
Ontological Semantics of Standards and PLM Repositories in the Product
Development Phase

Marco Franke1, Patrick Klein1, Lutz Schröder2, Klaus-Dieter Thoben1

Abstract In order to optimally exploit the large amounts
of engineering information stored in contemporary PLM
systems, the concept of knowledge based engineering
(KBE) can be considered from a PLM perspective. By
eventually combining product structures and implicit se-
mantics provided by PLM-systems on the one hand, and
domain-specific standards on the other hand we believe
to have identified a key enabler KBE.
As an initial step we describe a coupling of a CAD sys-
tem with a semantic representation of engineering know-
ledge using formal ontologies. By application of automat-
ic reasoning, engineering knowledge gained from the
product structure and domain-specific standards allows
us to reduce time-consuming manual work in classifying
overlaps between parts in a CAD model as intentional
overlaps (e.g. with gaskets) or design failures.

Keywords PLM, KBE, Semantics, Ontology, Reasoner

1 Introduction

Today, business competitiveness is usually broken down
into success factors such as decreased time-to-market,
higher success rates in product introduction, reduced pro-
ject failure rates, minimized manufacturing costs, in-
creased product and process innovation, and improved
communication among departments and business part-
ners. This obviously impacts the requirements on classic-
al business applications like ERP (Enterprise Resource
Planning), PLM, or CAx software, and consequently af-
fects the corresponding research activities [1].

Even the performance of the initial product develop-
ment phase is affected not only by technological chal-
lenges but also by the socio-technical context in which it
happens. A scenario of a globally distributed develop-
ment team may serve to illustrate this. In this scenario,
networked enterprise systems or PLM-systems, respect-
ively, become the main backbone for coordinating geo-
graphically dispersed engineering activities [2].

In fact, collaborative features have become standard in
contemporary PLM systems, such as ENOVIA [3],
providing a single front-end to multiple information
sources, enabling dispersed data storage, real time visual-
isation of the emerging product, global change manage-
ment, or design-in-context approaches.

Nevertheless, as pointed out by Garcia & Fan [2] one prac-
tical question is still not solved sufficiently: “How to retain
and capitalise the large amount of engineering information
stored in PLM repositories as intellectual property assets?” [2]

This leads to the field of knowledge based engineering and
in detail to research covering KBE services within PLM
[4,2,5]: Keeping in mind that PLM-systems provide a key
technology that enables generic and cost-effective sharing of
product and process information across a wide range of soft-
ware systems (not only CAx) and across organizational barri-
ers, several researchers have raised the idea of implementing
standardised PLM interfaces as a possible solution for interop-
erability between two different KBE-systems [4]. As one of
the results the ‘KBE Services for PLM’ RFP was published in
September 2005 by OMG [6].

However, as we discuss later, standardisation in general is
not only a possible solution for such an interoperability issue.
In combination with specific PDM/PLM information, stand-
ards can play an important role in covering one of the most
critical KBE issues: knowledge acquisition.

2 Background

The high impact of product-related decisions in the initial de-
velopment phase on the overall product costs and lead time is
as well-known as the coexistence of a pronounced lack of
product-related knowledge in this phase.

While some current research approaches try to decrease
lead-time by shifting the identification and solving of engin-
eering problems to the early phase of the product development
process (so called front loading) [7], others are addressing
solutions to ramp up the initial creative phases by specific sup-
porting tools (inventive design). The approach of knowledge
based engineering directly focuses on the reduction of lead-
time and costs by supporting and in particular automating re-
petitive design tasks [8].

Our own qualitative experience in the area of knowledge
management gained in research projects in collaboration with
several industry branches (aircraft, maritime, automotive) in-
dicates that such tasks represent most of the work in the
product development process. According to, e.g., a quantitat-
ive analysis by Skarka [8], a proportion of about 80% of the
overall design tasks is routine and consists of repetitive tasks
such as adaptation of existing parts to slight changes in the
overall geometry, or checking for clashes and omissions.

The enormous potential of a successfully implemented
KBE solution has been already validated by several research
projects [9], [10], [11]. By each of those implementations, a
notable time reduction from several days to a few hours for the

1 BIBA, Hochschulring 20, 28213 Bremen, Germany
email: klp@biba.uni-bremen.de, fma@biba.uni-bremen.de,
tho@biba.uni-bremen.de
2 DFKI, Cartesium Enrique-Schmidt-Straße 5, 28359 Bremen,
Germany
email: Lutz.Schroeder@dfki.de

respective design tasks has been achieved, while in paral-
lel a constant quality due to the repeatability can be en-
sured.

However, this is by no means a general justification
for an unlimited deployment of a KBE system. A usage
of KBE technologies may not be effective in different
situations, e.g. if a problem is simple enough to solve it in
a less technology-centered way (i.e. without KBE techno-
logies) or if it is not possible to extract or to codifiy the
required knowledge, e.g. in the absence of a clearly
defined design process [8].

