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Abstract

We propose a new family of probabilistic description logics
(DLs) that, in contrast to most existing approaches, are de-
rived in a principled way from Halpern’s probabilistic first-
order logic. The resulting probabilistic DLs have a two-
dimensional semantics similar to certain popular combina-
tions of DLs with temporal logic and are well-suited for cap-
turing subjective probabilities. Our main contribution is a de-
tailed study of the complexity of reasoning in the new family
of probabilistic DLs, showing that it ranges from PTIME for
weak variants based on the lightweight DL EL to undecidable
for some expressive variants based on the DL ALC.

Motivation
Description logics (DLs) are a popular family of knowledge
representation formalisms that underlie ontology languages
such as the W3C standard OWL. Since traditional DLs are
essentially fragments of first-order logic (FOL), they al-
low only the representation of crisp and definite knowledge,
whereas no built-in means are provided to represent uncer-
tainty of any kind. This shortcoming in expressive power has
often been criticized as it impedes an adequate modelling of
the relevant knowledge in many application areas.

We illustrate the problem in terms of bio-medical applica-
tions, where ontologies are being used with particular suc-
cess. Almost every bio-medical ontology contains uncer-
tain concepts of some sort, although typically modelled in
an inappropriate way. Take for example the well-known
and widely used medical ontology SNOMED CT (Price
and Spackman 2000), which comprises a variety of con-
cepts such as ‘Probable tubo-ovarian abscess’, ‘Natural
death with probable cause suspected’, ‘Probable diagnosis’,
‘Probably present’, ‘Basal cell tumour, uncertain whether
benign or malignant’, etc. Similar concepts can be found in
other bio-medical ontologies such as GALEN. Since tradi-
tional DLs are used, the aspect of uncertainty in these con-
cepts is not reflected in their modelling. For example, noth-
ing is said in SNOMED CT about ‘Natural death with prob-
able cause suspected’, except that it is a subclass of ‘Natural
death’.

The desire to represent uncertainty in this and other ap-
plication domains in a proper way has led to various pro-
posals for probabilistic DLs, see (Lukasiewicz and Straccia
2008) for a recent survey. These logics differ considerably

regarding the general way in which probabilities are used,
in the syntax, in the chosen semantics, and in the intended
application. In the present work, we follow a principled
approach to defining probabilistic DLs by viewing them as
fragments of probabilistic FOL (Halpern 1990) in the same
way as traditional DLs are fragments of traditional FOL. As
discussed in more detail below, the resulting family of prob-
abilistic DLs has the modelling of subjective probabilities
as a clear-cut application. We note that a FOL-based ap-
proach to probabilistic DLs has already been advocated by
Sebastiani (1994), but was never developed in serious detail.
To some extent, it can be seen as complementary to the ap-
proach taken by Lukasiewicz (2008), who defines a family
of probabilistic DLs by viewing them as extensions of prob-
abilistic propositional logics.

In the approach to probabilistic FOL suggested by
Halpern (1990), a distinction is made between statistical
probabilities as formalized by ‘Type 1’ probabilistic FOL
and subjective probabilities as formalized by ‘Type 2’ prob-
abilistic FOL. The statistical view is concerned with prob-
ability distributions on the domain, and the interest is typi-
cally in conditional probabilities such as P (LymeDisease |
PositiveSerology) ≥ 0.8, expressing that at least 80% of
all patients with positive serological blood tests actually do
have Lyme disease. In this context, assertions of facts on the
‘instance level’ necessarily remain crisp: a particular patient
either has or does not have Lyme disease (irrespective of the
fact that our knowledge of this may be uncertain), but will
never ‘have Lyme disease with a probability 0 < p < 1’.
Contrastingly, the subjective view regards probabilities as
degrees of belief. It is thus concerned with probability dis-
tributions on a set of possible worlds, each one associated
with a standard FOL interpretation that describes a possible
view of the world. In this context, probabilistic facts are un-
problematic: the statement that patient X has Lyme disease
with probability p holds if p is the probability assigned to
the set of all worlds in which patient X has Lyme disease.
Indeed, uncertain facts of this kind easily arise in situations
where diagnosing techniques are not 100% reliable or med-
ical data is obtained from untrusted data sources.

Much of the existing work on probabilistic DLs either
does not carefully distinguish between the two kinds of
probabilities or is primarily based on the statistical view,
see e.g. (Heinsohn 1994; Jaeger 1994; Koller, Levy, and



Pfeffer 1997; Yelland 2000; Ding, Peng, and Pan 2006;
Jaeger 2006). Here, we concentrate on the subjective view,
which in particular enables us to capture the medical ex-
amples given above. We are thus concerned with proba-
bilistic DLs that are fragments of Halpern’s Type 2 prob-
abilistic FOL, from which we inherit a standard and easy-
to-comprehend semantics, resembling the two-dimensional
semantics of many popular temporal DLs (Lutz, Wolter,
and Zakharyaschev 2008; Gabbay et al. 2003). In partic-
ular, our semantics is not entangled with the syntax, as is
the case in probabilistic DLs such as (Lukasiewicz 2008;
Jaeger 1994).

Our main contribution is an analysis of the computa-
tional complexity of knowledge base consistency and in-
stance checking in various members of the new family of
probabilistic DLs. In particular, the analysis aims to sepa-
rate features of our probabilistic DLs that make reasoning
difficult from those that do not. We start with a proba-
bilistic logic Prob-ALCc that is based on ALC and allows
the application of probabilities only to concepts, but not to
roles. This logic provides sufficient expressive power for
most applications; we are able to show that reasoning in it
is EXPTIME-complete, thus no more difficult than in non-
probabilistic ALC. We then prove that this good computa-
tional behaviour is retained even if we add explicit proba-
bilistic independence constraints and general linear inequal-
ities between probabilities of concepts.

Next, we extend Prob-ALCc with probabilistic roles and
show that the resulting DL Prob-ALC is computationally
more problematic: it is 2-EXPTIME-hard even when prob-
ability values are restricted to 0 and 1; when independence
constraints or linear inequalities are added, reasoning even
becomes undecidable. Finally, we study lightweight proba-
bilistic DLs based on the description logic EL. It turns out
that the PTIME complexity of non-probabilistic EL carries
over to Prob-EL only in the case where (i) probability val-
ues are restricted to 0 and 1; and (ii) probabilities are only
applied to concepts, but not to roles. If (i) is dropped, rea-
soning becomes EXPTIME-complete, and if (ii) is dropped,
it becomes PSPACE-hard.

Longer proofs are deferred to the appendix,
which is provided at http://www.informatik.uni-
bremen.de/∼clu/papers/.

The Prob-ALC Family of Probabilistic DLs
We introduce Prob-ALC, a probabilistic variant of the ba-
sic DL ALC. All other probabilistic DLs studied in this
paper are either fragments or extensions of Prob-ALC, in-
troduced later as needed. Fix countably infinite sets NC, NR,
and NI of concept names, role names, and individual names,
respectively. Prob-ALC concepts are formed according to
the syntax rule

C ::= A | ¬C | C uD | ∃r.C | P≥nC | ∃P∗nr.C

where A ranges over NC, C and D over concepts, r over
NR, ∗ over {>,≥}, and n over rational numbers from the
interval [0, 1]. We use the usual abbreviations C t D for
¬(¬C u ¬D), ∀r.C for ¬∃r.¬C, > for A u ¬A, and ⊥

for ¬>. Moreover, P<nC abbreviates ¬P≥nC, P≤nC ab-
breviates P≥1−n¬C, and P>nC abbreviates P<1−n¬C.

In DLs, TBoxes are used to formalize an ontology, and
ABoxes store instance data. In Prob-ALC, a TBox is simply
a finite set of concept inclusions (CIs) C v D. A (proba-
bilistic) ABox is an expression formed according to the rule

A ::= C(a) | r(a, b) | ¬A | A ∧ A′ | P≥nA
where C, r, and n are as above, a, b ∈ NI, and A,A′ range
over probabilistic ABoxes. Abbreviations P∗nA for ∗ ∈ {≤
, >,<} are defined as for concepts. A knowledge base is a
pair K = (T ,A) with T a TBox and A an ABox.

The semantics of standard DLs such as ALC is based on
interpretations I = (∆I , ·I), where ∆I is a non-empty set
called the domain and ·I is an interpretation function that
maps each A ∈ NC to a subset AI ⊆ ∆I , each r ∈ NR to
a subset rI ⊆ ∆I × ∆I , and each a ∈ NI to an element
aI ∈ ∆I . We refer to (Baader et al. 2003) for more de-
tails. To provide a semantics for Prob-ALC, we generalize
interpretations to probabilistic interpretations, in analogy to
Halpern’s generalization of FO structures to Type 2 proba-
bilistic FO structures (1990). A probabilistic interpretation
takes the form

I = (∆I ,W, (Iw)w∈W , µ)

where ∆I is the (non-empty) domain, W a non-empty set
of possible worlds, µ a discrete probability distribution on
W , and for each w ∈W , Iw is a classical DL interpretation
with domain ∆I such that aIw = aIw′ for all a ∈ NI and
w,w′ ∈ W . Since aIw does not depend on w, we write
only aI . We usually write CI,w for CIw , and likewise for
rI,w. For concept names A and role names d, we define the
probability
• pId (A) that d ∈ ∆I is an A as µ({w ∈W | d ∈ AI,w});

• pId,e(r) that d, e ∈ ∆I are related by r as µ({w ∈ W |
(d, e) ∈ rI,w}).

