rate of the data from 1000 Hz to
25 Hz. In the next step we applied another band pass filter
to remove unwanted frequencies while retaining the sam-
ple rate. The spatial filtering step refers to methods that
combine information of several channels and create a new
(usually smaller) set of pseudo channels to separate chan-
nels that contain a high signal content while the noise is
more concentrated in the remaining channels. We used a
Common Spatial Patterns (CSP) filter [10] in this work.

Classification Any kind of classification algorithm
suited for binary decision tasks can be used here. We ap-
plied support vector machines with a linear kernel.

3 BR interfaces in space applications

To integrate BR interfaces into space applications,
more general questions have to be addressed as well. As
stressed before, it is most important for BR to analyze
EEG data in single trial and in real-time. For this purpose,

the EEG analysis methods used here have to be optimized
regarding their automatic processing by deploying and us-
ing adequate software frameworks for training as well as
for the real time application (see [9]) and regarding the
consumed processing time. Besides, improvements of the
EEG recording and analyzing hardware are necessary and
will be explained in the following.

3.1 Training data acquisition
For applying BR on space missions it is most impor-

tant to get suitable EEG data in order to train or tune the
BR system to the corresponding operator. Ideally, this
training data should be recorded while the operator is do-
ing the actual task under realistic conditions like in outer-
space, experiencing zero-gravity, and so on. Such data
would be nearly impossible and very expensive to acquire
in a real-world environment before the operator starts his
or her mission in outer-space. Additionally, in order to
utilize current machine-learning methods that allow real
zero-training (see, for example, [1]) it would be neces-
sary to acquire multiple sets of such training data. Beside
this, retraining might be needed in case that brain activity
changes due to training or other not always foreseeable
circumstances.

Therefore, training sessions are needed that produce
many training examples in a short training time and that
are also similar enough to the real application. For this
purpose, our approach is to use a simulated environ-

ment to acquire the training data. The Labyrinth Oddball
paradigm is such an example (see Figure 1). In this sce-
nario, the subject has to react to rare visual target stimuli
by pressing a buzzer while playing the simulated game.
We use the real BRIO R� labyrinth game as an input device
for the simulation. Here, the board angles of the game are
measured with the help of potentiometers and used to con-
trol the board angles of the simulated game. Further, we
use a head-mounted display (HMD) for the visualization
of the simulated environment and the presentation of the
visual stimuli in the current field of view of the subject.
In combination with a head tracker to map the movement
of the head of the subject to the corresponding movement
of the point of view within the simulation, we are able to
realize a virtual immersion of the subject.

One of the main advantages of using a simulation
is that even complex scenarios (e.g. manipulation with a
robotic arm) and extreme environmental conditions like
in outer-space (e.g. zero-gravity, temperatures at around
2.7 K, radiation, etc.) can be made available with much
less effort than in reality. For example, creating zero-
gravity within a simulated environment can be realized by
simply setting the corresponding gravitation constant to a
value of zero, whereas in reality one has to, e.g., conduct
parabola flights, which means one has zero-gravity only
for a very limited time and it is very costly to do so.



A side effect of our approach is that the equipment
needed for acquiring the training data is much smaller,
cheaper, and in addition more portable. For example, all
that is needed for acquiring the training data for our exem-
plary Labyrinth Oddball paradigm would be the BR sys-
tem itself, a computer with enough computational power
to run the simulation, some visualization (e.g. computer
screen or HMD), and input devices (e.g. joystick, key-
board, hand or head tracker). Depending on the complex-
ity of the given scenario, the required equipment would
be more or less extensive. Thus, the costs for performing
even multiple training sessions on earth are kept to a min-
imum. Optionally, if appropriate devices are available on
the used space vehicle, it could be even possible to acquire
additional training data in outer-space.

Furthermore, the training of the operator can be seen
as a kind of additional fail-safe mechanism. Since in or-
der to acquire the needed EEG data the operator has to
execute the given or a very similar task repeatedly and in
that sense gets some kind of offline practice, thus reducing
the probability of human failure. Also, due to training in
simulation a wear out of the real system is avoided.