2.2 Different approaches to knowledge based
engineering

As already pointed out by Penoyer [12], knowledge
based engineering appears, at first glance, to be a tauto-
logy – usually every person (and especially every engin-
eer) involved in a product development process will
define her engineering tasks as based on specific know-
ledge.

Hence for our purposes, knowledge based engineering
(KBE) will be defined in close conjunction with KBE
systems. Within a KBE system, design knowledge is rep-
resented in a formal manner and enables the system to
automate specific design tasks mostly unique to the com-
pany’s product development experience.

Each KBE system provides on the one hand an inter-
face to capture the knowledge in terms of logical rules,
algorithms, or constraints, and on the other hand an out-
put module to trigger adjacent CAx systems or/and visu-
alise results [13].

In this sense, knowledge based engineering can be
seen as the process of gathering, managing, and using en-
gineering knowledge to automate the design process by
usage of a KBE system [14]. In this context, the meaning
of automate even covers analysis tasks in terms of valida-
tion or quality checking, since the interpretation of the
output of CAx tools, such as CATIA’s DMU Space Ana-
lysis, requires engineering knowledge about the mechan-
ical parts involved.

An emerging trend in the field of knowledge based en-
gineering is to set up a background ontology, link one or
more of the available CAx engineering tools to it, and
thus provide context specific engineering knowledge for
different tasks covered by separate CAx tools [11]. Other
research addresses the idea of using the ontology in order
to represent a generative model and thus enabling design
automation [8].

Surprisingly, one of the most noticeable advantages of
such an approach seems to be not yet fully exhausted by
the solutions developed so far: the ability of using formal
logic and automated reasoning in order to generate fur-
ther findings and reports for control and steering pur-
poses.

A further advantage of the usage of ontologies appears
in the context of the upcoming requirement for PLM sys-
tems to capture and manage the technical decisions made

by product developers in the initial development phase. Such a
decision-tracking is of increasing importance in the context of
product warranties on the one hand, and as a valuable input for
follow-up product developments on the other hand.

The standard approach to retaining product design related
knowledge and experience is to produce and store documents
such as lessons-learned or best-practices.

Consequently, the respective expert defines the termino-
logy, verbalisation, and level of detail of the represented
knowledge by herself. In the long run, this way of archival
storage implies a continuous decrease of comprehensibility,
since terminology and wording may change over time. The
transfer of knowledge into an ontology expressed in a descrip-
tion logic with a formally grounded semantics avoids such a
semantic dilution and thus ensures that the codified knowledge
is sustainable, in particular remains readable, maintainable,
and convertible over time.

2.3 The challenge of knowledge acquisition

The requirement of capturing domain specific knowledge can
be seen as one of the main challenges in the field of Know-
ledge Based Engineering [15].

Even if several methodologies (e.g. MOKA [16]) have been
elaborated to guide knowledge acquisition activities and thus
avoid omitting essential knowledge [8], they usually require a
time-consuming collection and analysis of (often implicit)
knowledge about the product and its design process, respect-
ively [17]. Thus, most approaches to designing KBE-Tools
address especially repetitive engineering tasks [18,10], since
the potential to reduce time and cost by means of such ap-
proaches has to be balanced against the effort needed to gather
and formalize the required knowledge in a scheme (e.g. an on-
tology) [18].

Contemporary CAD systems provide several enhancements
to support product data management features, and thus very
often constitute the main link to a global PLM-system within
an enterprise IT infrastructure. These modules allow not only
storing and managing a broad range of product-related non-
geometrical data, but give the user a visual and intuitive access
via the graphical representation of a product and its product
structure, respectively [19]. Thus, capturing PDM-data via
context specific dialogs within the respective CAD-systems
has become common practice.

Based upon these coupling concepts, the use of a CAD user
interface for a KBE system is an obvious and already imple-
mented idea. In fact, many of the leading CAD applications
provide add-on modules for KBE related features. The know-
ledge advisor, knowledge expert and product knowledge tem-
plate modules of the CAD application CATIA can serve as ex-
amples. Based on a parameterized CAD model, they provide
functions like formulas (to create dependencies between para-
meters), rules (such as If… then...) and power copys (user
defined features, allowing to partly reuse design procedures)
[20]. Nevertheless, integrated methods for an easy knowledge
acquisition remain a key hurdle for the application of these
functions [8].

2.3 PLM and standards - an underestimated
source for knowledge acquisition

For PLM systems, product structures have become one
of the most important backbones to which the various
types of metadata are attached. Within PLM applications,
the requirements of taxonomical naming and numbering
lead to sophisticated algorithms that cope with the com-
plexity of providing a distinct, non-redundant namespace
[21]. In parallel to such internal representation logic, sev-
eral formal standards are used in the area of PLM in order
to represent the product and its product structure appro-
priately.