Next, we extend pId (A) to complex concepts C and define
the extension CI,w of complex concepts by mutual recur-
sion on C. The definition of pId (C) is exactly as in the base
case, with A replaced by C. The extension of complex con-
cepts is defined as follows:

(¬C)I,w = {d ∈ ∆I | d /∈ CI,w}
(C uD)I,w = {d ∈ ∆I | d ∈ CI,w and d ∈ DI,w}

(∃r.C)I,w = {d ∈ ∆I | ∃e ∈ CI,w : (d, e) ∈ rI,w}
(P≥nC)I,w = {d ∈ ∆I | pId (C) ≥ n}

(∃P∗nr.C)I,w = {d ∈ ∆I | ∃e ∈ CI,w : pId,e(r) ∗ n}

A probabilistic interpretation I satisfies a concept inclusion
C v D (written I |= C v D) if CI,w ⊆ DI,w for all
w ∈ W . It is a model of a TBox T if it satisfies all concept
inclusions in T .

To give a semantics to probabilistic ABoxes A, we again
use mutual recursion, defining the probability pI(A) that A
is true as

pI(A) = µ({w ∈W | I, w |= A})



and defining when a world w of I satisfies A (written
I, w |= A) as follows:

I, w |= C(a) iff aI ∈ CI,w
I, w |= r(a, b) iff (aI , bI) ∈ rI,w
I, w |= ¬A iff I, w 6|= A
I, w |= A ∧A′ iff I, w |= A ∧ I, w |= A′

I, w |= P≥n(A) iff pI(A) ≥ n

According to this semantics, the ABox assertions
(P∗nC)(a) and P∗n(C(a)) are equivalent, so that we
shall not distinguish them in the sequel. We say that I is
a model of A if I, w |= A for some w; it is a model of
a knowledge base K = (T ,A) if it is a model of both T
and A.

We note that the standard translation from ALC to FO, as
e.g. described in (Baader et al. 2003), can be extended to
a translation from Prob-ALC to Type 2 probabilistic FO in
a straightforward way. In particular, each concept P≥nC is
translated to the probabilistic FO formula w(C#(x)) ≥ n,
where C#(x) is the standard translation of C. The transla-
tion of TBoxes and ABoxes is just as simple.

We call a knowledge base K consistent if it has a model.
Deciding consistency of knowledge bases is the main rea-
soning problem studied in this paper. As usual, other stan-
dard reasoning problems can be reduced to it. For example,
an ABox A′ is called a consequence of a knowledge base
K = (T ,A) if every model of K is also a model of A′. We
can reduce ABox consequence to KB consistency sinceA′ is
a consequence ofK iff the KB (T ,A∧¬A′) is inconsistent.

Examples
We illustrate how Prob-ALC can be used to model medical
knowledge, revisiting the example classes from SNOMED
CT given in the introduction. E.g. ‘probable tubo-ovarian
abscess’ (Bodenreider, Smith, and Burgun 2004) can be
modelled in Prob-ALC as

P≥αTuboOvarianAbscess

which describes findings that are a tubo-ovarian abscess with
probability at least α. We note that this concept is not sub-
sumed by (i.e., does not imply) TuboOvarianAbscess, cor-
rectly capturing the fact that a probable tubo-ovarian abscess
need not actually be a tubo-ovarian abscess. If we focus on
patients instead of on findings, we can distinguish between

∃hasAbnormality.P≥αTuboOvarianAbscess,

which describes patients who have an abnormality (e.g. a
sonographic irregularity) that is a tubo-ovarian abscess with
probability at least α, and

P≥α∃hasDisease.TuboOvarianAbscess,

which describes patients who have a tubo-ovarian abscess
with probability at least α (and otherwise do not necessarily
have any abnormality). We emphasize that uncertain diag-
noses may very well have definite consequences. For exam-
ple, Lyme disease is typically treated with antibiotics even

when the diagnosis is not entirely certain, due to the com-
bination of the graveness of the disease and the difficulty of
diagnosing it with certainty:

P≥0.8∃hasDisease.LymeDisease v
∃recommendedTreatment.Antibiotic

To illustrate probabilistic roles, consider the SNOMED CT
concept ‘natural death with probable cause suspected’,
which expresses two things: on the one hand, there is at
least one cause that is considered probable, and on the other
hand, no cause is certain. Using probabilistic roles, we can
model this as the concept

NaturalDeath u ∃P≥αhasCause.> u ¬∃P≥βhasCause.>

expressing that there is some (unspecified) phenomenon
which is believed to be the cause of death with probabil-
ity at least α, but nothing is believed to be the cause of death
with probability more than β.

As noted in the introduction, uncertainty of instance data
is ubiquitous in medicine. Consider, e.g., a scenario where
John exhibits fatigue symptoms. Since fatigue is an unspe-
cific symptom of Lyme disease, we may model this by a
Prob-ALC ABox such as

Fatigue(s1) hasSymptom(John, s1) P≥0.1(C(s1)).

where we abbreviate C = ∃hasCause. LymeDisease. If,
however, John additionally exhibits unclear fever, which is
also unspecifically related to Lyme disease, one will be more
inclined to attribute also John’s fatigue to the suspected case
of Lyme disease, so that we update the ABox with assertions
such as

Fever(s2) hasSymptom(John, s2)
P≥0.3(C(s2)) P≥0.2(C(s1)) P≥0.15(C(s1) u (C(s2)).

Note that the ABox states that the attributions of the two
symptoms to Lyme disease are not independent: their joint
probability is higher than the product of the individual prob-
abilities.

Semantic Considerations
We discuss some relevant semantic aspects of Prob-ALC
and related logics and point out several interesting exten-
sions.

Linear inequalities as concepts. In contrast to Prob-
ALC, Type 2 probabilistic FO admits the formation of un-
restricted linear and polynomial inequalities over probabili-
ties. This inspires the extension Prob-ALC lineq (resp. Prob-
ALCpolyeq) of Prob-ALC, in which (i) concepts P≥nC are
replaced with linear (resp. polynomial) inequalities E over
expressions P (C), C a concept; and (ii) ABoxes P≥n(A)
are replaced with linear (resp. polynomial) inequalities E
over expressions P (A), A an ABox. The semantics of a
polynomial concept inequality E is that EI,w contains pre-
cisely those d ∈ ∆I such that the inequality E is satisfied
when each P (C) in it is replaced by pId (C). The semantics
of polynomial ABox inequalities is defined analogously.



To illustrate the use of linear inequalities, we make a brief
detour to qualitative reasoning about probabilities. There
are a number of different proposals, of which we consider
two. First, Gärdenfors (1975) considers a logic with a bi-
nary operator ‘more probable than’. This can be captured
in Prob-ALC lineq since ‘C is more probable than D’ cor-
responds to the linear concept inequality P (C) > P (D).
Second, Herzig (2003) proposes an operator ‘more proba-
bly than not’, i.e., the probability of an event is higher than
its complement. In Prob-ALC lineq, this can be expressed as
P (C) > P (¬C). We note that, in general, there is no con-
sensus as to whether subjective probabilities in medical on-
tologies should be represented quantitatively as in the pre-
vious section or qualitatively, e.g. by defining a ‘probable
tubo-ovarian abscess’ as

P (TuboOvarianAbscess) > c · P (¬TuboOvarianAbscess)

for some constant c (a generalization of Herzig’s approach).
We do believe that it depends on the concrete application
which modelling is more appropriate and note that Prob-
ALC lineq and Prob-ALCpolyeq support both views.

Polynomial inequalities are strictly more expressive than
linear ones. In particular, they capture several kinds of inde-
pendence constraints, as discussed in the following.

Independence constraints. The semantics of Prob-ALCc
has no built-in independence of probabilistic events. For ex-
ample, although one might expect that the ABox

P≥0.5NearSighted(John) ∧ P≥0.5Diabetic(John)

has the consequence P≥0.25(NearSighteduDiabetic)(John)
since the two involved events are intuitively independent, it
is not hard to see that the semantics of Prob-ALC does not
support such a deduction. Polynomial inequalities make it
possible to add independence constraints. For example, we
can obtain the desired consequence in the example above
when we add the TBox statement > v C, where C is the
polynomial concept inequality

P (NearSighteduDiabetic) = P (NearSighted)·P (Diabetic).

For the use in lower bounds and other negative results, we
single out a particular, rather simple form of independence
constaint as follows.

