
Integrating Maude into Hets

Mihai Codescu,1 Till Mossakowski,1 Adrián Riesco,2 and Christian Maeder1

1 DFKI GmbH Bremen and University of Bremen, Germany
2 Facultad de Informática, Universidad Complutense de Madrid, Spain

Abstract. Maude modules can be understood as models that can be
formally analyzed and verified with respect to different properties ex-
pressing various formal requirements. However, Maude lacks the formal
tools to perform some of these analyses and thus they can only be done
by hand. The Heterogeneous Tool Set Hets is an institution-based com-
bination of different logics and corresponding rewriting, model checking
and proof tools. We present in this paper an integration of Maude into
Hets that allows to use the logics and tools already integrated in Hets
with Maude specifications. To achieve such integration we have defined
an institution for Maude based on preordered algebras and a comorphism
between Maude and Casl, the central logic in Hets.

Keywords: Heterogeneous specifications, rewriting logic, institution,
Maude, Casl

1 Introduction

Maude [3] is a high-level language and high-performance system supporting both
equational and rewriting logic computation for a wide range of applications.
Maude modules correspond to specifications in rewriting logic, a simple and
expressive logic which allows the representation of many models of concurrent
and distributed systems.

The key point is that there are three different uses of Maude modules:

1. As programs, to implement some application. We may have chosen Maude
because its features make the programming task easier and simpler than
other languages.

2. As formal executable specifications, that provide a rigorous mathematical
model of an algorithm, a system, a language, or a formalism. Because of
the agreement between operational and mathematical semantics, this math-
ematical model is at the same time executable.

3. As models that can be formally analyzed and verified with respect to differ-
ent properties expressing various formal requirements. For example, we may
want to prove that our Maude module terminates; or that a given function,
equationally defined in the module, satisfies some properties expressed as
first-order formulas.

However, when we follow this last approach we find that, although Maude
can automatically perform analyses like model checking of temporal formulas

or verification of invariants, other formal analyses have to be done “by hand,”
thus disconnecting the real Maude code from its logical meaning. Although some
efforts, like the Inductive Theorem Prover [4], have been dedicated to palliate
this problem, they are restricted to inductive proofs in Church-Rosser equational
theories, and they lack the generality to deal with all the features of Maude. With
our approach, we cover arbitrary first-order properties (also written in logics
different from Maude), and open the door to automated induction strategies
such as those of ISAplanner [7].

The Heterogeneous Tool Set, Hets [16] is an institution-based combination
of different logics and corresponding rewriting, model checking and proof tools.
Tools that have been integrated into Hets include the SAT solvers zChaff and
MiniSat, the automated provers SPASS, Vampire and Darwin, and the interac-
tive provers Isabelle and VSE.

In this paper, we describe an integration of Maude into Hets from which
we expect several benefits: On the one hand, Maude will be the first dedicated
rewriting engine that is integrated into Hets (so far, only the rewriting engine
of Isabelle is integrated, which however is quite specialized towards higher-order
proofs). On the other hand, certain features of the Maude module system like
views lead to proof obligations that cannot be checked with Maude—Hets will
be the suitable framework to prove them, using the above mentioned proof tools.

The rest of the paper is organized as follows: after briefly introducing Hets
in Section 2 and Maude in Section 3, Section 4 describes the institution we have
defined for Maude and the comorphism from this institution to Casl. Section 5
shows how development graphs for Maude specifications are built, and then how
they are normalized to deal with freeness constraints. Section 6 illustrates the
integration of Maude into Hets with the help of an example, while Section 7
concludes and outlines the future work.

2 Hets

The central idea of Hets is to provide a general logic integration and proof
management framework. One can think of Hets acting like a motherboard where
different expansion cards can be plugged in, the expansion cards here being
individual logics (with their analysis and proof tools) as well as logic translations.

The benefit of plugging in a new logic and tool such as Maude into the
Hets motherboard is the gained interoperability with the other logics and tools
available in Hets.

The work that needs to be done for such an integration is to prepare both
the Maude logic and tool so that it can act as an expansion card for Hets.
On the side of the semantics, this means that the logic needs to be organized
as an institution [12]. Institutions capture in a very abstract and flexible way
the notion of a logical system, by leaving open the details of signatures, models,
sentences (axioms) and satisfaction (of sentences in models). The only condition
governing the behavior of institutions is the satisfaction condition, stating that
truth is invariant under change of notation (or enlargement of context), which

2

is captured by the notion of signature morphism (which leads to translations of
sentences and reductions of models), see [12] for formal details.

Indeed, Hets has interfaces for plugging in the different components of an
institution: signatures, signature morphisms, sentences, and their translation
along signature morphisms. Recently, even (some) models and model reducts
have been covered, although this is not needed here. Note, however, that the
model theory of an institution (including model reducts and the satisfaction
condition) is essential when relating different logics via institution comorphisms.
The logical correctness of their use in multi-logic proofs is ensured by model-
theoretic means.