An important prerequisite in order to use our ap-
proach to its fullest extent is that the simulation-reality-
gap is reduced to a minimum. Ideally for the operator,
both systems should behave the same. This means if
both systems are in the same state and the operator is-
sues the same command to both systems, all subsequent
states should be identical. Thereby the operator should
have no problem switching from the simulated system to
the real system and vice versa. Unfortunately, because
of noise and error of real components and the inability of
simulations to perfectly model reality, there will always
be a difference between the real and the simulated system
and thus a simulation-reality-gap. But, for example, by
optimizing the simulation taking into consideration only
very few, targeted and carefully planned interactions with
the real system [2] or by adding noise to each simulated
component with respect to the behavior of its real coun-
terpart [7], the impact of this gap can be minimized.

3.2 Transferability of classifiers
One of the most crucial factors for the applicability

of BR in space applications is that the preparation time
for the system should be as short as possible. Preparation
time is mainly caused by setting the electrodes (the more
electrodes the longer, see Section 3.5 for more details on
reducing the number of electrodes) and by conducting a
calibration procedure with the user during which proto-
typical data is recorded that allows to adapt the BR system
to the specific user. This adaptation is required since brain
patterns of different subjects differ and even change over
time for the same subject. Adaptation can be achieved
by training classifiers, spatial filters, and other adapt-

Figure 4. Effect of transfer type and training set size

able components of the data-processing flow on user- and
session-specific data. In this section, we focus on trans-
ferability of trained classifiers and investigate to what de-
gree knowledge (namely trained classifiers) deteriorates
when transferred to another run within the same session
(intra-session), to another session of the same user (inter-

session), and to another user (inter-subject) compared to
the no-transfer situation (intra-run). Furthermore, we in-
vestigate how the duration of the calibration procedure
(it takes approx. 8 min to acquire 420 training exam-
ples inthe given paradigm) influences the performance.
For statistical analysis, we performed repeated measures
ANOVA with two within-subjects factors: (a) type of
transfer levels: intra-run, intra-session, inter-session and
inter-subject, and (b) size of the training set for classifier.
If needed, the Greenhouse-Geisser correction was applied
and the corrected p-value was reported. For pairwise com-
parisons, Bonferroni correction was applied.

Figure 4 depicts the results of the data processing
discussed in Section 2.2.2. Independent of the type of
transfer, classifiers trained on larger training sets (cor-
responding to longer calibration sessions) achieve bet-
ter results than classifiers trained on smaller training
sets [F(4, 124) = 205.94, p < 0.001, pairwise compar-
isons: larger training set vs. small training set: p <
0.001 for each transfer type except for inter-subject trans-
fer]. Furthermore, performance deteriorates significantly
when classifiers are transferred inter-session or even inter-
subject compared to intra-session transfer [F(3, 93) =
83.30, p < 0.001, pairwise comparisons: inter-session vs.
intra-session: p < 0.001, inter-subject vs. intra-session:
p < 0.001]. In contrast, intra-session does not signif-
icantly perform worse than intra-run [pairwise compar-
isons: intra-session vs. intra-run in all classifier’s training
sets p = n.s.].

These results suggest that the calibration procedure
should be performed once at the start of a session since
transferring across sessions and subjects deteriorates per-



formance. On the other hand, transferring across sessions
achieves a performance significantly above chance level.
Thus, it seems to be promising to reuse knowledge from
previous sessions to jump-start the system and thus to re-
duce the amount of training data and thereby the duration
of the calibration procedure that is required to achieve suf-
ficient performance. Therefore, the acquisition of training
data prior to a mission (see Section 3.1) is useful.

3.3 Dealing with misclassifications
While in principle it is desirable to avoid misclassifi-

cation altogether, this can usually not be achieved in clas-
sification tasks with noisy data, like BR. Thus, there exists
an intrinsic trade-off between the misclassification rates of
the two classes: reducing the ratio of wrongly classified
instances of the one class typically increases this ratio for
the other class. In many applications, it is more harmful
to misclassify instances of the one class than those of the
other. For instance, it is less harmful to present an impor-
tant message a second time even though the user has al-
ready perceived it at the first presentation (which happens
when the system does not correctly detect this perception)
than to not repeat the message presentation when the user
actually missed it (which happens when the system erro-
neously detects a perception). These application-specific
demands can be formalized by using a cost function as ob-
jective function instead of more simple functions like mis-
classification rates. This allows to specify criteria like “It
is X times more costly to misclassify an instance of class
A than one of class B” and evaluate the data processing
system according to this metric.

