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Abstract  In order to optimally exploit the large amounts 
of engineering information stored in contemporary PLM 
systems,  the  concept  of  knowledge  based  engineering 
(KBE) can be considered from a PLM perspective.  By 
eventually combining product structures and implicit se-
mantics provided by PLM-systems on the one hand, and 
domain-specific standards on the other hand we believe 
to have identified a key enabler KBE.
As an initial step we describe a coupling of a CAD sys-
tem with a semantic representation of engineering know-
ledge using formal ontologies. By application of automat-
ic  reasoning,  engineering  knowledge  gained  from  the 
product  structure  and  domain-specific  standards  allows 
us to reduce time-consuming manual work in classifying 
overlaps  between parts  in  a  CAD model  as  intentional 
overlaps (e.g. with gaskets) or design failures. 
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1 Introduction 

Today, business competitiveness is usually broken down 
into  success  factors  such  as  decreased  time-to-market, 
higher success rates in product introduction, reduced pro-
ject  failure  rates,  minimized  manufacturing  costs,  in-
creased  product  and  process  innovation,  and  improved 
communication  among  departments  and  business  part-
ners. This obviously impacts the requirements on classic-
al  business  applications  like  ERP (Enterprise  Resource 
Planning), PLM, or CAx software, and consequently af-
fects the corresponding research activities [1].

Even the performance of the initial product develop-
ment  phase  is  affected  not  only by technological  chal-
lenges but also by the socio-technical context in which it 
happens.  A scenario of a globally distributed develop-
ment team may serve to illustrate this. In this scenario, 
networked enterprise systems or PLM-systems, respect-
ively, become the main backbone for coordinating geo-
graphically dispersed engineering activities [2]. 

In fact, collaborative features have become standard in 
contemporary  PLM  systems,  such  as  ENOVIA  [3], 
providing  a  single  front-end  to  multiple  information 
sources, enabling dispersed data storage, real time visual-
isation of the emerging product, global change manage-
ment, or design-in-context approaches. 

Nevertheless, as pointed out by Garcia & Fan [2] one prac-
tical  question is still  not solved sufficiently:  “How to retain 
and  capitalise  the  large  amount  of  engineering  information 
stored in PLM repositories as intellectual property assets?” [2] 

This leads to the field of knowledge based engineering and 
in  detail  to  research  covering  KBE  services  within  PLM 
[4,2,5]:  Keeping  in  mind  that  PLM-systems  provide  a  key 
technology that enables generic and cost-effective sharing of 
product and process information across a wide range of soft-
ware systems (not only CAx) and across organizational barri-
ers, several researchers have raised the idea of implementing 
standardised PLM interfaces as a possible solution for interop-
erability between two different KBE-systems [4]. As one of 
the results the ‘KBE Services for PLM’ RFP was published in 
September 2005 by OMG [6].

However, as we discuss later, standardisation in general is 
not only a possible solution for such an interoperability issue. 
In combination with specific  PDM/PLM information, stand-
ards can play an important role in covering one of the most 
critical KBE issues: knowledge acquisition. 

2 Background 

The high impact of product-related decisions in the initial de-
velopment phase on the overall product costs and lead time is 
as  well-known as  the  coexistence  of  a  pronounced  lack  of 
product-related knowledge in this phase.

While  some  current  research  approaches  try  to  decrease 
lead-time by shifting the identification and solving of engin-
eering problems to the early phase of the product development 
process  (so  called  front  loading) [7],  others  are  addressing 
solutions to ramp up the initial creative phases by specific sup-
porting tools  (inventive design).  The approach of knowledge 
based engineering directly focuses on the reduction of lead-
time and costs by supporting and in particular automating re-
petitive design tasks [8]. 

Our own qualitative experience in the area of knowledge 
management gained in research projects in collaboration with 
several industry branches (aircraft, maritime, automotive) in-
dicates  that  such  tasks  represent  most  of  the  work  in  the 
product development process. According to, e.g., a quantitat-
ive analysis by Skarka [8], a proportion of about 80% of the 
overall design tasks is routine and consists of repetitive tasks 
such as adaptation of existing parts to slight changes in the 
overall geometry, or checking for clashes and omissions. 

The  enormous  potential  of  a  successfully  implemented 
KBE solution has been already validated by several research 
projects [9], [10], [11]. By each of those implementations, a 
notable time reduction from several days to a few hours for the 
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respective design tasks has been achieved, while in paral-
lel a constant quality due to the repeatability can be en-
sured.