For proof management, Hets uses development graphs [15]. They can be
defined over an arbitrary institution, and they are used to encode structured
specifications in various phases of the development. Roughly speaking, each node
of the graph represents a theory. The links of the graph define how theories can
make use of other theories.

Definition 1. A development graph is an acyclic, directed graph DG = 〈N ,L〉.
N is a set of nodes. Each node N ∈ N is a tuple (ΣN , ΦN) such that ΣN is

a signature and ΦN ⊆ Sen(ΣN) is the set of local axioms of N .
L is a set of directed links, so-called definition links, between elements of

N . Each definition link from a node M to a node N is either

– global (denoted M
σ +3 N), annotated with a signature morphism σ :

ΣM → ΣN , or
– local (denoted M

σ // N), again annotated with a signature morphism
σ : ΣM → ΣN , or

– hiding (denoted M
σ

hide
+3 N), annotated with a signature morphism σ :

ΣN → ΣM going against the direction of the link, or
– free (denoted M

σ

free
+3 N), annotated with a signature morphism σ : Σ →

ΣM where Σ is a subsignature of ΣM .

Definition 2. Given a node M in a development graph DG, its associated class
ModDG(M) of models (or M -models for short) is inductively defined to consist
of those ΣM -models m for which

1. m satisfies the local axioms ΦM ,
2. for each N

σ +3 M ∈ DG, m|σ is an N -model,

3. for each N
σ // M ∈ DG, m|σ satisfies the local axioms ΦN ,

4. for each N
σ

hide
+3 M ∈ DG, m has a σ-expansion m′ (i.e. m′|σ = m) that is

an N -model, and
5. for each N

σ

free
+3 M ∈ DG, m is an N -model that is persistently σ-free

in Mod(N). The latter means that for each N -model m′ and each model
morphism h : m|σ → m′|σ, there exists a unique model morphism h# : m→
m′ with h#|σ = h.

3

Complementary to definition links, which define the theories of related nodes,
we introduce the notion of a theorem link with the help of which we are able to
postulate relations between different theories. Theorem links are the central data
structure to represent proof obligations arising in formal developments. Again,
we distinguish between local and global theorem links (denoted by N

σ +3___ ___ M

and N
σ //___ M respectively). We also need theorem links N

σ

hide θ
+3___ ___ M (where

for some Σ, θ : Σ → ΣN and σ : Σ → ΣM) involving hiding. The semantics of
global theorem links is given by the next definition; the others do not occur in
our examples and we omit them.

Definition 3. Let DG be a development graph and N , M nodes in DG.
DG implies a global theorem link N

σ +3___ ___ M (denoted DG |= N
σ +3___ ___ M)

iff for all m ∈ Mod(M), m|σ ∈ Mod(N).

3 Rewriting Logic and Maude

Maude is an efficient tool for equational reasoning and rewriting. Methodolog-
ically, Maude specifications are divided into a specification of the data objects
and a specification of some concurrent transition system, the states of which are
given by the data part. Indeed, at least in specifications with intial semantics,
the states can be thought of as equivalence classes of terms. The data part is
written in a variant of subsorted conditional equational logic. The transition
system is expressed in terms of a binary rewriting relation, and also may be
specified using conditional Horn axioms.

Two corresponding logics have been introduced and studied in the literature:
rewriting logic and pre-ordered algebra [13]. They essentially differ only in the
treatment of rewrites: whereas in rewriting logic, rewrites are named, and dif-
ferent rewrites between two given states (terms) can be distinguished (which
corresponds to equipping each carrier set with a category of rewrites), in pre-
ordered algebra, only the existence of a rewrite does matter (which corresponds
to equipping each carrier set with a pre-order of rewritability).

Rewriting logic has been announced as the logic underlying Maude [3]. Maude
modules lead to rewriting logic theories, which can be equipped with loose seman-
tics (fth/th modules) or initial/free semantics (fmod/mod modules). Although
rewriting logic is not given as an institution [6], a so-called specification frame
(collapsing signatures and sentences into theories) would be sufficient for our
purposes.

However, after a closer look at Maude and rewriting logic, we found out that
de facto, the logic underlying Maude differs from the rewriting logic as defined
in [13]. The reasons are:

1. In Maude, labels of rewrites cannot (and need not) be translated along sig-
nature morphisms. This means that e.g. Maude views do not lead to theory
morphisms in rewriting logic!

4

2. Although labels of rewrites are used in traces of counterexamples, they play
a subsidiary role, because they cannot be used in the linear temporal logic
of the Maude model checker.

Specially the first reason completely rules out a rewriting logic-based integration
of Maude into Hets: if a view between two modules is specified, Hets definitely
needs a theory morphism underlying the view.3 However, the Maude user does
not need to provide the action of the signature morphism on labeled rewrites,
and generally, there is more than one possibility to specify this action.