We use Prob-ALC indep to denote the extension of Prob-
ALC obtained by admitting independence constraints of the
form indep(C,D) in the TBox, with C,D concepts. An in-
terpretation I satisfies indep(C,D) if for all d ∈ ∆I , we
have pId (C) · pId (D) = pId (C uD).

Note that these independence constraints are strictly
weaker than polynomial inequalities. For example, the latter
also allow to express independence of more than two events.
It is of course also possible to consider stronger or different
forms of independence constraints that cannot even be ex-
pressed by polynomial concept inequalities such as the inde-
pendence of events pId (A) and pIe (A) that involve different
domain elements.

Conditional probabilities. In some probabilistic
DLs, conditional probabilities play a very central role
(Lukasiewicz 2008). We do not include them in Prob-ALC
because in the case of subjective probabilities, interesting
uses of conditional probabilities are inherently non-
monotonic, thus in conflict with design goal that Prob-ALC
should be a fragment of (purely monotonic) probabilistic
FO.

To give a concrete example, assume that we add ABox
expressions of the form P∗n(C|D)(a), ∗ ∈ {≥,≤} with
a standard semantics for conditional probabilities, i.e.,
P∗n(C|D)(a) is satisfied by an interpretation I whenever
pIaI (C uD) ∗ n · pIaI (D) (TBox statements for conditional
probabilities can be defined analogously). Now take the
ABox1

P≤0.01(HasLymeDisease|Patient)(John)
P≥0.8(HasLymeDisease|HasPositiveSerology)(John)

P≥1Patient(John)

expressing certainty about John being a patient and the be-
liefs that (i) when conditioning the beliefs on the (sole) fact
that John is a patient, then the probability that John has lyme
disease is ≤ 0.01; and (ii) when conditioning the beliefs
on the fact that John has positive serology, then the prob-
ability that John has lyme disease is ≥ 0.8. We get the
expected consequence that P≤0.01HasLymeDisease(John).
If we now learn that John has positive serology and add
HasPositiveSerology(John), one might intuitively expect
a revision of our belief to P≥0.08HasLymeDisease(John).
However, due to the monotonicity of our semantics, the only
effect is that the extended ABox is inconsistent.

Note that our choice of a monotonic FO semantics and
the non-inclusion of conditional probabilities is deliberate.
Indeed, we consider the clear, monotonic semantics of Prob-
ALC to be one of its main features and, following Halpern,
believe that it is important to first understand the monotonic
aspects of probability before mixing in non-monotonic ones,
which are typically much more controversial.

Worlds with probability zero. Note that probabilistic in-
terpretations may contain worlds with probability 0. These
worlds represent situations that are infinitely improbable,
but not per se impossible (the latter corresponds to a logical
inconsistency). The following lemma, which is exploited in
the algorithms developed later on, shows that worlds with
probability 0 play a rather special role in models of Prob-
ALC knowledge bases. The intuitive reason for this special
behaviour is that the probabilistic operators range only over
worlds with probability greater than 0.

Lemma 1. If a Prob-ALC indep knowledge baseK = (T ,A)
is consistent, then it has a model I with set of worldsW such
that for some w0 ∈W , we have

1. µ(w0) = 0 and I, w0 |= A;
2. µ(w) > 0 for all w ∈W \ {w0}.

1This paragraph slightly differs from the published version to
fix some inaccuracies.



Prob-ALC without Probabilistic Roles
We proceed to analyze the computational complexity of
Prob-ALC and its fragments. We start our journey by con-
sidering the rather well-behaved fragment Prob-ALCc that
is obtained from Prob-ALC by disallowing the construc-
tor ∃P∗nr.C. In other words, Prob-ALCc can speak only
about the probability of concepts, but not about that of roles.
We believe that Prob-ALCc provides sufficient probabilistic
expressive power for most applications, which is also illus-
trated by the examples above.

Our main result on Prob-ALCc is that KB consistency is
EXPTIME-complete, and thus no more complex than in non-
probabilistic ALC. To prove the upper bound, we develop a
procedure of the ‘type elimination’ kind that checks for the
existence of a decomposed representation of a model that we
call a quasimodel. To deal with probabilities, the procedure
involves solving systems of linear inequalities. Technically,
the reason for the computational well-behavedness is due to
the fact that, despite its multi-dimensional semantics, Prob-
ALCc can essentially be viewed as an independent combi-
nation of ALC and probabilistic propositional logic known
as the fusion (Wolter 1998; Schröder and Pattinson 2007).

Let K = (T ,A) be the knowledge base whose consis-
tency is to be decided. We assume w.l.o.g. that the TBox has
the form > v CT and use
• ccl(K) to denote the concept closure ofK, i.e., the closure

under subconcepts and single negation of {CT } ∪ {C |
C(a) ∈ A} and

• acl(K) to denote the ABox closure of K, i.e., the closure
under single negation and sub-ABoxes of A ∪ {C(a) |
C ∈ ccl(K) ∧ a ∈ Ind(A)}

An ABox type for K is a pair (t, f) where t ⊆ acl(K) de-
scribes a model of an ABox ‘locally’ at a possible world and
f ∈ {0, 1} is a flag that describes whether that world has
probability 0 or strictly greater than 0. For brevity, we often
identify (t, f) with t and then use ft to denote f . An ABox
type is required to satisfy the following conditions:

1. CT (a) ∈ t for all a ∈ Ind(A);
2. (¬C)(a) ∈ t iff C(a) /∈ t, for all (¬C)(a) ∈ acl(K);
3. (C uD)(a) ∈ t iff C(a), D(a) ∈ t, for all (C uD)(a) ∈

acl(K);
4. ¬A′ ∈ t iff A′ /∈ t, for all ¬A′ ∈ acl(K);
5. A′ ∧ A′′ ∈ t iff A′,A′′ ∈ t, for all A′ ∧ A′′ ∈ acl(K);
6. if C(b) ∈ t and r(a, b) ∈ t, then ∃r.C(a) ∈ t, for all
r(a, b),∃r.C(a) ∈ acl(T ).

Let AK denote the set of all ABox types for K. Given a
set T ⊆ AK and a type t0 ∈ T , we define a system of
linear inequalities E(t0, T ) over the variables (xt)(t,1)∈T .
Intuitively, a solution to this system tells us how to assign
ABox types and probabilities to worlds such that we obtain
a model that realizes the type t0 and is coherent regarding
the probabilistic operators. The inequalities in E(t0, T ) are
as follows:
1. get the probabilities right:
• for each P≥nA′ ∈ t0:

∑
(t,1)∈T |A′∈t xt ≥ n

• for each ¬P≥nA′ ∈ t0:
∑

(t,1)∈T |A′∈t xt < n

2. guarantee that all types with non-zero probability satisfy
the same probabilistic assertions, where P(t) denotes the
set of all expressions in t of the form P≥nA′:∑

(t,1)∈T |P(t)6=P(t0)

xt = 0

3. if ft0 = 1, then add the inequality xt0 > 0
4. probabilities sum up to one:

∑
(t,1)∈T xt = 1

Fix an individual name aε ∈ Ind(A) that we use to repre-
sent ‘anonymous’ (i.e., non-ABox) domain elements. An
element type for K is a pair (t, f) where t ⊆ {C(aε) | C ∈
ccl(K)} respects Conditions 1 to 3 in the definition of ABox
types and f ∈ {0, 1}. Since element types refer only to
the fixed individual name aε, we will often drop that name
altogether and simply view an element type as a subset of
ccl(K). As with ABox types, we will often confuse (t, f)
with t and write ft to identify f . Let TK denote the set of all
element types for K. The systems of inequalities E(t0, T )
for T ⊆ TK and t0 ∈ T are then defined for element types
in literally the same way as for ABox types.

A quasimodel for K is a pair Q = (T, T ′) with T ⊆ AK
and T ′ ⊆ TK. A type t ∈ T ∪T ′ is saturated inQ if for each
∃r.C(a) ∈ t, there exists a t′ ∈ T ′ with t′ ⊇ {C} ∪ {D |
∀r.D(a) ∈ t} and ft = ft′ . A type t ∈ T (resp. t ∈ T ′)
is coherent in Q if the system of inequalities E(t, T ) (resp.
E(t, T ′)) has a nonnegative real solution. Finally, we call Q
proper for K if every t ∈ T ∪ T ′ is saturated and coherent
in Q, and there is a (t, 0) ∈ T with A ∈ t. The second
condition should be clear in view of Lemma 1.
Lemma 2. K is consistent iff there is a proper quasimodel
for K.

Proof. Since the “⇒” direction is uninteresting, we defer it
to the appendix and concentrate on “⇐”. Let Q = (T, T ′)
be a proper quasimodel forK. For each t ∈ T (resp. t ∈ T ′),
the system of linear inequalities E(t, T ′) (resp. E(t, T ′)) has
a solution in the non-negative reals. It is well-known that,
thus, it also has a non-negative rational solution (Schrijver
1986). For each t ∈ T ∪ T ′, fix such a solution δt. For a
rational number r, we use den(r) to denote the denominator
of r. Set

c := 1/
∏

(t,t′)∈(T×T )∪(T ′×T ′),ft′=1

den(δt(xt′))

We now construct an interpretation as follows. Choose a set
W = W+ ] {w0} such that |W+| = 1/c and set µ(w) = c
for all w ∈ W+ and µ(w0) = 0. For convenience, we set
f(w) = 0 if µ(w) = 0 and f(w) = 1 otherwise.