However, this is  by no means a general justification 
for an unlimited deployment of a KBE system. A usage 
of  KBE technologies  may not  be  effective in  different 
situations, e.g. if a problem is simple enough to solve it in 
a less technology-centered way (i.e. without KBE techno-
logies) or if it is not possible to extract or to codifiy the 
required  knowledge,  e.g.  in  the  absence  of  a  clearly 
defined design process [8].

2.2 Different approaches to knowledge based 
engineering

As already pointed out by Penoyer [12],  knowledge 
based engineering appears, at first glance, to be a tauto-
logy – usually every person (and especially every engin-
eer)  involved  in  a  product  development  process  will 
define her engineering tasks as based on specific know-
ledge. 

Hence for our purposes, knowledge based engineering 
(KBE) will  be  defined in  close  conjunction  with  KBE 
systems. Within a KBE system, design knowledge is rep-
resented in a formal manner and enables the system to 
automate specific design tasks mostly unique to the com-
pany’s product development experience. 

Each KBE system provides on the one hand an inter-
face to capture the knowledge in terms of logical rules, 
algorithms, or constraints, and on the other hand an out-
put module to trigger adjacent CAx systems or/and visu-
alise results [13]. 

In  this  sense,  knowledge  based  engineering  can  be 
seen as the process of gathering, managing, and using en-
gineering knowledge to automate the design process by 
usage of a KBE system [14]. In this context, the meaning 
of automate even covers analysis tasks in terms of valida-
tion or  quality checking, since the interpretation of the 
output of CAx tools, such as CATIA’s DMU Space Ana-
lysis, requires engineering knowledge about the mechan-
ical parts involved. 

An emerging trend in the field of knowledge based en-
gineering is to set up a background ontology, link one or 
more of the available CAx engineering tools to it,  and 
thus provide context specific engineering knowledge for 
different tasks covered by separate CAx tools [11]. Other 
research addresses the idea of using the ontology in order 
to represent a generative model and thus enabling design 
automation [8]. 

Surprisingly, one of the most noticeable advantages of 
such an approach seems to be not yet fully exhausted by 
the solutions developed so far: the ability of using formal 
logic and automated reasoning in order to generate fur-
ther  findings  and  reports  for  control  and  steering  pur-
poses. 

A further advantage of the usage of ontologies appears 
in the context of the upcoming requirement for PLM sys-
tems to capture and manage the technical decisions made 

by product developers in the initial development phase. Such a 
decision-tracking is of increasing importance in the context of 
product warranties on the one hand, and as a valuable input for 
follow-up product developments on the other hand. 

The standard approach to retaining product design related 
knowledge and experience is to produce and store documents 
such as lessons-learned or best-practices. 

Consequently,  the  respective  expert  defines  the  termino-
logy,  verbalisation,  and  level  of  detail  of  the  represented 
knowledge by herself.  In the long run, this way of archival 
storage  implies  a  continuous  decrease  of  comprehensibility, 
since terminology and wording may change over  time.  The 
transfer of knowledge into an ontology expressed in a descrip-
tion logic with a formally grounded semantics avoids such a 
semantic dilution and thus ensures that the codified knowledge 
is  sustainable,  in  particular  remains  readable,  maintainable, 
and convertible over time. 

2.3 The challenge of knowledge acquisition

The requirement of capturing domain specific knowledge can 
be seen as one of the main challenges in the field of Know-
ledge Based Engineering [15].

Even if several methodologies (e.g. MOKA [16]) have been 
elaborated to guide knowledge acquisition activities and thus 
avoid omitting essential knowledge [8], they usually require a 
time-consuming  collection  and  analysis  of  (often  implicit) 
knowledge about the product and its design process, respect-
ively [17].   Thus, most approaches to designing KBE-Tools 
address especially repetitive engineering tasks [18,10], since 
the potential  to reduce time and cost  by means of such ap-
proaches has to be balanced against the effort needed to gather 
and formalize the required knowledge in a scheme (e.g. an on-
tology) [18]. 

Contemporary CAD systems provide several enhancements 
to support product data management features, and thus very 
often constitute the main link to a global PLM-system within 
an enterprise IT infrastructure. These modules allow not only 
storing and managing a broad range of product-related non-
geometrical data, but give the user a visual and intuitive access 
via the graphical representation of a product and its product 
structure,  respectively  [19].  Thus,  capturing  PDM-data  via 
context  specific  dialogs  within  the  respective  CAD-systems 
has become common practice. 