The conclusion is that the most appropriate logic to use for Maude is pre-
ordered algebra [10]. In this logic, rewrites are neither labeled nor distinguished,
only their existence is important. This implies that Maude views lead to theory
morphisms in the institution of preordered algebras. Moreover, this setting also
is in accordance with the above observation that in Maude, rewrite labels are
not first-class citizens, but are mere names of sentences that are convenient for
decorating tool output (e.g. traces of the model checker). Labels of sentences
play a similar role in Hets, which perfectly fits here.

Actually, the switch from rewriting logic to preordered algebras has effects on
the consequence relation, contrary to what is said in [13]. Consider the following
Maude theory:

th A is
sorts S T .
op a : -> S .
eq X:S = a .
ops h k : S -> T .
rl [r] : a => a .
rl [s] : h(a) => k(a) .
endfth

This logically implies h(x)⇒ k(x) in preordered algebra, but not in rewriting
logic, since in the latter logic it is easy to construct models in which the naturality
condition r; k(r) = h(r); s fails to hold.

Before describing how to encode Maude into Hets we briefly outline the
structuring mechanisms used in Maude specifications:

Module importation. In Maude, a module can be imported in three differ-
ent modes, each of them stating different semantic constraints: Importing
a module in protecting mode intuitively means that no junk and no con-
fusion are added; importing a module in extending mode indicates that
junk is allowed, but confusion is forbidden; finally, importing a module in
including mode indicates that no requirements are assumed.

Module summation. The summation module operation creates a new module
that includes all the information in its summands.

3 If the Maude designers would let (and force) users to specify the action of signature
morphisms on rewrite labels, it would not be difficult to switch the Hets integration
of Maude to being based on rewriting logic.

5

Renaming. The renaming expression allows to rename sorts, operators (that
can be distinguished by their profiles), and labels.

Theories. Theories are used to specify the requirements that the parameters
used in parameterized modules must fulfill. Functional theories are mem-
bership equational specifications with loose semantics. Since the statements
specified in theories are not expected to be executed in general, they do not
need to satisfy the executability requirements.

Views. A view indicates how a particular module satisfies a theory, by mapping
sorts and operations in the theory to those in the target module, in such a
way that the induced translations on equations and membership axioms
are provable in the module. Note that Maude does not provide a syntax
for mapping rewrite rules; however, the existence of rewrites between terms
must be preserved by views.

4 Relating the Maude and CASL Logics

In this section, we will relate Maude and Casl at the level of logical systems.
The structuring level will be considered in the next section.

4.1 Maude

As already motivated in Section 3, we will work with preordered algebra seman-
tics for Maude. We will define an institution, that we will denote Maudepre,
which can be, like in the case of Maude’s logic, parametric over the underlying
equational logic. Following the Maude implementation, we have used member-
ship equational logic [14]. Notice that the resulting institution Maudepre is very
similar to the one defined in the context of CafeOBJ [10,6] for preordered alge-
bra (the differences are mainly given by the discussion about operation profiles
below, but this is only a matter of representation). This allows us to make use
of some results without giving detailed proofs.

Signatures of Maudepre are tuples (K,F, kind : (S,≤) → K), where K is
a set (of kinds), kind is a function assigning a kind to each sort in the poset
(S,≤), and F is a set of function symbols of the form F = {Fk1...kn→x | ki, k ∈
K} ∪ {Fs1...sn→s | si, s ∈ S} such that if f ∈ Fs1...sn→s, there is a symbol
f ∈ Fkind(s1)...kind(sn)→kind(s). Notice that there is actually no essential differ-
ence between our putting operation profiles on sorts into the signatures and
Meseguer’s original formulation putting them into the sentences.

Given two signatures Σi = (Ki, Fi, kindi), i ∈ {1, 2}, a signature morphism
φ : Σ1 → Σ2 consists of a function φkind : K1 → K2 which preserves ≤1, a func-
tion between the sorts φsort : S1 → S2 such that φsort; kind2 = kind1;φkind and
the subsorts are preserved, and a function φop : F1 → F2 which maps operation
symbols compatibly with the types. Moreover, the overloading of symbol names
must be preserved, i.e. the name of φop(σ) must be the same both when map-
ping the operation symbol σ on sorts and on kinds. With composition defined
component-wise, we get the category of signatures.

6

For a signature Σ, a model M interprets each kind k as a preorder (Mk,≤),
each sort s as a subset Ms of Mkind(s) that is equipped with the induced preorder,
with Ms a subset of Ms′ if s < s′, and each operation symbol f ∈ Fk1...kn,k

as a function Mf : Mk1 × . . . × Mkn → Mk which has to be monotonic and
such that for each function symbol f on sorts, its interpretation must be a
restriction of the interpretation of the corresponding function on kinds. For two
Σ-models A and B, a homomorphism of models is a family {hk : Ak → Bk}k∈K
of preorder-preserving functions which is also an algebra homomorphism and
such that hkind(s)(As) ⊆ Bs for each sort s.