Furthermore, by integrating the classification results
into a rule-based system, the reliability of the system can
be increased. For example, such a rule in the Labyrinth
Oddball paradigm could be: “If the BR system supposes
that the subject has perceived a warning (first target) but
the subject does not respond appropriately within ten sec-
onds, the system should present a more urgent warning
(second target)!”. Hence, by combining the classification
results of the BR system with other relevant information,
it is possible to add further safety mechanisms.

3.4 Software optimization
The implementation of the data processing system

shown in Figure 3 is mainly based on the Modular toolkit
for Data Processing [18], which in turn uses NumPy and
SciPy [8] to perform the computations. These frameworks
consist of C++ implementations of the mentioned algo-
rithms with adapters to Python. Since the actual compu-
tationally intensive algorithms are compiled binary code,
the performance impairment of a scripting language does
not account here significantly.

Real-time processing of the data is essential for the
given scenario. Therefore we analyzed the running time

Type of Filtering algorithm
optimization FIR FIR×2 IIR×2 No

F-Measure
Mean 0.72 0.73 0.74 0.63
SD 0.073 0.081 0.062 0.076

Running time in ms
Normal 20.6 17.8 16.0 15.3
Parallel 16.9 17.0 15.4 –

Table 1. Running times and F-Measures

of the data processing. The initial processing time for a
window was at about 30 ms, which could be optimized
to 20 ms by applying different general optimization tech-
niques like preallocation of buffer variables. A remain-
ing bottleneck was the anti-aliasing lowpass filter in the
decimation step. We used different anti-aliasing filters
here: a 31 tap finite impulse response (FIR) filter with
either one or two decimation steps, an elliptic infinite
impulse response (IIR) filter with 8 taps in two decima-
tion steps (with −40 dB stopband attenuation each) or re-
duction of the sampling frequency without prior filtering.
The filters resulted in different F-Measures and runtimes,
as shown in Table 1. The F-Measures are the averages
of the intra-session F-Measures of a 2-fold cross valida-
tion for all sets of the data described in Section 2.2.1.
The runtimes are the averages of the wallclock process-
ing times of windows of the first dataset, which was pro-
cessed as a data stream to reconstruct a realistic situa-
tion. We used an Apple Mac Pro with two Intel Quad-
Core Xeon processors (resulting in 16 virtual cores due
to Hyper-Threading) at 2.66 GHz and 32 GB memory for
the time measurements. A channel-wise parallelization of
the filtering was performed using OpenMP [12]. Clearly,
all filtering methods result in significantly better classifi-
cation performance than the omission of a filtering step
[F(3, 117) = 67.95, p < 0.001, pairwise comparisons: No
filter vs. 1 step FIR: p < 0.001, No filter vs. 2 step FIR:
p < 0.001, No filter vs. 2 step IIR: p < 0.001]. The
classification rates of the different filters do not vary sig-
nificantly [2 step FIR vs. 2 step IIR: p = n.s.], apart from
the better performance of 2 step IIR filter compared to 1
step FIR filter [2 step IIR vs. 1 step FIR: p < 0.015].

The runtimes in Table 1 indicate (1) that real time pro-
cessing of the EEG data and P300 detection is possible
with common hardware if some optimization techniques
are applied which do not hamper the classification perfor-
mance, (2) a considerable speedup of certain algorithms
can be achieved already by obvious parallelization tech-
niques. The effect of parallelization grows with increasing
sampling rates (e.g. 5000 Hz instead of 1000 Hz) and with
the length of the used EEG data windows. Both depends
on the used methods. Apart from this it is impracticable



Figure 5. Effect of the number of EEG channels

to use multi-core systems in space, particular hardware is
needed for the data processing.

3.5 Hardware optimization
Since there is a limited ability to communicate with

the ground station, the EEG recording and analysis have to
be realized in situ, i.e. on board of the space station. The
space environment space causes several specific require-
ments for the BR system. The hardware for BR systems
can be divided in two major parts: the EEG acquisition
hardware, which in turn consist of electrodes and ampli-
fiers, and the data processing hardware, which is basically
a computer with sufficient computing performance to per-
form the computations. A minimization of the hardware
also allows free movements of the operator and thereby
reduces possible constraints.