Based upon these coupling concepts, the use of a CAD user 
interface for a KBE system is an obvious and already imple-
mented idea. In fact, many of the leading CAD applications 
provide add-on modules for KBE related features.  The know-
ledge advisor,  knowledge expert and product knowledge tem-
plate modules of the CAD application CATIA can serve as ex-
amples.  Based on a parameterized CAD model, they provide 
functions like formulas (to create dependencies between para-
meters),  rules  (such  as  If… then...)  and  power  copys  (user 
defined features, allowing to partly reuse design procedures) 
[20]. Nevertheless, integrated methods for an easy knowledge 
acquisition remain a key hurdle for the application of these 
functions [8]. 



2.3 PLM and standards - an underestimated  
source for knowledge acquisition

For PLM systems,  product structures have become one 
of  the  most  important  backbones  to  which  the  various 
types of metadata are attached. Within PLM applications, 
the requirements of taxonomical  naming and  numbering 
lead to sophisticated algorithms that cope with the com-
plexity of providing a distinct, non-redundant namespace 
[21]. In parallel to such internal representation logic, sev-
eral formal standards are used in the area of PLM in order 
to represent the product and its product structure appro-
priately.

In the area of mechanical engineering, standardisation 
is usually not only a clustered set of generic product in-
formation,  or  a  taxonomy of  a  specific  domain,  but  it 
comprises a high amount of codified knowledge, in terms 
of,  e.g.,  calculation  rules,  engineering  constraints, 
schemes  for data exchange etc. The use of standards to 
cover such codified knowledge is based on a long history 
in the field of mechanical engineering, ranging from the 
VDI 2230 guideline that treats the systematic calculation 
of high duty bolted joints [22] up to the ISO 10303 stand-
ard for the computer-interpretable representation and ex-
change  of  product  manufacturing  information.  Several 
specific KBE solutions cover the idea of using such codi-
fied knowledge for a specific design problem - a good ex-
ample  is  given  by  [23],  which  implements  the  Italian 
VSR/PED rules for the verification of pressure vessels.

By  a  combination  of  both  types  of  knowledge  – 
product structures and namespaces provided by PLM sys-
tems, and existing domain specific standards – we believe 
to  have  identified  a  key  stepping  stone  to  harnessing 
knowledge  acquisition  in  a  principled  and  sustainable 
way.

As an initial proof of concept for the benefits that can 
be achieved using this type of combination, we describe 
below  a  semantic  analysis  of  clashes  and  overlaps  in 
CAD files. Our prototype of an analysis tool (called On-
toDMU) is able to check semantically if an overlapping is 
a design failure or an intended feature, at least in those 
cases where standard parts are involved.  

Specifically,  we exploit  that when a standard part is 
used in a product, the respective standardisation identifier 
remains available, usually as a section of the item name 
in the CAD model. For example in CATIA V5, when a 
nut is chosen from the standard part catalogue of the ap-
plication,  an  expression  such  as  ISO 4034 NUT  M14 
STEEL GRADE C HEXAGON HEAD NONPREFERRED 
will  be provided as  a default  part  name in the product 
structure. This enables us to connect the relevant standard 
(in  this  case,  ISO 4034)  with  a  background  ontology, 
which in turn helps us interpret the output of the analysis 
tool. 

3 Practical benefits drafted in a Sample Scenario 

Validating the  correctness  (the  so-called quality)  of  a  CAD 
model by analysing its compliance to corresponding engineer-
ing knowledge can be seen as a typical job for a designer. In 
this context, contemporary CAD files provide her with several 
support  modules,  e.g.  for  validating  a  mock-up  against  as-
sembly requests, or checking its conformance with the PLM 
namespaces.  One  of  those  tasks  is  an  investigation  of  the 
CAD-model  in  order  to  distinguish  between  intended  part 
overlaps and overlaps to be attributed to design failures. 

Looking  speci cally  at  the  case  of  overlaps,  it  is  by  nofi  
means the case that every overlap is actually a design error — 
e.g. overlaps are often intentional in the case of bolts, whose 
threads are typically not modelled in the CAD software,  so 
that a bolt will overlap with its nut. Similarly, deformations of 
gaskets (e.g. O-rings) are typically ignored (both for computa-
tional reasons and because one wishes to have the undeformed 
shape of the gasket in the design, e.g. for purposes of exploded 
views) so that they overlap with adjacent parts, even if sizes 
are  appropriate.  In  fact,  overlaps  are  actually  mandatory  in 
both examples, but do of course represent design errors in oth-
er cases, some of them subtly different – e.g. a bolt should not 
overlap with the parts it connects unless the latter also have 
threads. 