In the area of mechanical engineering, standardisation
is usually not only a clustered set of generic product in-
formation, or a taxonomy of a specific domain, but it
comprises a high amount of codified knowledge, in terms
of, e.g., calculation rules, engineering constraints,
schemes for data exchange etc. The use of standards to
cover such codified knowledge is based on a long history
in the field of mechanical engineering, ranging from the
VDI 2230 guideline that treats the systematic calculation
of high duty bolted joints [22] up to the ISO 10303 stand-
ard for the computer-interpretable representation and ex-
change of product manufacturing information. Several
specific KBE solutions cover the idea of using such codi-
fied knowledge for a specific design problem - a good ex-
ample is given by [23], which implements the Italian
VSR/PED rules for the verification of pressure vessels.

By a combination of both types of knowledge –
product structures and namespaces provided by PLM sys-
tems, and existing domain specific standards – we believe
to have identified a key stepping stone to harnessing
knowledge acquisition in a principled and sustainable
way.

As an initial proof of concept for the benefits that can
be achieved using this type of combination, we describe
below a semantic analysis of clashes and overlaps in
CAD files. Our prototype of an analysis tool (called On-
toDMU) is able to check semantically if an overlapping is
a design failure or an intended feature, at least in those
cases where standard parts are involved.

Specifically, we exploit that when a standard part is
used in a product, the respective standardisation identifier
remains available, usually as a section of the item name
in the CAD model. For example in CATIA V5, when a
nut is chosen from the standard part catalogue of the ap-
plication, an expression such as ISO 4034 NUT M14
STEEL GRADE C HEXAGON HEAD NONPREFERRED
will be provided as a default part name in the product
structure. This enables us to connect the relevant standard
(in this case, ISO 4034) with a background ontology,
which in turn helps us interpret the output of the analysis
tool.

3 Practical benefits drafted in a Sample Scenario

Validating the correctness (the so-called quality) of a CAD
model by analysing its compliance to corresponding engineer-
ing knowledge can be seen as a typical job for a designer. In
this context, contemporary CAD files provide her with several
support modules, e.g. for validating a mock-up against as-
sembly requests, or checking its conformance with the PLM
namespaces. One of those tasks is an investigation of the
CAD-model in order to distinguish between intended part
overlaps and overlaps to be attributed to design failures.

Looking speci cally at the case of overlaps, it is by nofi
means the case that every overlap is actually a design error —
e.g. overlaps are often intentional in the case of bolts, whose
threads are typically not modelled in the CAD software, so
that a bolt will overlap with its nut. Similarly, deformations of
gaskets (e.g. O-rings) are typically ignored (both for computa-
tional reasons and because one wishes to have the undeformed
shape of the gasket in the design, e.g. for purposes of exploded
views) so that they overlap with adjacent parts, even if sizes
are appropriate. In fact, overlaps are actually mandatory in
both examples, but do of course represent design errors in oth-
er cases, some of them subtly different – e.g. a bolt should not
overlap with the parts it connects unless the latter also have
threads.

Picking up the above mentioned gasket example Figure 1
shows a half section view of the 3D-CAD-model of two

anges screwed together (e.g. used in context of pipe coupfl -
ling).

The small circle represents a gasket. The parts in the back-
ground represent a bolt and a nut - screwed together. By using
a half-section view of the assembled parts, a mechanical de-
signer can check the correctness of the design and the CAD-
model respectively (position, dimensions, overlapping etc).
Thus, not only the gasket’s position in the ange notch befl -
comes visible, but also its intersection with the ange.fl

Fig. 1 Half-section view of the assembled ange fl

Being aware that a gasket normally consists of deformable
Flouride rubber (FPM) the mechanical designer can easily
identify the correctness of the overlap and the assembly as a
whole, since no overlap would lead to a leaky assembly. Un-
fortunately, CAD-models can become confusing for complex
products. To check overlaps of a gas-tanker assembly-model,
for instance, leads to thousands of gasket intersections.

Using an interference detection module such as CATIA’s
DMU Space Analysis will provide the mechanical designer

with a complete list of all overlaps, but the tool cannot
distinguish between required overlaps and unintentional
clashes. This is caused by the fact that no inferences are
possible from a geometrical representation of a part to the
part itself (for example: In a CAD application there is ab-
solutely no difference between a geometrical model of a
ring and a geometrical model of a gasket).

Fig.2 Space Analysis report - screenshot

Figure 2 is a screenshot of the DMU Space Analysis
report belonging to the CAD-model shown in Figure 1.
Even if it is a quite simple product and only identified
overlappings are displayed, the list gets quite long and
leads to time-consuming manual work.