The electrodes measure small variations in the electric
field of the brain on the surface of the scalp. A possible
problem for the usage of electrodes in space applications
is their dependence on conductive gel and sensitiveness
to a possibly deficient placement. These difficulties are
addressed by gel-free dry electrodes. However, the usage
of dry electrodes currently results in a lower classification
accuracy [14]. Hence, the signal processing algorithms
mentioned in Section 2.2.2 have to be adapted. Beside
this, dry electrodes are usually used in a much lower num-
ber.

A complementary approach and a prerequisite for the
use of dry electrodes is to cut down the number of elec-
trodes. In this way, the effort in preparing the EEG sys-
tem is also reduced. Figure 5 shows the classification
performance by means of the F-Measure, based on one
session as described in Section 2.2.1, but with differ-
ent numbers of EEG channels used for classification. In
this investigation, both training and classification are per-
formed within individual runs. The reduction of channels
was performed in an iterative manner, proceeding from
the full set of 62 electrodes. In every iteration, all pos-
sible sets with one electrode less were analyzed. The
channel whose dismissal led to the least loss in perfor-
mance was discarded permanently. The classification per-
formance was analyzed by repeated measures ANOVA

with the generated constellations as within-subjects fac-
tor (62 levels) [effect of number of retained electrodes2:
F(59, 1416) = 82.22, p < 0.001]. No significant decrease
is observed until the number of retained electrodes reaches
17 [pairwise comparisons: p = n.s. for 62–17 electrodes,
indicated by the box in Figure 5]. Notice that this chan-
nel reduction procedure can be performed only subsequent
to a measurement with all electrodes. The results, how-
ever, indicate a vast potential for the use of EEG caps with
sparse electrodes. Further studies will investigate whether
EEG cap designs can be found that are robust between
different sessions, to different subjects and applications.

The special requirements of the data processing hard-
ware in space applications are, among others, small size,
weight and energy consumption, sufficient computing per-
formance of the analysis system, as well as robustness
against the environmental conditions (especially radia-
tion). Since the handling of complex tools is hampered
in a zero-gravity environment, the usability of the hard-
ware is an important point. There are several promis-
ing approaches to achieve a sufficiently high computing
performance in small embedded devices, e.g., a power-
saving processor in combination with a high-performance
dedicated co-processor that accomplishes the compute-
intensive operations. For instance, field programmable
gate arrays (FPGAs) with additional digital signal pro-
cessing functionality are characterized by high comput-
ing performance and low energy consumption. Accord-
ing to [13], even SRAM-based FPGAs are reliable against
radiation if special precautions are taken. FPGAs have
been used successfully in specific signal processing of
actual BCI systems, see, e.g., [15]. However, a well-
known problem of FPGAs is the intricate software de-
velopment. A related problem to address is the hetero-
geneity of the necessary algorithms, see Figure 3. On
the other hand, graphics processor units have large com-
puting power and are comparably easily programmable
with high-level languages, although their enormous en-
ergy consumption usually restricts their usage in mobile
embedded systems. Nevertheless, the usage of graph-
ics cards for data processing is increasingly popular and
worth evaluating.

4 Conclusion

Support systems for astronauts are very fundamental
to assure the success of outer space missions. We intro-
duced a new kind of those systems that gives insight into
the astronaut’s brain activity and by this allows to read
and understand even processes that happen unconsciously
to the human. We discussed that the main power of our
attempt is that BR does not use any cognitive resources

2The values of last two retained electrodes were excluded since the
classification rates were zero.



of the astronaut and that there is no direct link between
brain activity and action of a machine. By this and by
implementing rules that prohibit critical wrong decisions
one can build powerful astronaut support systems based
on BR. To bring those systems into space applications,
improvements have to be made regarding training, imple-
mented software, structure of the data processing flow as
well as hardware for acquisition and analysis of brain ac-
tivity. We discussed options and presented first results.
Still, some aspects were not discussed. For example, im-
provements in EEG amplifiers and battery packs will be
necessary as well. The main goal of this paper was there-
fore to show a new way for the sensible and practical us-
age of brain activity in space applications.
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