Picking up the above mentioned gasket example  Figure 1 
shows  a  half  section  view  of  the  3D-CAD-model  of  two 

anges screwed together (e.g. used in context of pipe coupfl -
ling). 

The small circle represents a gasket. The parts in the back-
ground represent a bolt and a nut - screwed together. By using 
a half-section view of the assembled parts, a mechanical de-
signer can check the correctness of the design and the CAD-
model  respectively  (position,  dimensions,  overlapping  etc). 
Thus, not only the gasket’s position in the ange notch befl -
comes visible, but also its intersection with the ange.fl

 

Fig. 1 Half-section view of the assembled ange fl

Being aware that a gasket normally consists of deformable 
Flouride  rubber  (FPM)  the  mechanical  designer  can  easily 
identify the correctness of the overlap and the assembly as a 
whole, since no overlap would lead to a leaky assembly. Un-
fortunately, CAD-models can become confusing for complex 
products. To check overlaps of a gas-tanker assembly-model, 
for instance, leads to thousands of gasket intersections. 

Using an interference detection module such as CATIA’s 
DMU Space  Analysis  will  provide  the mechanical  designer 



with a complete list of all overlaps, but the tool cannot 
distinguish between required overlaps and unintentional 
clashes. This is caused by the fact that no inferences are 
possible from a geometrical representation of a part to the 
part itself (for example: In a CAD application there is ab-
solutely no difference between a geometrical model of a 
ring and a geometrical model of a gasket). 

Fig.2 Space Analysis report - screenshot 

Figure 2 is a screenshot of the DMU Space Analysis 
report belonging to the CAD-model shown in Figure 1. 
Even if it  is a quite simple product and only identified 
overlappings are displayed, the list  gets quite  long and 
leads to time-consuming manual work. 

By using the OntoDMU tool for the ontological ana-
lysis of the output of the DMU analyser as described in 
the present work, however, the designer can analyze this 
list of overlaps semantically and identify those overlaps 
that are not allowed. 

Fig. 3 architecture of the initial prototype 

As shown in Figure 3, the OntoDMU prototype trans-
forms the output of the DMU Space Analysis module into 
a set  of  individuals set  against  a background ontology, 
thus making it available for semantic analys using state-
of-the-art automated reasoning. Next, we proceed to de-
scribe details of this method.

4 Approach 

To capture the semantics of standards and PLM repositor-
ies, we propose to make use of formal ontologies expressed in 
a formal ontology language at the level of so-called descrip-
tion  logics;  specifically,  we  use  the  standard  ontology  lan-
guage OWL-DL (Web Ontology Language),  a W3C recom-
mendation [24]. Description logics are tuned to offer an optim-
al degree of expressive power while retaining efficient decid-
ability,  and  indeed  come  with  high-performance  optimized 
reasoners such as Pellet [25]. For purposes of describing en-
gineering designs, this means that our background ontology is 
able to describe simple relationships between parts and com-
ponents, such as existence, parthood, cardinality etc., but not 
the geometry or topology of a model. However, it turns out 
that a surprisingly large amount of knowledge can be captured 
in such a simple framework, and exploited for the automated 
consistency checking of CAD models.  In t his process, it  is 
precisely the simplicity of the language that allows us to use 
efficient reasoning and thus achieve a practically feasible se-
mantic framework, which in the end even does offer support 
for geometry-related issues, such as overlapping, on a suitable 
level of abstraction. We emphasize that a representation in a 
formal logic carries a number of advantages over a hard-wired 
representation in software, in particular

• increased clarity of the representation

• independence of accidental features of the software envir-
onment

• reduced likelihood of errors, due to simplicity of expression 
and absence of side-effects

• improved interoperability.

It turns out that in order to reduce the complexity of model-
ling and keep an optimal level of modularity, it  is useful to 
maintain two types of ontologies:  An ambient ontology that 
covers abstract engineering knowledge, such as that rubber is 
deformable (and therefore rubber parts may overlap with adja-
cent parts since the deformation is usually not explicitly mod-
elled) and, embedded therein, an ontology of standard (or en-
terprise standard) parts which represents and classifies a part 
catalogue against the ambient ontology, but typically does not 
otherwise encode any background knowledge. One benefit of 
this approach is that both parts of the ontology become much 
easier to maintain, and in particular the ontology of standard 
parts can mostly be generated automatically from part  data-
bases in the CAD system.