The sentences of a signature Σ are Horn clauses built with three types of
atoms: equational atoms t = t′, membership atoms t : s, and rewrite atoms
t ⇒ t′, where t, t′ are F -terms and s is a sort in S. Given a Σ-model M , an
equational atom t = t′ holds in M if Mt = Mt′ , a membership atom t : s
holds when Mt is an element of Ms, and a rewrite atom t ⇒ t′ holds when
Mt ≤Mt′ . Notice that the set of variables X used for quantification is K-sorted.
The satisfaction of sentences extends the satisfaction of atoms in the obvious
way.

4.2 CASL

Casl, the Common Algebraic Specification Language [1,5], has been designed by
CoFI, the international Common Framework Initiative for algebraic specifica-
tion and development. Its underlying logic combines first-order logic and induc-
tion (the latter is expressed using so-called sort generation constraints, which
express term-generatedness of a part of a model; this is needed for the speci-
fication of the usual inductive datatypes) with subsorts and partial functions.
The institution underlying Casl is introduced in two steps: first, many-sorted
partial first-order logic with sort generation constraints and equality (PCFOL=)
is introduced, and then, subsorted partial first-order logic with sort generation
constraints and equality (SubPCFOL=) is described in terms of PCFOL=. In
contrast to Maude, Casl’s subsort relations may be interpreted by arbitrary in-
jections injs,t , not only by subsets. We refer to [5] for details. We will only need
the Horn Clause fragment of first-order logic. For freeness (see Sect. 5.1), we will
also need sort generation constraints, as well as the second-order extension of
Casl with quantification over predicates.

4.3 Encoding Maude in CASL

We now present an encoding of Maude into Casl. It can be formalized as a
so-called institution comorphism [11]. The idea of the encoding of Maudepre in
Casl is that we represent rewriting as a binary predicate and we axiomatize it
as a preorder compatible with operations.

Every Maude signature (K,F, kind : (S,≤)→ K) is translated to the Casl
theory ((S′,≤′, F, P), E), where S′ is the disjoint union of K and S, ≤′ extends
the relation ≤ on sorts with pairs (s, kind(s)), for each s ∈ S, rew ∈ Ps,s for
any s ∈ S′ is a binary predicate and E contains axioms stating that for any kind

7

k, rew ∈ Pk,k is a preorder compatible with the operations. The latter means
that for any f ∈ Fs1..sn,s and any xi, yi of sort si ∈ S′, i = 1, .., n, if rew(xi, yi)
holds, then rew(f(x1, . . . , xn), f(y1, . . . , yn)) also holds.

Let Σi, i = 1, 2 be two Maude signatures and let ϕ : Σ1 → Σ2 be a Maude
signature morphism. Then its translation Φ(ϕ) : Φ(Σ1) → Φ(Σ2) denoted φ, is
defined as follows:

– for each s ∈ S, φ(s) := ϕsort(s) and for each k ∈ K, φ(k) := ϕkind(k).
– the subsort preservation condition of φ follows from the similar condition for
ϕ.

– for each operation symbol σ, φ(σ) := ϕop(σ).
– rew is mapped identically.

The sentence translation map for each signature is obtained in two steps.
While the equational atoms are translated as themselves, membership atoms
t : s are translated to Casl memberships t in s and rewrite atoms of form
t ⇒ t′ are translated as rew(t, t′). Then, any sentence of Maude of the form
(∀xi : ki)H =⇒ C, where H is a conjunction of Maude atoms and C is an
atom is translated as (∀xi : ki)H ′ =⇒ C ′, where H ′ and C ′ are obtained by
mapping all the Maude atoms as described before.

Given a Maude signature Σ, a model M ′ of its translated theory (Σ′, E) is
reduced to a Σ-model denoted M where:

– for each kind k, define Mk = M ′
k and the preorder relation on Mk is rew;

– for each sort s, defineMs to be the image ofM ′
s under the injection injs,kind(s)

generated by the subsort relation;
– for each f on kinds, let Mf (x1, .., xn) = M ′

f (x1, .., xn) and for each f on
sorts of result sort s, let Mf (x1, .., xn) = injs,kind(s)(M ′

f (x1, .., xn)). Mf is
monotone because axioms ensure that M ′

f is compatible with rew.

The reduct of model homomorphisms is the expected one; the only thing
worth noticing is that hkind(s)(Ms) ⊆ Ns for each sort s follows from the Casl
model homomorphism condition of h.

Notice that the model reduct is an isomorphism of categories.