We highlight some properties that are central for the fol-
lowing construction. Their proof is straightforward based on
the observation that for all (t, t′) ∈ (T ×T )∪(T ′×T ′) with
ft′ = 1, there is an integer n ≥ 0 with c · n = δt(xt′).

(a) For each t0 ∈ T , there is a mapping τ : W+ → {t |
(t, 1) ∈ T} such that for each (t, 1) ∈ T , we have∑
w∈W |τ(w)=t µ(w) = δt0(xt).



(b) For each (t0, 0) ∈ T ′, there is a mapping τ :
W+ → T ′ such that for each (t, 1) ∈ T ′, we have∑
w∈W |τ(w)=t µ(w) = δt0(xt).

(c) For each (t0, 1) ∈ T ′ and w0 ∈ W+, there is a mapping
τ : W+ → T ′ such that τ(w0) = (t0, 1) and for each
(t, 1) ∈ T ′, we have

∑
w∈W |τ(w)=t = δt0(xt).

For (c) observe that, by definition of E(t, T ′) and since ft0 =
1, we have δt0(xt0) > 0, thus we can achieve τ(w0) = t0 as
required.

The set of domain elements and the interpretation of con-
cept and role names is constructed inductively along with a
mapping πd : W → TK such that the following invariant is
satisfied:

(∗) for all d ∈ ∆I and w ∈W , we have (πd(w), f(w)) ∈ T ′
or there is a (t, f(w)) ∈ T such that for some a ∈ Ind(A),
we have πd(w) = {C(aε) | C(a) ∈ t}.

The details of the construction are as follows:
• There is a (tA, 0) ∈ T such that A ∈ t. To start the

construction, we set ∆I = Ind(A). By (a), we find a
mapping τ : W+ → {t | (t, 1) ∈ T} such that for each
(t, 1) ∈ T , we have

∑
w∈W |τ(w)=t µ(w) = δtA(xt). Set

τ(w0) := tA and further set
– aI = a for each a ∈ NI;
– AI,w = {a | A(a) ∈ τ(w)} for each concept name A

and w ∈W ;
– rI,w = {(a, b) | r(a, b) ∈ τ(w)} for each role name r

and w ∈W .
For all a ∈ Ind(A) and w ∈ W , set πa(w) = {C(aε) |
C(a) ∈ τ(w)}. Clearly, (∗) is satisfied.

• Repeat the following step indefinitely. Choose w ∈ W ,
d ∈ ∆I , and ∃r.C ∈ πd(w) such that there is no e ∈ ∆I
with (d, e) ∈ rI,w and C ∈ πe(w). By saturatedness
and (∗), there is a (t, f(w)) ∈ T ′ such that t ⊇ {C} ∪
{D | ∀r.D ∈ πd(w)}. Add a fresh element e to ∆I and
distinguish two cases:
– if f(w) = 0, then by (b) there is a mapping πe :
W+ → T ′ such that for each (t′, 1) ∈ T ′, we have∑
w′∈W |πe(w′)=t′ µ(w′) = δt(xt′); set πe(w0) := t;

– if f(w) = 1, then by (c) there is a mapping πe : W+ →
T ′ such that πe(w) = t and for each (t′, 1) ∈ T ′, we
have

∑
w′∈W |πe(w′)=t′ µ(w′) = δt(xt′); set πe(w0) :=

(t, 0).
Set rI,w = rI,w ∪ {(d, e)}. For all concept names A and
w′ ∈W , set AI,w

′
= AI,w

′ ∪ {d} if A ∈ πe(w′).
It is tedious but straightforward to verify that we end up with
a model of K. o

Thus, we can decide consistency by checking the existence
of a proper quasimodel. This can be done as follows: start
with the quasimodel Q = (AK,TK) and then repeatedly
delete types from both components that are not saturated or
not coherent. If a type (t, 0) with A ∈ t survives in the
first component after the sets have stabilized, answer ‘satis-
fiable’. Otherwise, answer ‘unsatisfiable’. It can be proved

that the algorithm decides consistency in Prob-ALCc and
runs in EXPTIME.
Theorem 3. Consistency in Prob-ALCc is EXPTIME-
complete.
It is interesting to note that the proof of Lemma 2 also es-
tablishes a uniform model property (UMP): every consistent
Prob-ALCc KB has a uniform model I, i.e., the probability
distribution µ of I satisfies µ(w) = µ(w′) for allw,w′ ∈W
with µ(w) > 0 and µ(w′) > 0. Our constructions do
not yield a finite model property (FMP) as the domains of
the constructed models may be infinite (whereas the set of
worlds is finite). As discussed in the following, this can
be fixed by a slight modification which then even yields a
bounded model property (BMP). We use the following re-
sult about linear programming.
Proposition 4 (Fagin, Halpern, and Megiddo 1990). If a
system of r linear inequalities with integer coefficients with
length ` has a non-negative solution, then it has a non-
negative solution with at most r entries positive, and where
the size of each member of the solution is O(r`+ r log(r)).

Here, the length of an integer denotes the number of bits
of its binary representation and the size of a rational number
is the sum of the lengths of the binary representations of the
numerator and denominator. A careful analysis shows that
the number of worlds in the constructed models is bounded
by 22O(K)

. It is then simple to obtain the same bound on
the number of DL elements: in the model construction, we
can stop adding new domain elements as soon as in every
world, there is an element of every type. We thus obtain the
following combination of a UMP and a BMP.
Corollary 5. Every consistent Prob-ALCc KB has a uni-
form model in which the number of worlds and domain ele-
ments is bounded by 22O(K)

.
We have no proof that a super-polynomial number of worlds
can actually be enforced (and neither a super-exponential
number of domain elements). It is straightforward to extend
all constructions in this section to Prob-ALC lineq

c .

Polynomial Inequalities
The EXPTIME upper bound can be adapted to the extension
Prob-ALCpolyeq

c of Prob-ALCc with polynomial inequali-
ties. This extension is particularly useful because of Prob-
ALCpolyeq

c ’s ability to express independence constraints.
The main idea of the upper bound adaptation is to gen-

eralize the systems of inequalities E(t0, T ) for ABox types
and E(t0, T ′) for element types to take into account the ad-
ditional expressive power of polynomial inequalities. More
specifically, Point 1 of the definition of E(t0, T ) is replaced
with the following:
• add each polynomial ABox inequality E ∈ t0 to E(t0, T )

after replacing each expression P (A) that occurs in E
with

∑
(t,1)∈T |A′∈t xt;

• for each E(a) ∈ t0, add the polynomial concept inequality
E to E(t0, T ′) after replacing each expression P (C) that
occurs in E with

∑
(t,1)∈T |C(a)∈t xt.



In Point 2 of the definition of E(t0, T ), P(t) now denotes the
set of all polynomial ABox inequalities in t plus all elements
E(a) ∈ t with E a polynomial concept inequality. Denote
the resulting systems by E∗(t0, T ). The generalization of
E(t0, T ′) into E∗(t0, T ′) is analogous.

Clearly, E∗(t0, T ) is a a system of polynomial inequalities
instead of linear ones. Consequently, the complexity of solv-
ing such systems goes up from PTIME to PSPACE, which
is currently the best known upper bound (Canny 1988) (the
best known lower bound is NP). Thus, our EXPTIME upper
bound for consistency becomes an EXPSPACE upper bound.
To push it back down to EXPTIME, we first make the follow-
ing observation, which is originally due to (Fagin, Halpern,
and Megiddo 1990).

Lemma 6. If a system E∗(t0, T ) has a solution, then it has a
solution with at most |K|2 variables non-zero, and likewise
for systems E∗(t0, T ′).

Proof. Let δ be a solution for E∗(t0, T ) For each A ∈
acl(K), set δ(A) =

∑
t∈T |A∈t δ(xt). The system Ê(t0, T )

is obtained from E∗(t0, T ) by replacing the inequalities de-
rived from polynomial (ABox and concept) inequalities with∑

(t,1)∈T |A∈t

xt = δ(A) for all A ∈ acl(K)

Since E∗(t0, T ) is satisfiable, so is Ê(t0, T ). Since Ê(t0, T )
consists of O(|K|2) linear inequalities, Proposition 4 yields
the existence of a solution with at most O(|K|2) non-zeros.
By construction of Ê(t0, T ), this solution is also a solution
for E∗(t0, T ). o

Instead of checking a system E∗(t0, T ) directly for solvabil-
ity, Lemma 6 allows us to consider all systems E∗(t0, T ∗)
with T ∗ ⊆ T such that |T ∗| ≤ |K|2 and t0 ∈ T ∗. If any
of these systems has a solution δ, then we obtain a solution
for E∗(t0, T ) by setting δ(xt) = 0 for all t ∈ T \ T ∗. Con-
versely, solvability of E∗(t0, T ) and Lemma 6 implies the
existence of a solution δ for E∗(t0, T ) and a subset T ∗ ⊆ T
such that |T ∗| ≤ |K|2 and δ(xt) = 0 for all t ∈ T \ T ∗.
Clearly, δ is also a solution for E∗(t0, T ∗). Each system
E∗(t0, T ∗) is of size polynomial in |K| and there are ex-
ponentially many such systems. Thus, the solvability of
E∗(t0, T ) can be checked in EXPTIME.