4.1 Using a background ontology 

As discussed above,  an ontology expressed  in  a  formal  de-
scription logic allows one to formally represent and store do-
main specific knowledge. It enables in particular a perspective 
where we regard a CAD model as a collection of instances of 
generic objects that we can view against the backdrop of the 



ontology.  The  ontology  then  serves  as  a  template  for 
maintaining  consistency  during  the  development  of  a 
product or the creation of variants. Moreover, the design-
er can further develop the ontology in order to make do-
main knowledge assumptions explicit and facilitate reuse 
of his designs. 

We briefly recall some of the basic concepts of OWL 
to facilitate the understanding of the examples given fur-
ther below. An OWL class represents a collection of ob-
jects; e.g. the class ‘bolt’ stands for the collection of all 
individual bolts. Similarly, a  property represents a rela-
tionship between objects, such as parthood. From the ba-
sic classes, one forms concepts by applying Boolean op-
erators as known from propositional logic (conjunction, 
disjunction,  negation)  and  so-called  restrictions which 
govern the way in which an object is expected to be re-
lated to other objects. E.g. an existential restriction on the 
property ‘hasFeature’, qualified by the class ‘thread’, des-
ignates all objects that have some feature that is a thread. 
Similarly,  a  universal  restriction  on  the  property 
‘hasPart’, qualified by the class ‘standardPart’, designates 
objects composed only of standard parts.

An ontological  knowledge base then consists of two 
parts offering different  perspectives on the domain: The 
structural  information  of  a  domain  is  characterized 
through its TBox (the terminology). The TBox consists of 
a set of inclusions between concepts, and as such allows 
expressing general knowledge such as ‘every bolt has a 
thread’, or ‘every car has four wheels and a colour’. Con-
trastingly, the ABox (the assertions) contains knowledge 
about individuals, say a particular car or a given occur-
rence of  a  standard part  in a  CAD model.  It  can state 
either that a given named individual (say, ‘myCar’) be-
longs to a given concept (e.g. that myCar is, in fact, a car) 
or that  two individuals are related by a given property 
(e.g. that myCar is owned by me). 

By default, an ontology has no restriction for naming. 
For this reason, the same element can have different la-
bels in two or more ontologies  (precisely because OWL 
does not implement the so-called unique-name assump-
tion), but would not be detected as the same in case of 
merging the ontologies. Therefore, it is desirable that the 
label of each element is kept unique. If an element has a 
unique  name in the real  world,  a  designer  can achieve 
such a unique labelling by using the same name within 
the ontology, following an appropriate transformation of 
name spaces.  Additionally,  an encapsulation into name 
spaces can be used to ensure unique labelling of items. 

As already indicated, using an ontology as part of a 
KBE solution can improve the engineering processes, but 
at the same time, the modelling of an ontology can be-
come very complex, especially if a generic approach is 
envisaged. 

In  the  scenario  described  above,  we  focus  on  the 
standard part catalogue of CATIA V5 R16. This version 
comprises about 8838 standard parts, and each part has 
its specific properties and restrictions, which have to be 
implemented in the ontology (Figure 4). For this reason, 
one of the main challenges is to reduce the effort and the 
complexity  of  modelling.  In  order  to  avoid  such  time 

consuming manual work, we have foreseen a special function 
in OntoDMU to import standard parts into concepts of the on-
tology (refer to Section 4.4). 

Fig. 4 Detail of the background ontology – screenshot 

The overall approach to determining the consistency of a 
CAD model with respect to the ontology is, then, as follows. 
The background ontology together with the ontology of stand-
ard  parts  exported  from  CATIA  V5  formally  constitutes  a 
TBox. A second function of our OntoDMU tool is able to con-
vert the output of CAD tools such as the DMU analyser into 
an OWL ABox over this TBox; then, the consistency check 
amounts to checking the consistency of the combined know-
ledge base. As discussed below, the technical framework that 
integrates all these tasks is the Bremen heterogeneous tool set 
Hets. 

4.2 Ontology languages

We digress briefly to discuss our choice of ontology language, 
limiting ourselves to  the three main sublanguages of  OWL: 
OWL Lite, OWL DL and OWL Full [24].   