5 From Maude Modules to Development Graphs

We describe in this section how Maude structuring mechanisms described in
Section 3 are translated into development graphs. Then, we explain how these
development graphs are normalized to deal with freeness constraints.

Signature morphisms are produced in different ways; explicitly, renaming of
module expressions and views lead to signature morphisms; however, implicitly
we also find other morphisms: the sorts defined in the theories are qualified
with the parameter in order to distinguish sorts with the same name that will
be instantiated later by different ones; moreover, sorts defined (not imported)
in parameterized modules can be parameterized as well, so when the theory is

8

instantiated with a view these sorts are also renamed (e.g. the sort List{X} for
generic lists can become List{Nat}).

Each Maude module generates two nodes in the development graph. The first
one contains the theory equipped with the usual loose semantics. The second one,
linked to the first one with a free definition link (whose signature morphism is
detailed below), contains the same signature but no local axioms and stands for
the free models of the theory. Note that Maude theories only generate one node,
since their initial semantics is not used by Maude specifications. When importing
a module, we will select the node used depending on the chosen importation
mode:

– The protecting mode generates a non-persistent free link between the cur-
rent node and the node standing for the free semantics of the included one.

– The extending mode generates a global link with the annotation PCons?,
that stands for proof-theoretic conservativity and that can be checked with
a special conservativity checker that is integrated into Hets.

– The including mode generates a global definition link between the current
node and the node standing for the loose semantics of the included one.

The summation module expression generates a new node that includes all
the information in its summands. Note that this new node can also need a node
with its free model if it is imported in protecting mode.

The model class of parameterized modules consists of free extensions of the
models of their parameters, that are persistent on sorts, but not on kinds. This
notion of freeness has been studied in [2] under assumptions like existence of
top sorts for kinds and sorted variables in formulas; our results hold under sim-
ilar hypotheses. Thus, we use the same non-persistent free links described for
protecting importation to link these modules with their corresponding theories.
Views do not generate nodes in the development graph but theorem links be-
tween the node corresponding to the source theory and the node with the free
model of the target. However, Maude views provide a special kind of mapping
between terms, that can in general map functions of different arity. When this
mapping is used we generate a new inner node extending the signature of the
target to include functions of the adequate arity.

We illustrate how to build the development graph with an example. Consider
the following Maude specifications:

fmod M1 is fmod M2 is

sort S1 . sort S2 .

op _+_ : S1 S1 -> S1 [comm] . endfm

endfm

th T is mod M3{X :: T} is

sort S1 . sort S4 .

op _._ : S1 S1 -> S1 . endm

eq V1:S1 . V2:S1 = V2:S1 . V1:S1 [nonexec] .

endth

9

Fig. 1. Development Graph for Maude Specifications

mod M is view V from T to M is

ex M1 + M2 * (sort S2 to S) . op _._ to _+_ .

endm endv

Hets builds the graph shown in Fig. 1, where the following steps take place:

– Each module has generated a node with its name and another primed one
that contains the initial model, while both of them are linked with a non-
persistent free link. Note that theory T did not generate this primed node.

– The summation expression has created a new node that includes the theories
of M1 and M2, importing the latter with a renaming; this new node, since it
is imported in extending mode, uses a link with the PCons? annotation.

– There is a theorem link between T and the free (here: initial) model of M.
This link is labeled with the mapping defined in the view V.

– The parameterized module M3 includes the theory of its parameter with a
renaming, that qualifies the sort. Note that these nodes are connected by
means of a non-persistent freeness link.

It is straightforward to show:

Theorem 1. The translation of Maude modules into development graphs is
semantics-preserving.

Once the development graph is built, we can apply the (logic independent)
calculus rules that reduce global theorem links to local theorem links, which
are in turn discharged by local theorem proving [15]. This can be used to prove
Maude views, like e.g. “natural numbers are a total order.” We show in the next
section how we deal with the freeness constraints imposed by free definition links.

5.1 Normalization of free definition links

Maude uses initial and free semantics intensively. The semantics of freeness is,
as mentioned, different from the one used in Casl in that the free extensions

10

of models are required to be persistent only on sorts and new error elements
can be added on the interpretation of kinds. Attempts to design the translation
to Casl in such a way that Maude free links would be translated to usual free
definition links in Casl have been unsuccessful. We decided thus to introduce a
special type of links to represent Maude’s freeness in Casl. In order not to break
the development graph calculus, we need a way to normalize them. The idea is
to replace them with a semantically equivalent development graph in Casl. The
main idea is to make a free extension persistent by duplicating parameter sorts
appropriately, such that the parameter is always explicitly included in the free
extension.

For any Maude signature Σ, let us define an extension Σ# = (S#,≤#

, F#, P#) of the translation Φ(Σ) of Σ to Casl as follows:

– S# unites with the sorts of Φ(Σ) the set {[s] | s ∈ Sorts(Σ)};
– ≤# extends the subsort relation ≤ with pairs (s, [s]) for each sort s and

([s], [s′]) for any sorts s ≤ s′;
– F# adds the function symbols {f : [w] → [s]} for all function symbols on

sorts f : w → s;4
– P# adds the predicate symbol rew on all new sorts.