By using the OntoDMU tool for the ontological ana-
lysis of the output of the DMU analyser as described in
the present work, however, the designer can analyze this
list of overlaps semantically and identify those overlaps
that are not allowed.

Fig. 3 architecture of the initial prototype

As shown in Figure 3, the OntoDMU prototype trans-
forms the output of the DMU Space Analysis module into
a set of individuals set against a background ontology,
thus making it available for semantic analys using state-
of-the-art automated reasoning. Next, we proceed to de-
scribe details of this method.

4 Approach

To capture the semantics of standards and PLM repositor-
ies, we propose to make use of formal ontologies expressed in
a formal ontology language at the level of so-called descrip-
tion logics; specifically, we use the standard ontology lan-
guage OWL-DL (Web Ontology Language), a W3C recom-
mendation [24]. Description logics are tuned to offer an optim-
al degree of expressive power while retaining efficient decid-
ability, and indeed come with high-performance optimized
reasoners such as Pellet [25]. For purposes of describing en-
gineering designs, this means that our background ontology is
able to describe simple relationships between parts and com-
ponents, such as existence, parthood, cardinality etc., but not
the geometry or topology of a model. However, it turns out
that a surprisingly large amount of knowledge can be captured
in such a simple framework, and exploited for the automated
consistency checking of CAD models. In t his process, it is
precisely the simplicity of the language that allows us to use
efficient reasoning and thus achieve a practically feasible se-
mantic framework, which in the end even does offer support
for geometry-related issues, such as overlapping, on a suitable
level of abstraction. We emphasize that a representation in a
formal logic carries a number of advantages over a hard-wired
representation in software, in particular

• increased clarity of the representation

• independence of accidental features of the software envir-
onment

• reduced likelihood of errors, due to simplicity of expression
and absence of side-effects

• improved interoperability.

It turns out that in order to reduce the complexity of model-
ling and keep an optimal level of modularity, it is useful to
maintain two types of ontologies: An ambient ontology that
covers abstract engineering knowledge, such as that rubber is
deformable (and therefore rubber parts may overlap with adja-
cent parts since the deformation is usually not explicitly mod-
elled) and, embedded therein, an ontology of standard (or en-
terprise standard) parts which represents and classifies a part
catalogue against the ambient ontology, but typically does not
otherwise encode any background knowledge. One benefit of
this approach is that both parts of the ontology become much
easier to maintain, and in particular the ontology of standard
parts can mostly be generated automatically from part data-
bases in the CAD system.

4.1 Using a background ontology

As discussed above, an ontology expressed in a formal de-
scription logic allows one to formally represent and store do-
main specific knowledge. It enables in particular a perspective
where we regard a CAD model as a collection of instances of
generic objects that we can view against the backdrop of the

ontology. The ontology then serves as a template for
maintaining consistency during the development of a
product or the creation of variants. Moreover, the design-
er can further develop the ontology in order to make do-
main knowledge assumptions explicit and facilitate reuse
of his designs.

We briefly recall some of the basic concepts of OWL
to facilitate the understanding of the examples given fur-
ther below. An OWL class represents a collection of ob-
jects; e.g. the class ‘bolt’ stands for the collection of all
individual bolts. Similarly, a property represents a rela-
tionship between objects, such as parthood. From the ba-
sic classes, one forms concepts by applying Boolean op-
erators as known from propositional logic (conjunction,
disjunction, negation) and so-called restrictions which
govern the way in which an object is expected to be re-
lated to other objects. E.g. an existential restriction on the
property ‘hasFeature’, qualified by the class ‘thread’, des-
ignates all objects that have some feature that is a thread.
Similarly, a universal restriction on the property
‘hasPart’, qualified by the class ‘standardPart’, designates
objects composed only of standard parts.

An ontological knowledge base then consists of two
parts offering different perspectives on the domain: The
structural information of a domain is characterized
through its TBox (the terminology). The TBox consists of
a set of inclusions between concepts, and as such allows
expressing general knowledge such as ‘every bolt has a
thread’, or ‘every car has four wheels and a colour’. Con-
trastingly, the ABox (the assertions) contains knowledge
about individuals, say a particular car or a given occur-
rence of a standard part in a CAD model. It can state
either that a given named individual (say, ‘myCar’) be-
longs to a given concept (e.g. that myCar is, in fact, a car)
or that two individuals are related by a given property
(e.g. that myCar is owned by me).

By default, an ontology has no restriction for naming.
For this reason, the same element can have different la-
bels in two or more ontologies (precisely because OWL
does not implement the so-called unique-name assump-
tion), but would not be detected as the same in case of
merging the ontologies. Therefore, it is desirable that the
label of each element is kept unique. If an element has a
unique name in the real world, a designer can achieve
such a unique labelling by using the same name within
the ontology, following an appropriate transformation of
name spaces. Additionally, an encapsulation into name
spaces can be used to ensure unique labelling of items.