OWL  Full  features  the  highest  expressivity;  however,  it 
does not currently have efficient reasoning support, and the lo-
gical complexity of the language makes it unlikely that such 
support will be developed in the foreseeable future. Since our 
approach to consistency checking of CAD models relies cru-
cially on fully automated reasoning, OWL Full is, thus, not a 
suitable  option.  As mentioned above,  efficient  reasoners  do 
exist for the sublanguages OWL Lite and OWL DL [26]. The 
complexity of OWL Lite is markedly below that of OWL, so 
that more efficient reasoning is possible for ontologies limiting 
themselves to the expressive means of OWL Lite (and effi-
ciency remains an issue in our framework, as both the output 
of the DMU analyser and the imported ontology of standard 



parts tend to become large rather quickly). However, the 
expressive power of OWL Lite turns out to be too limited 
for our purposes; in particular, OWL Lite excludes con-
junction and universal restriction, which we need to say 
things  like  ‘bolts  have  threads  and intersect  only  with 
nuts’ or ‘all member of the concept ISO 4034 NUT M14 
STEEL have an identical a diameter of 14mm. 

Technically, OWL-DL ontologies can be written and 
stored in several ASCII-based formats. These formats can 
be translated into each other. Some reasoners, such Pellet, 
have  corresponding  translation  functions.  For  using 
OWL-DL within Hets, it is necessary to generate the on-
tology in OWL Manchester Syntax [27]. Such a file can 
be  opened  with  all  common  OWL  readers,  such  as 
Protégé in version 4.  

4.3 The Bremen heterogeneous tool set

We embed our background ontology as well as our inter-
face tool into the Bremen heterogeneous tool set (Hets) 
[28] which allows for the integrated use of a wide variety 
of logics and associated analysis and reasoning tools in a 
common framework,  accessed via a  graphical  interface 
and connected by a network of logic translations. Relev-
ant  for  purposes  of  the  present  work  are  the  support 
offered in Hets for ontology languages including in par-
ticular OWL-DL Manchester Syntax and, as a more ex-
pressive  correspondence  language,  first  order  logic,  as 
well as the facilities provided in the Hets implementation 
framework for the easy integration of further logics. 

Fig. 5 Hets graphical interface (screenshot) 

The latter has allowed us to cast the output format of 
the DMU Analyzer as a very simple-minded logic, thus 
enabling integration of the OWL translation tool into the 
Hets framework and thereby, e.g., direct reasoning sup-
port for the combination of the tool output and the OWL 
background ontology  in  Pellet  [25].  Figure  5  shows a 
screenshot of the Hets graphical interface and an inter-
face window for a call to the Pellet reasoner.

4.4 Semi-automatic generation of Ontologies

The tool OntoDMU generates the ABox automatically and the 
background ontology semi-automatically. In the following, we 
describe these generation processes in more detail.

The background ontology should define all concepts a  user 
needs for his own modelling purposes. In our concept, this in-
cludes standard parts (taken from the standard part catalogue 
of CATIA V5) as well as non-standard parts. Since non-stand-
ard parts are user or enterprise specific, the idea of importing 
non-standard parts is a priori a non-trivial proposition. We in-
tend to implement an interface in order to transfer the product-
structures  and  namespaces  from  PDM/PLM  into  the  back-
ground ontology.

The standard parts, on the other hand, are stored in a separ-
ate catalogue-folder  managed by CATIA.  Hence OntoDMU 
can access the respective information without starting CATIA, 
and every change in the catalogue folder can be easily updated 
in  the ontology.  OntoDMU extracts all  relevant information 
from the files automatically and transfers it into the ontology. 
A  part  from  the  standard  catalogue  is  transformed  into  a 
concept,  and its  properties  are inserted as  a  combination of 
data and object properties.

For example, the class of nuts ISO 4034 NUT M14 STEEL 
GRADE C  HEXAGON HEAD NONPREFERRED  is  such  a 
catalogue part. Its name directly contains information about its 
properties. In this example, the material and the diameter of 
the nut can be read off from the name, and inserted as explicit 
properties  of  the item. Further  information  gained from the 
part  name is the relevant standard (in this case,  ISO 4034), 
which induces further  properties by relations with the back-
ground ontology.  In  our  case  the  respective  information  is: 
every ISO 4034 part is a nut and as such has an inner thread. 
In detail, this information arises as follows: we record in the 
ontology of standard parts that every ISO 4043 part is a nut, 
and we have captured, in the background ontology, the piece 
of general engineering knowledge stating that every nut has an 
inner thread.