Now, we consider a Maude non-persistent free definition link and let σ :
Σ → Σ′ be the morphism labeling it.5 We define a Casl signature morphism
σ# : Φ(Σ) → Σ′#: on sorts, σ#(s) := σsort(s) and σ#([s]) := [σsort(s)]; on
operation symbols, we can define σ#(f) := σop(f) and this is correct because
the operation symbols were introduced in Σ′#; rew is mapped identically.

The normalization of Maude freeness is then illustrated in Fig.2. Given a free
non-persistent definition link M

σ

free
+3 N, with σ : Σ → ΣN , we first take the

translation of the nodes to Casl (nodes M ′ and N ′) and then introduce a new
node, K, labeled with Σ#

N , a global definition link from M ′ to M ′′ labeled with
the inclusion ιN of ΣN in Σ#

N , a free definition link from M ′′ to K labeled with
σ# and a hiding definition link from K to N ′ labeled with the inclusion ιN .6

M
n.p.free

σ +3

��

N

��

M ′

ιN

��
M ′′

free

σ#
+3 K

hide

ιn +3 N ′

Fig. 2. Normalization
of Maude free links

Notice that the models of N are Maude reducts of
Casl models of K, reduced along the inclusion ιN .

The next step is to eliminate Casl free definition
links. The idea is to use then a transformation spe-
cific to the second-order extension of Casl to normal-
ize freeness. The intuition behind this construction is
that it mimics the quotient term algebra construction,
that is, the free model is specified as the homomorphic
image of an absolutely free model (i.e. term model).

We are going to make use of the following known
facts [18]:
4 [x1 . . . xn] is defined to be [x1] . . . [xn].
5 In Maude, this would usually be an injective renaming.
6 The arrows without labels in Fig.2 correspond to heterogeneous links from Maude

to CASL.

11

Fact 1 Extensions of theories in Horn form admit
free extensions of models.

Fact 2 Extensions of theories in Horn form are monomorphic.

Given a free definition link M
σ

free
+3 N, with σ : Σ → ΣN such that Th(M)

is in Horn form, replace it with M
incl +3 K

incl

hide
+3 N ′ , where N ′ has the same

signature as N , incl denotes inclusions and the node K is constructed as follows.
The signature ΣK consists of the signature ΣM disjointly united with a copy

of ΣM , denoted ι(ΣM) which makes all function symbols total (let us denote
ι(x) the corresponding symbol in this copy for each symbol x from the signature
ΣM) and augmented with new operations h : ι(s) →?s, for any sort s of ΣM

and makes : s→ ι(s), for any sort s of the source signature Σ of the morphism
σ labelling the free definition link.

The axioms ψK of the node K consist of:

– sentences imposing the bijectivity of make;
– axiomatization of the sorts in ι(ΣM) as free types with all operations as

constructors, including make for the sorts in ι(Σ);
– homomorphism conditions for h:

h(ι(f)(x1, . . . , xn)) = f(h(x1), . . . , h(xn))

and

ι(p)(t1, . . . , tn)⇒ p(h(t1), . . . , h(tn))

– surjectivity of homomorphisms:

∀y : s.∃x : ι(s).h(x) e= y

– a second-order formula saying that the kernel of h is the least partial pred-
icative congruence7 satisfying Th(M). This is done by quantifying over a
predicate symbol for each sort for the binary relation and one predicate
symbol for each relation symbol as follows:

∀{Ps : ι(s), ι(s)}s∈Sorts(ΣM), {Pp:w : ι(w)}p:w∈ΣM

. symmetry ∧ transitivity ∧ congruence ∧ satThM =⇒ largerThenKerH

where symmetry stands for∧
s∈Sorts(ΣM)

∀x : ι(s), y : ι(s).Ps(x, y) =⇒ Ps(y, x),

7 A partial predicative congruence consists of a symmetric and transitive binary rela-
tion for each sort and a relation of appropriate type for each predicate symbol.

12

transitivity stands for∧
s∈Sorts(ΣM)

∀x : ι(s), y : ι(s), z : ι(s).Ps(x, y) ∧ Ps(y, z) =⇒ Ps(x, z),

congruence stands for∧
fw→s∈ΣM ∀x1 . . . xn : ι(w), y1 . . . yn : ι(w) .

D(ι(fw,s)(x̄)) ∧D(ι(fw,s)(ȳ)) ∧ Pw(x̄, ȳ) =⇒ Ps(ι(fw,s)(x̄), ι(fw,s)(ȳ))

and ∧
pw∈ΣM ∀x1 . . . xn : ι(w), y1 . . . yn : ι(w) .