A second problem that arises is the loss of the UMP,
which means that the model construction underlying
Lemma 2, which assumes a rational solution and produces
uniform models, no longer works.

Lemma 7. Prob-ALC indep
c does not enjoy the UMP.

Proof. Consider the knowledge baseK = (T , {C(a)}) with

T = {indep(A,B)}
C = P= 1

8
(A uB) u P= 1

8
(¬A u ¬B)

It is not hard to see that K is consistent: simply take the

probabilistic interpretation I with

∆I = {d}
W = {wS | S ⊆ {A,B}}

µ(w{A,B}) = µ(w∅) = 1
8

µ(w{A}) = 3
8 −

1√
8

µ(w{B}) = 3
8 + 1√

8

XI,wS =
{
{d} if X ∈ S
∅ otherwise

for X ∈ {A,B}

It is easy to verify that I is a (non-uniform) model of K. In
the appendix, we show that all models I of K satisfy

pId (A) =
1
2
± 1√

8

for every d ∈ ∆I . Since these numbers are irrational and ev-
ery world in a uniform model has rational probability, there
is no uniform model of K. o

We now describe a more subtle model construction that re-
places the one used in the proof of Lemma 2 and works
also for real-valued solutions. Of course, it constructs non-
uniform models. Proper quasimodels for Prob-ALCpolyeq

c
are defined exactly as for Prob-ALCc, except that the gener-
alized systems E∗(t, T ) and E∗(t, T ′) are used.
Lemma 8. K is consistent iff there is a proper quasimodel
for K.
Proof. Since the “⇐” direction is straightforward, we only
consider the “⇒” direction in the proof of Lemma 2. In
particular, we show how to define W and µ such that the
Properties (a) to (c) still hold. For each t ∈ T (resp. t ∈ T ′),
let δt be a non-negative solution of E(t, T ) (resp. E(t, T ′)).
Let 1

u ∈ (0, 1) be a rational number such that 1
u <

1
2 · δt(t

′)
for all (t, t′) ∈ (T × T ) ∪ (T ′ × T ′) with ft′ = 1 and
δt(t′) > 0. Define a set

Sε = {δt(t′) mod u | (t, t′) ∈ (T×T )∪(T ′×T ′), ft′ = 1}.

and let S be the smallest set of real numbers from the inter-
val [0, 1

u ] that contains 0 and 1
u and is closed under addition

and subtraction of values from Sε. Let s0, . . . , sk be an enu-
meration of the elements of S in ascending order. It is not
hard to see that S is finite. Define the set of worlds

W := {0} ∪ {(x, y) | 1 ≤ x ≤ u ∧ 1 ≤ y ≤ k}

and set W+ = W \ {0}. Intuitively, we can think of
worlds as partitioning the interval [0, 1]. Actually, there are
two layers of partitions: the x-component uniformly parti-
tions the interval [0, 1] into subintervals of length 1

u . The
y-component then partitions these subintervals in a non-
uniform way. Put µ(0) = 0 and µ(x, y) = sy − sy−1. We
now show that (a) to (c) hold:
• For (a), let t0 ∈ T . We define a mapping τ : W+ → {t |

(t, 1) ∈ T} as follows. Let t1, . . . , tk be an enumeration
of those elements t ∈ T such that δt0(t) > 0. Intuitively,
we want to select intervals for t1, . . . , tk such that [0, 1] is
covered and the interval for t1 meets that of t2 meets that
of t3 etc. For 1 < i < k, set



– bi =
∑

1≤p<i δt0(tp) (the beginning point of the inter-
val for ti);

– ei =
∑

1≤p≤i δt0(tp) (the end point of the interval for
ti);

– r1 = δt0(t1) mod 1
u

– ri = δt0(ti) mod 1
u−ai; (the ‘remainder’ that ti leaves

in the last ‘x-interval’ that it overlaps with);
– ai = 1

u − di−1; (the length of the ti-part of the first
‘x-interval’ that ti overlaps with);

– ak = 1
u − dk−1.

Now set τ(0) = 0 and τ(x, y) = ti, 1 ≤ i ≤ k, whenever
one of the following holds:

– bi ≤ x−1
u and x

u ≤ ei;
– x−1

u + sy ≤ ei and x
u > bi+1,

– x−1
u < ei+1 and x−1

u + sy > bi.

It can be verified that for all t ∈ T , we have∑
w∈W |τ(w)=t µ(w) = δt0(xt) as required.

• (b) can be proved similarly to (a);

• For (c), let (t0, 1) ∈ T ′ and (x, y) ∈ W+. Fix a map-
ping τ : W+ → {t | (t, 1) ∈ T} exactly as in (a). To
achieve that τ(x, y) = t0, select an x′ ∈ {1, . . . , u} such
that τ(x, y) = t0 for all y ∈ {1, . . . , k}. Such an x′

exists by construction of τ and since 1
u < 1

2 · δt0(t0).
Now swap the values of (x, y) and (x′, y) for all y ∈
{1, . . . , k}. It is easy to see that, as before the swaps,
we have

∑
w∈W |τ(w)=t µ(w) = δt0(xt).

o

We have thus established the following result.

Theorem 9. Consistency in Prob-ALCpolyeq
c is EXPTIME-

complete.

Prob-ALC with Probabilistic Roles
Reasoning in full Prob-ALC is much more challenging
than in Prob-ALCc. This is unsurprising given the similar-
ity of Prob-ALC and the modal DL S5ALC together with
the well-known difficulties of dealing with global roles in
S5ALC (which correspond to probabilistic roles in Prob-
ALC) (Gabbay et al. 2003; Artale, Lutz, and Toman 2007).
In fact, we can use the connection to S5ALC to carry over
some interesting first observations. For example, we can
adapt a well-known construction from S5ALC to show that
Prob-ALC does not enjoy the finite model property (FMP):
the KB K = (T , {P>0¬A(a)}) with

T = {¬A v P>0A, A v ∃P≥1r.¬A, ¬A v ∀P≥1r.¬A}

is consistent, but all models of K comprise both an infinite
set of worlds and an infinite domain. It is also straightfor-
ward to find a polytime reduction of S5ALC with global roles
to Prob-ALC, which yields the following lower bound.

Theorem 10. Consistency in Prob-ALC is 2-EXPTIME-
hard, even for ABoxes of the form A(a).

In the case of S5ALC , the 2-EXPTIME lower bound is tight.
For Prob-ALC, we do not even know whether consistency is
decidable. What we do know, however, is that consistency
in Prob-ALC becomes undecidable once we add indepen-
dence constraints or admit linear inequalities as concepts.
This can be proved by a reduction of the halting problem of
two-register machines.

Theorem 11. Consistency in Prob-ALC indep and Prob-
ALC lineq is undecidable.

To identify a decidable variant of Prob-ALC that does in-
clude probabilistic roles, we restrict the probability con-
stants that can occur to 0 and 1, i.e., we only admit the proba-
bilistic constructors P>0C, P=1C, ∃P>0r.C, and ∃P=1r.C.
The resulting logic is called Prob-ALC01. This kind of re-
striction has previously been used to regain decidability of
undecidable probabilistic logics, see for example (Brázdil
et al. 2008). It may appear that decidability and a 2-
EXPTIME upper bound for Prob-ALC01 can be obtained
by a straightforward reduction to S5ALC . Somewhat sur-
prisingly, however, probabilistic ABoxes and in particular
the presence of worlds with probability 0 pose serious dif-
ficulties for such a reduction; essentially, Prob-ALC01 has
higher expressive power than S5ALC in that it allows for a
distinction between logically impossible and ‘infinitely im-
probable’ events. Therefore, the following is proved from
first principles in the appendix, making use of quasimodels
similar to those used in (Artale, Lutz, and Toman 2007) for
S5ALC .

Theorem 12. Consistency in Prob-ALC01 is 2-EXPTIME-
complete.

Prob-EL Lower Bounds
The EL family of DLs is a popular family of lightweight
ontology languages. Introduced in (Baader, Brandt, and
Lutz 2005), the design of the EL family of DLs aims at
tractability of standard reasoning problems such as consis-
tency while still providing sufficient expressive power for
formulating ontologies. In fact, members of the EL fam-
ily are used in important and well-known ontologies such
as SNOMED CT and underlie the OWL 2 EL profile of the
OWL 2 ontology language. We consider probabilistic vari-
ants of the basic member EL of the EL-family.