As  examples  of  ‘non-standard’  parts  (i.e.  not  from  the 
CATIA V5 catalogue), to be though of as enterprise standard, 
the ontology of our scenario includes classes  Flange,  Gasket 
and FlangeCover, which are currently maintained manually. 

General knowledge about parts as such is then integrated 
with  knowledge relating  to  the  topic  covered  by  our  target 
geometric analysis tool, overlaps or, in the terminology used 
in the tool output,  interferences, between parts. As discussed 
later, interferences may either be intentional or indicate design 
failures. The knowledge used in classifying interferences ac-
cordingly is modelled using properties of a dedicated class ‘in-
terference’; details are given further below. 

4.5 Structural information in the background 
ontology

The standard parts share a common interface of object proper-
ties.  At present,  OntoDMU can identify  type,  material,  dia-



meter and  length as object properties, and extract these 
properties from standard part names. 

The above-mentioned class  interference represents an 
overlap relation between parts,  possibly annotated with 
further data generated by the geometric analysis tool. The 
analysis tool generates instances of this class in an XML 
representation format, which the OntoDMU tool automat-
ically converts into an ABox describing a collection of 
individuals inhabiting the class  Interference,  with addi-
tional  data  describing  the  participating  parts  and  their 
classification according to the part ontology.  

The  classification  of  interferences  as  intended  or 
faulty is now cast  as a consistency check of the ABox 
thus  generated  with  the  background  ontology,  which 
must hence contain a formalization of rules stating what 
types of overlaps between parts are allowed, forbidden, 
or, in fact, mandatory. To see why these cases even arise, 
consider the following examples:

• Two bolts should never overlap; such and overlap, if 
detected, will always be classified as a design failure.

• A gasket, being deformable, may overlap with other 
parts. These, however, should be of a suitable type – 
e.g. a gasket should not overlap with a bolt, but may 
overlap with a flange

• Bolts in fact must always overlap with some other part 
(unless threads are explicitly modelled), namely with a 
part  (typically  a  nut) having an inner  thread,  whose 
type  and  diameter  match  that  of  the  bolt.  These, 
however, are the only overlaps allowed for bolts.

It  is  an  important  design  decision  to  which  classes 
these pieces of knowledge should be attached in the back-
ground ontology. To balance the conflicting design goals 
of modularity, human readability, and efficiency of reas-
oning, we adopt the following approach. We attach gen-
eral  pieces  of  knowledge such as  ‘bolts  should always 
(and only) overlap with parts that have inner threads’ to 
the class Interference as a list of alternative exceptions. 

Contrastingly, more specific information, such as that 
the part that a bolt overlaps with should have matching 
thread type and diameter, is attached to the relevant class 
of bolts, or more precisely to the relevant type of thread. 
E.g. the class representing the thread type M12 states that 
any part having an outer thread of this type may overlap 
only with parts having an inner thread of type M12. 

Unfortunately,  even  for  small  part  ontologies  this 
leads to long and hard-to-parse lists of restrictions (Fig-
ure 6); we thus to some degree sacrifice human readabil-
ity in favour of ease of machine processing: an alternative 
approach is to attach restrictions entirely to part classes 
instead of to the class  interference.  This leads to better 
modularity  and is  easier to read for  humans. However, 
this requires an increased use of so-called inverse proper-
ties which traverse object properties  backwards (in this 
case, from a part participating in a particular interference 
to the interference itself), which leads to increased pro-
cessing time. In our experiments using Pellet, this meant 

an increase from about 1min 40s in the analysis of a particular 
CAD model to more than 15min.  

 

Fig. 6 Additional restrictions on the concept interference. 

Currently,  restrictions  relating  standard  and  non-standard 
parts in the ontology are created manually. Our envisaged ap-
proach foresees to extract those relations from a PLM reposit-
ory.  A precondition for  this  extraction is  to  have  annotated 
product structure items in the PLM/PDM system. Those an-
notations  include a unique reference between a part  and its 
concept.  

5 A remark on using default logic

As discussed above, the interference concept captures most 
of the explicit allowed interferences. The effort for such an ex-
plicit  interference modelling increases quadratically with the 
number of implemented concepts. An interesting point to be 
made is  that  for  purposes  of  the  specification  of  the  back-
ground ontology, it would be useful to have a language with 
defaults available; see Chapter 6 of [29] for a brief explanation 
of defaults and an overview of existing approaches to adding 
them to  ontology  languages.  Defaults  are  not  currently  in-
cluded as a feature in OWL, which we continue to use non-
etheless for sake of its well-developed reasoning support. We 
outline briefly how defaults could be employed to increase in 
particular  the degree of modularity of the background onto-
logy.