As already indicated, using an ontology as part of a
KBE solution can improve the engineering processes, but
at the same time, the modelling of an ontology can be-
come very complex, especially if a generic approach is
envisaged.

In the scenario described above, we focus on the
standard part catalogue of CATIA V5 R16. This version
comprises about 8838 standard parts, and each part has
its specific properties and restrictions, which have to be
implemented in the ontology (Figure 4). For this reason,
one of the main challenges is to reduce the effort and the
complexity of modelling. In order to avoid such time

consuming manual work, we have foreseen a special function
in OntoDMU to import standard parts into concepts of the on-
tology (refer to Section 4.4).

Fig. 4 Detail of the background ontology – screenshot

The overall approach to determining the consistency of a
CAD model with respect to the ontology is, then, as follows.
The background ontology together with the ontology of stand-
ard parts exported from CATIA V5 formally constitutes a
TBox. A second function of our OntoDMU tool is able to con-
vert the output of CAD tools such as the DMU analyser into
an OWL ABox over this TBox; then, the consistency check
amounts to checking the consistency of the combined know-
ledge base. As discussed below, the technical framework that
integrates all these tasks is the Bremen heterogeneous tool set
Hets.

4.2 Ontology languages

We digress briefly to discuss our choice of ontology language,
limiting ourselves to the three main sublanguages of OWL:
OWL Lite, OWL DL and OWL Full [24].

OWL Full features the highest expressivity; however, it
does not currently have efficient reasoning support, and the lo-
gical complexity of the language makes it unlikely that such
support will be developed in the foreseeable future. Since our
approach to consistency checking of CAD models relies cru-
cially on fully automated reasoning, OWL Full is, thus, not a
suitable option. As mentioned above, efficient reasoners do
exist for the sublanguages OWL Lite and OWL DL [26]. The
complexity of OWL Lite is markedly below that of OWL, so
that more efficient reasoning is possible for ontologies limiting
themselves to the expressive means of OWL Lite (and effi-
ciency remains an issue in our framework, as both the output
of the DMU analyser and the imported ontology of standard

parts tend to become large rather quickly). However, the
expressive power of OWL Lite turns out to be too limited
for our purposes; in particular, OWL Lite excludes con-
junction and universal restriction, which we need to say
things like ‘bolts have threads and intersect only with
nuts’ or ‘all member of the concept ISO 4034 NUT M14
STEEL have an identical a diameter of 14mm.

Technically, OWL-DL ontologies can be written and
stored in several ASCII-based formats. These formats can
be translated into each other. Some reasoners, such Pellet,
have corresponding translation functions. For using
OWL-DL within Hets, it is necessary to generate the on-
tology in OWL Manchester Syntax [27]. Such a file can
be opened with all common OWL readers, such as
Protégé in version 4.

4.3 The Bremen heterogeneous tool set

We embed our background ontology as well as our inter-
face tool into the Bremen heterogeneous tool set (Hets)
[28] which allows for the integrated use of a wide variety
of logics and associated analysis and reasoning tools in a
common framework, accessed via a graphical interface
and connected by a network of logic translations. Relev-
ant for purposes of the present work are the support
offered in Hets for ontology languages including in par-
ticular OWL-DL Manchester Syntax and, as a more ex-
pressive correspondence language, first order logic, as
well as the facilities provided in the Hets implementation
framework for the easy integration of further logics.

Fig. 5 Hets graphical interface (screenshot)

The latter has allowed us to cast the output format of
the DMU Analyzer as a very simple-minded logic, thus
enabling integration of the OWL translation tool into the
Hets framework and thereby, e.g., direct reasoning sup-
port for the combination of the tool output and the OWL
background ontology in Pellet [25]. Figure 5 shows a
screenshot of the Hets graphical interface and an inter-
face window for a call to the Pellet reasoner.

4.4 Semi-automatic generation of Ontologies

The tool OntoDMU generates the ABox automatically and the
background ontology semi-automatically. In the following, we
describe these generation processes in more detail.

The background ontology should define all concepts a user
needs for his own modelling purposes. In our concept, this in-
cludes standard parts (taken from the standard part catalogue
of CATIA V5) as well as non-standard parts. Since non-stand-
ard parts are user or enterprise specific, the idea of importing
non-standard parts is a priori a non-trivial proposition. We in-
tend to implement an interface in order to transfer the product-
structures and namespaces from PDM/PLM into the back-
ground ontology.

The standard parts, on the other hand, are stored in a separ-
ate catalogue-folder managed by CATIA. Hence OntoDMU
can access the respective information without starting CATIA,
and every change in the catalogue folder can be easily updated
in the ontology. OntoDMU extracts all relevant information
from the files automatically and transfers it into the ontology.
A part from the standard catalogue is transformed into a
concept, and its properties are inserted as a combination of
data and object properties.