In (non-probabilistic) EL, concepts are formed according
to the syntax rule

C ::= > | A | C uD | ∃r.C

where A ranges over NC, C and D over concepts and r
over NR. EL ABoxes are simply conjunctions of assertions
C(a) and r(a, b). Since EL and the probabilistic extensions
considered in what follows do not contain negation, deciding
consistency of knowledge bases is uninteresting: every KB
is consistent. Instead, we consider instance checking which
is the problem to decide, given a KB K, an individual name
a, and a concept C, whether I, w |= C(a) for all models
I of K and all w ∈ ∆I (written K |= C(a)). Note that, in
probabilistic extensions of EL, C can be of the form P>nC

′,
and thus instance checking can be used to find out whether



the probability of a concept assertion C(a) exceeds a given
threshold.

Unfortunately, it turns out that naive extensions of EL
with probabilistic constructors are typically intractable. This
is due to the fact that, as observed in (Baader, Brandt, and
Lutz 2005) and exploited in many hardness proofs since, ev-
ery non-convex extension of basic EL is typically as hard
as the corresponding variant of ALC. Here, a logic is con-
vex if for all KBs K and concepts D1, . . . , Dn such that
K |= D1t· · ·tDn(a), we haveK |= Di(a) for some i. Al-
ready the extension of EL with the concept constructor P>n
turns out to be non-convex. To see this, choose K = (T ,A)
with T = ∅, A = {C(a)}, and

C = P>0.4A1 u P>0.4A2 u P>0.4A3

D1 = P>0(A1 uA2)
D2 = P>0(A1 uA3)
D3 = P>0(A2 uA3)

In a similar way, non-convexity can be shown for the exten-
sion of EL with any of the constructors P≥n, ∃P>nr.>, and
∃P≥nr.>. Since the latter two cases may be a bit less obvi-
ous, we explicitly give a counterexample for convexity: for
EL extended with ∃P>0r.>, choose A = {C(a)} and

T = { ∃r1.> u ∃r2.> v ∃P>0s1.>
∃r1.> u ∃r3.> v ∃P>0s1.>
∃r2.> u ∃r3.> v ∃P>0s2.>}

C = ∃P>0.4r1.> u ∃P>0.4r2.> u ∃P>0.4r3.>
D1 = ∃P>0s1.>

D2 = ∃P>0s2.>

In each case, we can employ a standard form of reduction
to show EXPTIME-hardness, see (Baader, Brandt, and Lutz
2005). The upper bound stems from Theorem 3.
Theorem 13. In EL extended with any of P>nC, P≥nC,
∃P>nr.>, and ∃P≥nr.>, instance checking is EXPTIME-
hard. In the former two cases, it is EXPTIME-complete.

In the latter two cases, we do not even know decidability.
However, non-convexity implies that these logics can only
be decidable if the corresponding version of Prob-ALC is.

The counterexamples used above suggest that, in order to
attain convexity, we have to restrict ourselves to the prob-
ability values 0 and 1. We will see later that this indeed
suffices to achieve tractability when probabilistic roles are
disallowed entirely. Here we show that, despite guarantee-
ing convexity, the mentioned restriction is still not sufficient
for tractability if probabilistic roles are present. The proof is
by a reduction of the word problem of deterministic polyno-
mially space-bounded Turing machines.
Theorem 14. Instance checking in EL extended with P>0C
and at least one of ∃P=1r.C and ∃P>0r.C is PSPACE-hard.

Proof (sketch). We concentrate on Prob-EL01
r=1. The

proof is by reduction of the word problem of determin-
istic, polynomially space-bounded Turing machines. Let
M = (Q,Σ,Γ, δ, q0, qacc, qrej) be such a machine, x ∈ Σ

an input of length n, and m = p(n) the space bound of M
on x. Our aim is to construct in polynomial time a TBox T
and concept C0 such that K = (T , ∅) |= C0(a) iff M ac-
cepts x. The basic idea is that each model I of T will take
the form of an infinite r-chain of probability 1, i.e., there are
d0, d1, . . . ∈ ∆I such that pIdi,di+1

(r) = 1 for all i ≥ 0.
For every di, there will be a world w such that the concept
memberships of d represent the initial configuration of M
on x. When going backwards in the chain but staying in the
world w, the concept memberships evolve according to the
computation of M on x. Since this holds for all di (i.e., at
arbitrary distance from d0), it follows that for each configu-
ration c that is encountered during the computation, there is
a world w where the concept memberships of d0 represent
c. It is then easy to use C0 to check whether any of these
configurations is accepting.

The best known upper bound is the 2-EXPTIME one from
Theorem 12.

Prob-EL Upper Bound
We consider the probabilistic DL Prob-EL01

c that extends
EL with the probability constructors P>0C and P=1C.
Our main result is that instance checking can be decided
in PTIME and is thus no more difficult than in EL. In
Prob-EL01

c , an ABox is a set of assertions C(a), r(a, b),
P>0r(a, b), and P=1r(a, b). Thus, we do allow probabilistic
roles, but only in the ABox.

To prove the PTIME upper bound, we may w.l.o.g. re-
strict our attention to instance checking problems of the form
K = (T ,A) |= A(a), where A is a concept name that oc-
curs in T . We assume that Prob-EL01

c -TBoxes are in the
following normal form. A basic concept is either >, a con-
cept name, or a concept of the form P∗nA with A a concept
name. For a TBox to be in normal form, we require that
every concept inclusion is of one of the forms

X1 u · · · uXn v X, ∃r.X v A, X v ∃r.A
where the Xi and X denote basic concepts and A denotes
a concept names. It is standard to show that, by introduc-
ing fresh concept names, every TBox T can be converted in
polynomial time into a TBox T ′ in normal form such that
(T ,A) |= A(a) iff (T ′,A) |= A(a) for all ABoxes A,
a ∈ Ind(A), and all concept names A that occur in T
(Baader, Brandt, and Lutz 2005). We also assume that
ABoxes are in normal form, i.e. in all assertions C(a), C
is a concept name. As for TBoxes, this can be achieved by
introducing fresh concept names.

Let K = (T ,A) be a Prob-EL01
c -KB with T and A in

normal form, and let A0(a0) be an assertion for which we
want to decide whether K |= A0(a0). We use NKC (resp.
NKR ) to denote the set of concept names (resp. role names)
that occur inK; CK (resp. PK0 , PK1 ) to denote the set of basic
concepts (resp. concepts P>0A, P=1A) that occur (possibly
as a subconcept) inK; andRK0 to denote the set of assertions
P>0r(a, b) in A.

Our algorithm is of the same kind as the one presented in
(Baader, Brandt, and Lutz 2005), i.e., it builds a representa-
tion of a ‘least’ model ofK (in the sense of Horn logic). The



set of worlds of this model is V := {0, ε, 1} ∪ PK0 ∪ RK0 ,
where 0 is the only world with probability 0 and all other
worlds have uniform probability 1/|V \ {0}|. Intuitively,
the worlds in P0 and RK0 serve as witnesses for the epony-
mous concepts P>0A and assertions P>0r(a, b); the world
1 is used to collect concepts that a domain element has to
satisfy with probability 1; and ε serves as a general witness
that is used to deal with existential restrictions. We represent
the model as a quasimodel, defined as follows.

An ABox quasistate Q̂ for K is a mapping that asso-
ciates with each a ∈ Ind(A) and each v ∈ V a subset
Q̂(a, v) ⊆ CK. An element quasistate Q for K is a map-
ping that associates to each v ∈ V a subset Q(v) ⊆ CK. To
treat ABox quasistates and element quasistates uniformly,
we fix an individual name aε and for each element quasis-
tate Q and v ∈ V , use Q(aε, v) to denote Q(v) whenever
convenient. A quasimodel M for K is a pair (Q̂, f) with Q̂
an ABox quasistate for K and f a mapping that assigns to
each (A, i) ∈ Ω := NKC × {0, ε} an element quasistate fA,i
forK. Intuitively, the quasistate fA,i describes a domain ele-
ment that serves as a witness for existential restrictions ∃r.A
satisfied by some domain element in world 0 if i = 0 and in
a world from V \ {0} if i = ε.

The algorithm starts with the quasimodel (Q̂, f), where

• Q̂(a, 0) = {>} ∪ {A | A(a) ∈ A} for all a ∈ Ind(A);

• Q̂(a, v) = {>} for all a ∈ Ind(A) and v ∈ V \ {0};
• for every (A, 0) ∈ Ω, fA,0 is defined by setting fA,0(0) =
{>, A} and fA,0(v) = {>} for all v ∈ V \ {0};

• for every (A, ε) ∈ Ω, fA,ε is defined by setting fA,ε(ε) =
{>, A} and fA,ε(v) = {>} for all v ∈ V \ {ε}.