D(ι(fw,s)(x̄)) ∧D(ι(fw,s)(ȳ)) ∧ Pw(x̄, ȳ) =⇒ Pp:w(x̄)⇔ Pp:w(ȳ)

where D indicates definedness. satThM stands for

Th(M)[e= /Ps; p : w/Pp:w;D(t)/Ps(t, t); t = u/Ps(t, u)∨(¬Ps(t, t)∧¬Ps(u, u))]

where, for a set of formulas Ψ , Ψ [sy1/sy′1; . . . ; syn/sy′n] denotes the simulta-
neous substitution of sy′i for syi in all formulas of Ψ (while possibly instan-
tiating the meta-variables t and u). Finally largerThenKerH stands for∧

s∈Sorts(ΣM) ∀x : ι(s), y : ι(s).h(x) e= h(y) =⇒ Ps(x, y)∧
∧pw∈ΣM∀x̄ : ι(w).ι(p : w)(x̄) =⇒ Pp:w(x̄)

Proposition 1. The models of the nodes N and N ′ are the same.

6 An example: reversing lists

The example we are going to present is a standard specification of lists with
empty lists, composition and reversal. We want to prove that by reversing a list
twice we obtain the original list. Since Maude syntax does not support mark-
ing sentences of a theory as theorems, in Maude we would normally write a
view (PROVEIDEM in Fig. 3, left side) from a theory containing the theorem
(REVIDEM) to the module with the axioms defining reverse (LISTREV).

The first advantage the integration of Maude in Hets brings in is that we can
use heterogeneous Casl structuring mechanisms and the %implies annotation
to obtain the same development graph in a shorter way – see the right side of
Fig. 3. Notice that we made the convention in Hets to have non-persistent free-
ness for Maude specifications, modifying thus the usual institution-independent
semantics of the freeness construct.

For our example, the development calculus rules are applied as follows. First,
the library is translated to Casl; during this step, Maude non-persistent free
links are normalized. The next step is to normalize Casl free links, using Free-
ness rule. We then apply the Normal-Form rule which introduces normal forms
for the nodes with incoming hiding links (introduced at the previous step) and

13

fmod MYLIST is

sorts Elt List .

subsort Elt < List .

op nil : -> List [ctor] .

op __ : List List -> List

[ctor assoc id: nil] .

endfm

fmod MYLISTREV is

pr MYLIST .

op reverse : List -> List .

var L : List .

var E : Elt .

eq reverse(nil) = nil .

eq reverse(E L) = reverse(L) E .

endfm

fth REVIDEM is

pr MYLIST .

op reverse : List -> List .

var L : List .

eq reverse(reverse(L)) = L .

endfth

view PROVEIDEM

from REVIDEM to MYLISTREV is

sort List to List .

op reverse to reverse .

endv

logic Maude
spec PROVEIDEM =

free
{sorts Elt List .
subsort Elt < List .
op nil : −> List [ctor] .
op : List List −> List

[ctor assoc id: nil] .
}

then {op reverse : List −> List .
var L : List . var E : Elt .
eq reverse(nil) = nil .
eq reverse(E L) = reverse(L) E .
} then %implies
{var L : List .
eq reverse(reverse(L)) = L .
}

Fig. 3. Lists with reverse, in Maude (left) and CASL (right) syntax.

then Theorem-Hide-Shift rule which moves the target of any theorem link target-
ing a node with incoming hiding links to the normal form of the latter. Calling
then Proofs/Automatic, the proof obligation is delegated to the normal form
node.

In this node, we now have a proof goal for a second-order theory. It can be
discharged using the interactive theorem prover Isabelle/HOL [17]. We have set
up a series of lemmas easing such proofs. First of all, normalization of freeness
introduces sorts for the free model which are axiomatized to be the homomorphic
image of a set of the absolutely free (i.e. term) model. A transfer lemma (that
exploits surjectivity of the homomorphism) enables us to transfer any proof goal
from the free model to the absolutely free model. Since the absolutely free model
is term generated, we can use induction proofs here. For the case of datatypes
with total constructors (like lists), we prove by induction that the homomor-
phism is total as well. Two further lemmas on lists are proved by induction:
(1) associativity of concatenation and (2) the reverse of a concatenation is the
concatenation (in reverse order) of the reversed lists. This infrastructure then
allows us to demonstrate (again by induction) that reverse(reverse(L)) = L.

14

While proof goals in Horn clause form often can be proved with induction,
other proof goals like the inequality of certain terms or extensionality of sets
cannot. Here, we need to prove inequalities or equalities with more complex
premises, and this calls for use of the special axiomatization of the kernel of the
homomorphism. This axiomatization is rather complex, and we are currently
setting up the infrastructure for easing such proofs in Isabelle/HOL.