For example, the class of nuts ISO 4034 NUT M14 STEEL
GRADE C HEXAGON HEAD NONPREFERRED is such a
catalogue part. Its name directly contains information about its
properties. In this example, the material and the diameter of
the nut can be read off from the name, and inserted as explicit
properties of the item. Further information gained from the
part name is the relevant standard (in this case, ISO 4034),
which induces further properties by relations with the back-
ground ontology. In our case the respective information is:
every ISO 4034 part is a nut and as such has an inner thread.
In detail, this information arises as follows: we record in the
ontology of standard parts that every ISO 4043 part is a nut,
and we have captured, in the background ontology, the piece
of general engineering knowledge stating that every nut has an
inner thread.

As examples of ‘non-standard’ parts (i.e. not from the
CATIA V5 catalogue), to be though of as enterprise standard,
the ontology of our scenario includes classes Flange, Gasket
and FlangeCover, which are currently maintained manually.

General knowledge about parts as such is then integrated
with knowledge relating to the topic covered by our target
geometric analysis tool, overlaps or, in the terminology used
in the tool output, interferences, between parts. As discussed
later, interferences may either be intentional or indicate design
failures. The knowledge used in classifying interferences ac-
cordingly is modelled using properties of a dedicated class ‘in-
terference’; details are given further below.

4.5 Structural information in the background
ontology

The standard parts share a common interface of object proper-
ties. At present, OntoDMU can identify type, material, dia-

meter and length as object properties, and extract these
properties from standard part names.

The above-mentioned class interference represents an
overlap relation between parts, possibly annotated with
further data generated by the geometric analysis tool. The
analysis tool generates instances of this class in an XML
representation format, which the OntoDMU tool automat-
ically converts into an ABox describing a collection of
individuals inhabiting the class Interference, with addi-
tional data describing the participating parts and their
classification according to the part ontology.

The classification of interferences as intended or
faulty is now cast as a consistency check of the ABox
thus generated with the background ontology, which
must hence contain a formalization of rules stating what
types of overlaps between parts are allowed, forbidden,
or, in fact, mandatory. To see why these cases even arise,
consider the following examples:

• Two bolts should never overlap; such and overlap, if
detected, will always be classified as a design failure.

• A gasket, being deformable, may overlap with other
parts. These, however, should be of a suitable type –
e.g. a gasket should not overlap with a bolt, but may
overlap with a flange

• Bolts in fact must always overlap with some other part
(unless threads are explicitly modelled), namely with a
part (typically a nut) having an inner thread, whose
type and diameter match that of the bolt. These,
however, are the only overlaps allowed for bolts.

It is an important design decision to which classes
these pieces of knowledge should be attached in the back-
ground ontology. To balance the conflicting design goals
of modularity, human readability, and efficiency of reas-
oning, we adopt the following approach. We attach gen-
eral pieces of knowledge such as ‘bolts should always
(and only) overlap with parts that have inner threads’ to
the class Interference as a list of alternative exceptions.

Contrastingly, more specific information, such as that
the part that a bolt overlaps with should have matching
thread type and diameter, is attached to the relevant class
of bolts, or more precisely to the relevant type of thread.
E.g. the class representing the thread type M12 states that
any part having an outer thread of this type may overlap
only with parts having an inner thread of type M12.

Unfortunately, even for small part ontologies this
leads to long and hard-to-parse lists of restrictions (Fig-
ure 6); we thus to some degree sacrifice human readabil-
ity in favour of ease of machine processing: an alternative
approach is to attach restrictions entirely to part classes
instead of to the class interference. This leads to better
modularity and is easier to read for humans. However,
this requires an increased use of so-called inverse proper-
ties which traverse object properties backwards (in this
case, from a part participating in a particular interference
to the interference itself), which leads to increased pro-
cessing time. In our experiments using Pellet, this meant

an increase from about 1min 40s in the analysis of a particular
CAD model to more than 15min.

Fig. 6 Additional restrictions on the concept interference.

Currently, restrictions relating standard and non-standard
parts in the ontology are created manually. Our envisaged ap-
proach foresees to extract those relations from a PLM reposit-
ory. A precondition for this extraction is to have annotated
product structure items in the PLM/PDM system. Those an-
notations include a unique reference between a part and its
concept.

5 A remark on using default logic

As discussed above, the interference concept captures most
of the explicit allowed interferences. The effort for such an ex-
plicit interference modelling increases quadratically with the
number of implemented concepts. An interesting point to be
made is that for purposes of the specification of the back-
ground ontology, it would be useful to have a language with
defaults available; see Chapter 6 of [29] for a brief explanation
of defaults and an overview of existing approaches to adding
them to ontology languages. Defaults are not currently in-
cluded as a feature in OWL, which we continue to use non-
etheless for sake of its well-developed reasoning support. We
outline briefly how defaults could be employed to increase in
particular the degree of modularity of the background onto-
logy.