This quasimodel is then extended by applying the comple-
tion rules shown in Figure 1 until no more rules apply.
In the figure, Q ranges over Q̂ and over the quasistates
(fA,i)(A,i)∈Ω (relying upon our notation of fA,i(aεv) as a
synonym for fA,i(v)), and v ranges over V unless otherwise
specified. The function γ : V → {0, ε} is defined by setting
γ(0) = 0 and γ(v) = ε for all v ∈ V \{0}. Note that in rule
R6, we use fA,ε(ε) as a witness for the existential restriction
∃r.A satisfied by a in v, for all v ∈ V \ {0} instead of only
for v = ε. This seemingly incorrect approach is actually
necessary to ensure correctness, and has to be compensated
by a careful model construction.

Lemma 15. For allA0 ∈ NC and a ∈ Ind(A),K |= A0(a0)
iff A0 ∈ Q̂(a0, 0).

Our proof also establishes a combined UMP and BMP (c.f.
Corollary 5), with exact bounds O(|K|) on the number of
worlds and O(|K|2) on the number of domain elements.

Theorem 16. Instance checking in Prob-EL01
c can be de-

cided in PTIME.

Related Work
There is a large number of proposals for probabilistic DLs
that differ widely in many fundamental aspects. To start

R1 If X1, . . . , Xn ∈ Q(a, v), X1 u · · · uXn v X ∈ T ,
and X /∈ Q(a, v)

then Q(a, v) := Q(a, v) ∪ {X}
R2 If P>0A ∈ Q(a, v) and A /∈ Q(a, P>0A)

then Q(a, P>0A) := Q(a, P>0A) ∪ {A}
R3 If P=1A ∈ Q(a, v) and A /∈ Q(a, v) with v 6= 0

then Q(a, v) := Q(a, v) ∪ {A}
R4 If A ∈ Q(a, v) with v 6= 0, P>0A ∈ PK0 , and P>0A /∈ Q(a, v′)

then Q(a, v′) := Q(a, v′) ∪ {P>0A}
R5 If A ∈ Q(a, 1), P=1A ∈ PK1 , and P=1A /∈ Q(a, v)

then Q(a, v) := Q(a, v) ∪ {P=1A}
R6 If X ∈ Q(a, v), X v ∃r.A ∈ T , Y ∈ fA,γ(v)(γ(v)),

∃r.Y v B ∈ T , and B /∈ Q(a, v)
then Q(a, v) := Q(a, v) ∪ {B}

R7 If r(a, b) ∈ A, X ∈ bQ(b, 0), ∃r.X v A ∈ T , and A /∈ bQ(a, 0)
then Q(a, 0) := Q(a, 0) ∪ {A}

R8 If P>0r(a, b) ∈ A, X ∈ bQ(b, P>0r(a, b)), ∃r.X v A ∈ T ,
and A /∈ bQ(a, P>0r(a, b))

then bQ(a, P>0r(a, b)) := bQ(a, P>0r(a, b)) ∪ {A}
R9 If P=1r(a, b) ∈ A, X ∈ bQ(b, v) with v 6= 0, ∃r.X v A ∈ T ,

and A /∈ bQ(a, v)

then bQ(a, v) := bQ(a, v) ∪ {A}

Figure 1: Completion rules

with, several proposals assume that concrete probability dis-
tributions are specified, typically in terms of a Bayes net
(Koller, Levy, and Pfeffer 1997; Yelland 2000; Ding, Peng,
and Pan 2006; da Costa and Laskey 2006). These proposals
often address statistical probabilities rather than subjective
ones. In contrast, we address subjective probabilities and
our semantics is ‘free’ in the sense that no concrete distri-
butions are fixed. This approach was pioneered by Fagin,
Halpern, and Megiddo (Fagin, Halpern, and Megiddo 1990)
and has first been integrated with DLs by Heinsohn (Hein-
sohn 1994) and Jaeger (Jaeger 1994). The main feature of
the latter two proposals are conditional probabilities in the
TBox, expressing statistical probabilities. The semantics
is then loosely related to, yet different from Halperns Type
1 probabilistic FO. Jaeger additionally admits probabilistic
ABox statements, which address subjective probabilities.

A more recent approach to probabilistic DLs is due to
Lukasiewics (2008), who proposes a probabilistic extension
of expressive DLs such as SHIQ. The resulting DL P-
SHIQ encompasses both statistical and subjective features,
and also addresses the non-monotonic aspects of probabilis-
tic knowledge using a semantics based on Lehmann’s lexi-
cographic entailment. The differences to our framework are
manifold. First, Prob-ALC does not include non-monotonic
features, which on the one-hand precludes features such as
subjective conditional probabilities, but on the other hand
enables a transparent semantics. In contrast, the seman-
tics of P-SHIQ is often felt to be rather difficult to under-
stand precisely because of its non-monotonic features and
use of lexicographic entailment (Klinov, Parsia, and Sattler
2009). Second, P-SHIQ allows probabilistic TBox state-



ments, which is not foreseen in the current version of Prob-
ALC (but could be added). Conversely, Prob-ALC allows
probabilistic concepts and roles, which are not present in P-
SHIQ. And third, it is discussed in (Klinov, Parsia, and
Sattler 2009) that P-SHIQ restricts ABoxes in a number of
ways, e.g. separating ‘classical’ and ‘probabilistic individu-
als’ and disallowing probabilistic role assertions. None of
these restrictions is required in Prob-ALC.

Conclusion
We have proposed a new family of probabilistic DLs that
are derived in a straightforward way from Halpern’s Type 2
probabilistic FOL. We have also provided a first but sub-
stantial analysis of the complexity of reasoning in these log-
ics. We conjecture that the most well-behaved variants Prob-
ALCc and Prob-EL01

c can be extended with many standard
DL constructors without losing their good computational
properties. In addition to Type 2 logics for reasoning about
subjective probabilities, Halpern also suggests Type 1 log-
ics for reasoning about statistical probabilities. Alas, prob-
abilistic DLs derived from Type 1 logic in the spirit of the
present work are rather inexpressive and not overly interest-
ing; details can be found in the appendix. An issue for future
research is to investigate propositional TBoxes statements of
the form P∗n(C v D). In contrast to the probabilistic con-
structors in this paper, which express uncertainty about con-
crete facts, such TBoxes can be used to express uncertainty
about general knowledge.
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Proofs for Prob-ALC w/o Probabilistic Roles
Lemma 1. If a Prob-ALC indep knowledge base K = (T ,A)
is consistent, then it has a model I with set of worlds W
such that for some w0 ∈W , we have

1. µ(w0) = 0 and I, w0 |= A;

2. µ(w) > 0 for all w ∈W \ {w0}.

Proof. Let K be consistent and I = (∆I ,W, (Iw)w∈W , µ)
a model of K. Fix a world wA ∈ W with I, wA |= A
and let the interpretation J be the restriction of I to the
set of worlds WJ := {wA} ∪ {w′ ∈ W | µ(w) > 0}.
Using a straightforward induction on C, one can show that
d ∈ CI,w iff d ∈ CJ ,w for all conceptsC, worldsw ∈WJ ,
and d ∈ ∆I . It follows that J is a model of K and J , w |=
A. If µ(wA) = 0, we are done. Otherwise, J contains no
world w with µ(w) = 0. Then define an interpretation J ′
by extending J with a new world w0 with µ(w0) = 0 and
interpreting all concept and role names at w0 in the same
way as at wA. Let τ : W ′ → W be defined by setting
τ(w0) = wA and τ(w) = w for all w 6= w0. Then d ∈
CJ

′,w iff d ∈ CJ ,τ(w) for all conceptsC, worldsw ∈WJ ′ ,
and d ∈ ∆. It follows that J ′ is a model of K and J ′, w0 |=
A. Thus, J ′ is as required. o

Lemma 2. K is consistent iff there is a proper quasimodel
for K.

Proof. We supply only the missing “⇒” direction. Let I
be a model of K. By Lemma 1, we can assume that there is
a world wA with I, wA |= A and µ(wA) = 0. With each
w ∈W and d ∈ ∆I , associate a (flagless) element type

tIw(d) = {C ∈ ccl(K) | d ∈ CI,w}.

With each d ∈W , associate a (flagless) ABox type

tIw = {A′ ∈ acl(K) | I, w |= A′}.

For each world, define f(w) = 0 if µ(w) = 0 and f(w) = 1
otherwise. Now define a quasistate Q = (T, T ′) by setting

T = {(tIw, f(w)) | w ∈W}
T ′ = {(tIw(d), f(w)) | w ∈W,d ∈ ∆I}.