7 Conclusions and Future Work

We have presented in this paper how Maude has been integrated into Hets, a
parsing, static analysis and proof management tool that combines various tools
for different specification languages. To achieve this integration, we consider pre-
ordered algebra semantics for Maude and define an institution comorphism from
Maude to Casl. This integration allows to prove properties of Maude specifica-
tions like those expressed in Maude views. We have also implemented a normal-
ization of the development graphs that allows us to prove freeness constraints.
We have used this transformation to connect Maude to Isabelle [17], a Higher
Order Logic prover, and have demonstrated a small example proof about rever-
sal of lists. Moreover, this encoding is suited for proofs of e.g. extensionality of
sets, which require first-order logic, going beyond the abilities of existing Maude
provers like ITP.

Since interactive proofs are often not easy to conduct, future work will
make proving more efficient by adopting automated induction strategies like rip-
pling [7]. We also have the idea to use the automatic first-order prover SPASS for
induction proofs by integrating special induction strategies directly into Hets.

We have also studied the possible comorphisms from Casl to Maude. We dis-
tinguish whether the formulas in the source theory are confluent and terminating
or not. In the first case, that we plan to check with the Maude termination [8]
and confluence checker [9], we map formulas to equations, whose execution in
Maude is more efficient, while in the second case we map formulas to rules.

Finally, we also plan to relate Hets’ Modal Logic and Maude models in order
to use the Maude model checker [3, Chapter 13] for linear temporal logic.

Acknowledgments We wish to thank Francisco Durán for discussions re-
garding freeness in Maude, Martin Kühl for cooperation on the implementation
of the theory presented here, and Maksym Bortin for help with the Isabelle
proofs. This work has been supported by the German Federal Ministry of Edu-
cation and Research (Project 01 IW 07002 FormalSafe), the German Research
Council (DFG) under grant KO-2428/9-1 and the MICINN Spanish project DE-
SAFIOS10 (TIN2009-14599-C03-01).

References

1. M. Bidoit and P. D. Mosses. Casl User Manual. LNCS 2900 (IFIP Series).
Springer, 2004.

15

2. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236(1-2):35–132, 2000.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude: A High-Performance Logical Framework, LNCS 4350.
Springer, 2007.

4. M. Clavel, M. Palomino, and A. Riesco. Introducing the ITP tool: a tutorial.
Journal of Universal Computer Science, 12(11):1618–1650, 2006. Programming
and Languages. Special Issue with Extended Versions of Selected Papers from
PROLE 2005: The Fifth Spanish Conference on Programming and Languages.

5. CoFI (The Common Framework Initiative). Casl Reference Manual, LNCS 2960.
Springer, 2004.

6. R. Diaconescu. Institution-independent Model Theory. Birkhäuser Basel, 2008.
7. L. Dixon and J. D. Fleuriot. Higher order rippling in ISAplanner. In K. Slind,

A. Bunker, and G. Gopalakrishnan, editors, TPHOLs, LNCS 3223, pages 83–98.
Springer, 2004.

8. F. Durán, S. Lucas, and J. Meseguer. MTT: The Maude Termination Tool (system
description). In A. Armando, P. Baumgartner, and G. Dowek, editors, Proceedings
of the 4th International Joint Conference on Automated Reasoning, IJCAR 2008,
Sydney, Australia, August 12-15, LNCS 5195, pages 313–319. Springer, 2008.

9. F. Durán and J. Meseguer. A Church-Rosser checker tool for conditional order-
sorted equational maude specifications. In Proceedings of the 8th International
Workshop on Rewriting Logic and its Applications (WRLA 2010), LNCS, 2010.
To appear.

10. K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST
Series, 1998.

11. J. Goguen and G. Roşu. Institution morphisms. Formal Aspects of Computing,
13:274–307, 2002.

12. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39:95–146, 1992.

13. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

14. J. Meseguer. Membership algebra as a logical framework for equational speci-
fication. In F. Parisi-Presicce, editor, Recent Trends in Algebraic Development
Techniques, 12th International Workshop, WADT’97, Tarquinia, Italy, June 3–7,
1997, Selected Papers, LNCS 1376, pages 18–61. Springer, 1998.

15. T. Mossakowski, S. Autexier, and D. Hutter. Development graphs - proof manage-
ment for structured specifications. Journal of Logic and Algebraic Programming,
special issue on Algebraic Specification and Development Techniques, 67(1-2):114–
145, April 2006.

16. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In
O. Grumberg and M. Huth, editors, TACAS 2007, LNCS 4424, pages 519–522.
Springer, 2007.

17. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, LNCS 2283. Springer, 2002.

18. H. Reichel. Initial computability, algebraic specifications, and partial algebras. Ox-
ford University Press, Inc., New York, NY, USA, 1987.

16

	Integrating Maude into Hets
	Mihai Codescu, Till Mossakowski, Adrián Riesco, and Christian Maeder