Roughly speaking, default implications state that given cer-
tain conditions, certain conclusions are expected to hold nor-
mally, but may be overridden when more specific information
about the given situation becomes available. The standard ex-
ample is that birds normally fly, thus leading us to conclude
provisionally (defeasibly) that a particular bird flies unless
more specific information about it becomes available, such as
that the given bird is a penguin. In the concrete setting of spe-
cifying legal and illegal overlaps of parts in a CAD object,
having such a mechanism available would simplify the overall
structure of the ontology rather strongly: To begin, one would
be able to just say that generally, parts should not overlap.

This general proviso would then be overridden by excep-
tions, such as that gaskets typically overlap with other
specific parts having dedicated channels for the gasket;
the latter could, again, be overridden in particular cases
where the channel might be absent. This approach is
modular because one can extend the range of available
parts without having to adapt the general principles (e.g.
we never have to adapt our initial default stating that
parts do not overlap, even though exceptions to this keep
accumulating).

Consequently, an OWL modelling of the situation has
to circumvent this lack of expressivity rather visibly. E.g.
all exceptions to the general rule that parts do not overlap
are currently explicitly attached to the concept of an in-
terference as shown above.

6 Conclusion

The fact that most current KBE solutions address only
individual design problems and do not offer enterprise-
level solutions largely goes back to problems of know-
ledge acquisition. Even though this level is typically
covered by PLM systems and hence established informa-
tion repositories do exist, there is to date no automated
way for transforming this information into codified
knowledge as it is typically used in knowledge based en-
gineering rules.

To contribute to realising the vision of a sustainable
capitalisation of the engineering information stored in
PLM repositories as intellectual property assets, we have
presented an approach to combining product structures
and namespaces provided by PLM-systems on the one
hand and significant domain specific standards on the
other hand in order to establish a background ontology
and thus create a powerful semantic representation of co-
dified engineering knowledge.

Even though the current implementation of our On-
toDMU tool, which translates the output of a standard
geometric analysis tool into a knowledge representation
format that allows for a connection to a background onto-
logy of codified engineering knowledge, is still at the
prototype stage, benefits to be gained by its usage already
become clearly visible. The productive interplay between
a practical design problem, which reappears in different
design contexts, and the background ontology created as
part of the framework, leads to a clear reduction of manu-
al intervention in the validation of CAD objects.

The approach of having an ambient ontology of gener-
al engineering knowledge in parallel with an ontology of
standard parts which is automatically generated from
CAD part catalogues and PLM systems is promising and
will be further elaborated. As a next step, an annotated
product structure will be used in conjunction with the
background ontology, thus allowing for semi-automatic
generation and maintenance of ontologies also of non-
standard parts.

At the same time, the work presented here constitutes
an important prerequisite for ontological support in the

actual core PLM processes: the semantically correct integra-
tion of data fed back to the manufacturer from the product dur-
ing its life cycle requires a semanticized representation of
design objects as facilitated by our ontological approach to
CAD. Future steps in our research program include the imple-
mentation of a semantical underpinning of sensor data and oth-
er Middle-of-Life data to obtain intelligent decision support
for the full product life cycle, thus enabling optimal feedback
of PLM data into the design and development process. As
demonstrated in the CAD case study presented here, we expect
substantial added value from the use of fully automated onto-
logical reasoning in modern DL engines (as opposed to a clas-
sical programming approach as pursued, e.g. in the ICAD sys-
tem [30]) with respect to decision quality as well as extensibil-
ity and adaptability; here, the use of a standard ontology lan-
guage such as OWL carries the promise of a high degree of
both interoperability and sustainability. The approach via a
core set of ontologies managed independently of the involved
software tools both reduces the overall maintenance effort and
enables an increased degree of knowledge reuse, with know-
ledge being made available to the entire range of CAx systems
involved in the product life cycle.

References

1. Ameri F, Dutta D (2004) Product lifecycle management
needs, concepts and components, Product Lifecycle Man-
agement Development Consortium, vol: PLMDC-TR3-
2004.

2. Garcia P B, Fan I S (2008) Practitioner requirements for
integrated Knowledge-Based Engineering in Product Li-
fecycle Management, International Journal of Product Li-
fecycle Management, vol: 3.

3. Enovia I (2009) ENOVIA - PLM Solutions - 3D Digital
Collaboration - ENOVIA VPLM products - Dassault
Systèmes, www.3ds.com/products/enovia/portfolio/enov-
ia-v5/enovia-vplm/all-products/ Accessed 9 December
2009.

4. Fan I, Bermell-Garciá P (2008) International Standard
Development for Knowledge Based Engineering Ser-
vices for Product Lifecycle Management, Concurrent En-
gineering, vol: 16, 271-277.