Roughly speaking, default implications state that given cer-
tain conditions, certain conclusions are expected to hold nor-
mally, but may be overridden when more specific information 
about the given situation becomes available. The standard ex-
ample is that birds  normally fly, thus leading us to conclude 
provisionally  (defeasibly)  that  a  particular  bird  flies  unless 
more specific information about it becomes available, such as 
that the given bird is a penguin. In the concrete setting of spe-
cifying legal  and illegal  overlaps of  parts in a CAD object, 
having such a mechanism available would simplify the overall 
structure of the ontology rather strongly: To begin, one would 
be able to  just  say that  generally,  parts should not overlap. 



This general proviso would then be overridden by excep-
tions,  such as  that  gaskets typically  overlap with other 
specific parts having dedicated channels for the gasket; 
the latter could, again, be overridden in particular cases 
where  the  channel  might  be  absent.  This  approach  is 
modular because one can extend the range of available 
parts without having to adapt the general principles (e.g. 
we  never  have  to  adapt  our  initial  default  stating  that 
parts do not overlap, even though exceptions to this keep 
accumulating).

Consequently, an OWL modelling of the situation has 
to circumvent this lack of expressivity rather visibly. E.g. 
all exceptions to the general rule that parts do not overlap 
are currently explicitly attached to the concept of an in-
terference as shown above.  

6 Conclusion 

The fact that most current KBE solutions address only 
individual design problems and do not offer enterprise-
level solutions largely goes back to problems of know-
ledge  acquisition.  Even  though  this  level  is  typically 
covered by PLM systems and hence established informa-
tion repositories do exist, there is to date no automated 
way  for  transforming  this  information  into  codified 
knowledge as it is typically used in knowledge based en-
gineering rules.  

To contribute to realising the vision of a sustainable 
capitalisation  of  the  engineering  information  stored  in 
PLM repositories as intellectual property assets, we have 
presented  an approach  to  combining product  structures 
and  namespaces  provided  by PLM-systems  on  the  one 
hand  and  significant  domain  specific  standards  on  the 
other hand in order to establish a background ontology 
and thus create a powerful semantic representation of co-
dified engineering knowledge. 

Even though the current  implementation of  our  On-
toDMU tool,  which translates  the output  of  a  standard 
geometric analysis tool into a knowledge representation 
format that allows for a connection to a background onto-
logy  of  codified  engineering  knowledge,  is  still  at  the 
prototype stage, benefits to be gained by its usage already 
become clearly visible. The productive interplay between 
a practical design problem, which reappears in different 
design contexts, and the background ontology created as 
part of the framework, leads to a clear reduction of manu-
al intervention in the validation of CAD objects. 

The approach of having an ambient ontology of gener-
al engineering knowledge in parallel with an ontology of 
standard  parts  which  is  automatically  generated  from 
CAD part catalogues and PLM systems is promising and 
will be further elaborated. As a next step, an annotated 
product  structure  will  be  used  in  conjunction  with  the 
background ontology, thus allowing for semi-automatic 
generation  and  maintenance  of  ontologies  also  of  non-
standard parts.  

At the same time, the work presented here constitutes 
an important prerequisite for ontological  support  in the 

actual core PLM processes: the semantically correct integra-
tion of data fed back to the manufacturer from the product dur-
ing  its  life  cycle  requires  a  semanticized  representation  of 
design objects  as  facilitated by our  ontological  approach to 
CAD. Future steps in our research program include the imple-
mentation of a semantical underpinning of sensor data and oth-
er  Middle-of-Life data to  obtain intelligent decision support 
for the full product life cycle, thus enabling optimal feedback 
of  PLM data  into  the  design  and  development  process.  As 
demonstrated in the CAD case study presented here, we expect 
substantial added value from the use of fully automated onto-
logical reasoning in modern DL engines (as opposed to a clas-
sical programming approach as pursued, e.g. in the ICAD sys-
tem [30]) with respect to decision quality as well as extensibil-
ity and adaptability; here, the use of a standard ontology lan-
guage such as OWL carries the promise of a high degree of 
both  interoperability  and  sustainability.  The  approach  via  a 
core set of ontologies managed independently of the involved 
software tools both reduces the overall maintenance effort and 
enables an increased degree of knowledge reuse, with know-
ledge being made available to the entire range of CAx systems 
involved in the product life cycle.
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