5. Pugliese D, Colombo G, Spurio M (2007) About the in-
tegration between KBE and PLM, Advances in Life
Cycle Engineering for Sustainable Manufacturing Busi-
nesses, 131-136.

6. OMG (2005) KBE Services for PLM - RFP.
7. Thomke S, Fujimoto T (2000) The effect of front-loading

problem-solving on product development performance,
Journal of Product Innovation Management, vol: 17,
128–142.

8. Skarka W (2007) Application of MOKA methodology in
generative model creation using CATIA, Engineering
Applications of Artificial Intelligence, vol: 20, 677-690.

9. Nacsa J, Bueno R, Alzaga A, Kovács G L (2005) Know-
ledge management support for machine tool designers
using expert enablers., International Journal of Computer
Integrated Manufacturing, vol: 18, 561-571.

10. Kulon J, Mynors D, Broomhead P (2006) A know-
ledge-based engineering design tool for metal for-
ging, Journal of Materials Processing Technology,
vol: 177, 331-335.

11. Danjou S, Lupa N, Koehler P (2008) Approach for
Automated Product Modeling Using Knowledge-
Based Design Features, Computer-Aided Design &
Applications, vol: 5, 622–629.

12. Penoyer J A, Burnett G, Fawcett D J, Liou S Y
(2000) Knowledge based product life cycle systems:
principles of integration of KBE and C3P, Com-
puter-Aided Design, vol: 32, 311-320.

13. Milton N (2008) Knowledge technologies, Monza:
Polimetrica.

14. Prasad B (2005) What Distinguishes KBE from
Automation, www.coe.org/coldfusion/newsnet/Jun-
05/knowledge.cfm#1 Accessed 2 December 2009.

15. Sriram R D (2006) Artificial intelligence in engin-
eering: Personal reflections, Advanced Engineering
Informatics, vol: 20, 3-5.

16. Oldham K, Kneebone S, Callot M, Murton A,
Brimble R (1998) MOKA - A Methodology and
tools oriented to Knowledge-based engineering Ap-
plications, Changing the ways we work: shaping the
ICT-solutions for the next century, Göteborg, 198.

17. Van der Velden C, Bil C, Yu X, Smith A (2007) An
intelligent system for automatic layout routing in
aerospace design, Innovations in Systems and Soft-
ware Engineering, vol: 3, 117–128.

18. Colombo G, Mosca A, Sartori F (2007) Towards the
design of intelligent CAD systems: An ontological
approach, Advanced Engineering Informatics, vol:
21, 153-168.

19. Abad-Kelly J, Cebrián D P, Chulvi V (2008) An
Ontology-based approach to integrating life cycle
analysis and computer aided design.

20. IBM C (2009) IBM - CATIA Product Synthesis
Discipline - All products in this discipline, www-

01.ibm.com/software/applications/plm/catiav5/discip-
lines/prodsynth/products.html Accessed 8 December
2009.

21. Crnkovic I, Asklund U, Dahlqvist A P (2003) Imple-
menting and integrating product data management and
software configuration management, Artech House Pub-
lishers.

22. VDI 2230 (2003) Systematic calculation of high duty
bolted joints Joints with one cylindrical bolt, VDI-Ver-
lag, Düsseldorf.

23. Ansaldi S, Bragatto P, Camossi E, Giannini F, Monti M,
Pittiglio P (2006) A knowledge-based tool for risk pre-
vention on pressure equipments, Computer-Aided Design
& Applications, vol: 3, 99–108.

24. W3C (2004) OWL Web Ontology Language Overview,
www.w3.org/TR/2004/REC-owl-features-20040210/#s2
Accessed 10 December 2009.

25. Sirin E, Parsia B, Grau B C, Kalyanpur A, Katz Y (2006)
Pellet: A practical OWL-DL reasoner, Journal of Web
Semantics, vol: 5, 51-53.

26. Sattler U (2010) Description Logic Reasoners, www.cs.-
manchester.ac.uk/~sattler/reasoners.html Accessed 10
December 2009.

27. W3C (2009) ManchesterSyntax - OWL,
www.w3.org/2007/OWL/wiki/ManchesterSyntax Ac-
cessed 14 December 2009.

28. Mossakowski T, Maeder C, Lüttich K (2007) The Het-
erogeneous Tool Set, Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS 07, O.
Grumberg and M. Huth, eds., Springer, Heidelberg, 519-
522.

29. Baader F, Calvanese D, McGuinness D L, Nardi D, Pa-
tel-Schneider P F (Eds.) (2003) The Description Logic
Handbook, Cambridge University Press.

30. Bermell-Garc á P, Fan I S (2002) A KBE System for theı
Design of Wind Tunnel Models Using Reusable Know-
ledge Components, International Congress on Project En-
gineering, Barcelona, 23-25.