By the definition of Q and the semantics, each (t, f) ∈ T ∪
T ′ is clearly saturated in Q. To establish coherence, we start
with ABox types. Thus, let (t, f) ∈ T . We want to show that
E(t, T ) has a nonnegative solution. Choose a w ∈ W such
that tIw = t and µ(w) = 0 iff f = 0. For each (t′, 1) ∈ T ,
define

δ(xt′) =
∑

w′∈W |tI
w′=t

′

µ(w′)

Using the definition of δ and the semantics, it is easily seen
that δ is a nonnegative solution for E(t, T ). The argument
for element types is analogous. We clearly have A ∈ tIwA
and (tIwA , 0) ∈ T , thus Q is proper. o

Theorem 3. Consistency in Prob-ALCc is EXPTIME-
complete.

Proof. The sketched algorithm constructs a sequence

(AK,TK) = (T0, T
′
0), (T1, T

′
1), . . .

where (Ti+1, T
′
i+1) is obtained from (Ti, T ′i ) by eliminating

all (ABox and element) types that are not saturated or not
coherent in (Ti, T ′i ). If (Ti+1, T

′
i+1) = (Ti+1, T

′
i+1) and

Ti+1 contains an ABox type (t, 0) with A ∈ t, it answers
‘satisfiable’. Otherwise, it answers ‘unsatisfiable’.

We start with proving termination and analyzing the time
consumption of this procedure. It is clear that the algorithm
terminates after at most |AK| + |TK| rounds and that each
elimination step can be carried out in time polynomial in
|AK| + |TK|. Moreover, a straightforward analysis of the
definition of AK and TK shows that there is a polynomial p
such that |AK and |TK| are bounded by 2p(|K|). Thus, the
algorithm runs in EXPTIME as required.

It remains to prove soundness and completeness of the
algorithm. If it answers ‘satisfiable’, then there is a pair
(Ti, T ′i ) in which every type is saturated and coherent and
such that Ti contains an ABox type (t, 0) with A ∈ t. Thus,
(Ti, T ′i ) is a proper quasimodel for K and it remains to ap-
ply Lemma 2. Conversely, if K is consistent, then Lemma 2
yields the existence of a proper quasimodel (T, T ′) for K.
It can be proved that we have T ⊆ Ti and T ′ ⊆ Ti for all
i ≥ 0. Together with termination, this clearly means that the
algorithm returns ‘satisfiable’. o

Lemma 7. Prob-ALC indep
c does not enjoy the UMP.

Proof. Consider the knowledge baseK = (T , {C(a)}) with

T = {indep(A,B)}
C = P= 1

8
(A uB) u P= 1

8
(¬A u ¬B)

It is not hard to see that K is consistent: simply take the
probabilistic interpretation I with

∆I = {d}
W = {wS | S ⊆ {A,B}}

µ(w{A,B}) = µ(w∅) = 1
8

µ(w{A}) = 3
8 −

1√
8

µ(w{B}) = 3
8 + 1√

8

XI,wS =
{
{d} if X ∈ S
∅ otherwise

for X ∈ {A,B}

It is easy to verify that I is a (non-uniform) model of K.
Now let I be a model of K and d ∈ ∆I . Due to the

independence constraint and since pId (AuB) = 1
8 , we have

pId (A) · pId (B) =
1
8
. (∗)

It can be seen that satisfaction of indep(A,B) implies
that indep(¬A,¬B) is also satisfied. This together with



pId (¬Au¬B) = 1
8 and pId (¬A) = 1−pId (A) and pId (¬B) =

1− pId (B) yields

(1− pId (A)) · (1− pId (B)) =
1
8
. (∗∗)

Since every world in a uniform model has probability zero
or 1
|W | (which is rational), it remains to show that the equa-

tions (∗) and (∗∗) do not admit a rational solution. For
brevity, we use a to denote pId (A) and b for pId (B). By (∗∗),
we have 1− a− b+ ab = 1

8 , thus (∗) yields 1− a− b = 0
and b = 1− a. Consequently,

a(1− a) = ab =
1
8
.

Now, it is easily checked that the derived equation

a2 − a+
1
8

= 0

admits only the solutions

a =
1
2
±
√(1

2

)2

− 1
8

=
1
2
± 1√

8

which are irrational and thus finish the proof. o

Proofs for Prob-ALC with Probabilistic Roles

Theorem 10. Consistency in Prob-ALC is 2-EXPTIME-
hard, even for ABoxes of the form A(a).

Proof. The proof is by reduction from the logic S5ALC
with constant domains, global TBoxes, modalized concepts,
global roles (and no local roles), and ABoxes of the form
A(a) (Artale, Lutz, and Toman 2007). Every S5ALC-
concept C can be translated into a Prob-ALC concept C∗
by replacing

• every subconcept 2D with P≥1D and

• every subconcept ∃r.D with ∃P≥1r.D.

For an S5ALC-knowledge baseK = (T ,A) with T = {> v
CT } and A = {A(a)}, we then define K∗ = (T ∗,A∗) with
T ∗ = {> v C∗T } and A∗ = P>0A(a). We show that K is
consistent iff K∗ is.

First, let the Prob-ALC KB K∗ be consistent and let
I = (∆I ,W, (Iw)w∈W , µ) be a model of K∗. It is
not hard to see that, then, the S5ALC-interpretation J =
(∆I ,W ′, (Iw)w∈W ′) is a model of K, where W ′ = {w ∈
W | µ(w) > 0}. Second, let the S5ALC KB K be consistent
and let J = (∆J ,W, (Jw)w∈W ) be a model of K. Since
every S5ALC KB can be translated into a first-order theory
in a straightforward way, we may assume that W is count-
able. If W is finite, then set µ(w) = 1/|W | for all w ∈ W .
It is readily checked that J = (∆J ,W, (Jw)w∈W ), µ) is
a Prob-ALC interpretation and a model of K∗. If W is
infinite, then fix an enumeration of all worlds w1, w2, . . .
and set µ(wi) = 1/2i for all i ≥ 1. Again, J =
(∆J ,W, (Jw)w∈W ), µ) is the desired model. o

Before we can prove Theorem 11, we introduce two-register
machines and the halting problem. A two-register machine
M is similar to a Turing machine. It also has an internal
state taken from a finit set of possible states, but instead of a
tape, it has two registers that contain non-negative integers.
In one step, the machine can increment the content of one of
the registers or test whether the content of the given register
is zero and if not then decrement it. In the second case, the
successor state depends on whether the tested register was
zero or not. There is a designated halting state, and M halts
if it encounters this state.
Definition 17. A (deterministic) two-register machine
(2RM) is a pair M = (Q,P ) with Q = {q0, . . . , q`} a set of
states and P = I0, . . . , I`−1 a sequence of instructions. By
definition, q0 is the initial state, and q` the halting state. For
all i < `,
• either Ii = +(p, qj) is an incrementation instruction with
p ∈ {1, 2} a register and qj the subsequent state;

• or Ii = −(p, qj , qk) is a decrementation instruction with
p ∈ {1, 2} a register, qj the subsequent state if register 0
contains 0, and qk the subsequent state otherwise.

A configuration of M is a triple (q,m, n), with q the
current state and m,n the register contents. We write
(qi, n1, n2)⇒M (qj ,m1,m2) if one of the following holds:
• Ii = +(p, qj), mp = np + 1, and mp = np, where 1 = 2

and 2 = 1;
• Ii = −(p, qj , qk), np = mp = 0, and mp = np;
• Ii = −(p, qk, qj), np > 0, mp = np − 1, and mp = np.
The computation of M on input (n,m) ∈ N

2 is the
unique longest configuration sequence (p0, n0,m0) ⇒M

(p1, n1,m1) ⇒M · · · such that p0 = q0, n0 = n, and
m0 = m.

The halting problem for 2RMs is to decide, given a 2RM
M , whether its computation on input (0, 0) is finite (which
implies that its last state is q`).

Theorem 11. Consistency in Prob-ALC indep and Prob-
ALC lineq is undecidable.

Proof. We first consider Prob-ALC lineq. We reduce the halt-
ing problem for 2RMs to the inconsistency of Prob-ALC
knowledge bases by transforming a 2RM M = (Q,P ) into
a KB KM = (TM , {I(a0)}) such that KM is inconsistent iff
M halts. More precisely, every model of KM describes an
infinite computation of M on (0, 0) via an infinite r-chain
of probability 1 (or can be unravelled into one), i.e., there
are d0, d1, . . . ∈ ∆I such that pIdi,di+1

(r) = 1 for all i ≥ 0.
Conversely, every infinite computation gives rise to a model
of KM . We use the following signature to encode computa-
tions on the chain d0, d1, . . .:
• concept names Q0, . . . , Q` encode the current state;
• register contents are described using two concept names
R1 and R2: at each element d on the r-chain, register i
has value n if pId (Ri) = 1

2n ;
• concept names S1 and S2 are used at di to describe the

register contents at di+1, encoded in the same way as de-
scribed for R1 and R2;



• we additionally use concept namesMi andKi, i ∈ {1, 2},
to indicate that the content of register i is modified respec-
tively kept when moving to the subsequent configuration.

We define the TBox TM step by step, along with explana-
tions:

• We start in state q0 and with the registers containing zero:

I v Q0 u P=1(R1) u P=1(R2)

• Enforce the infinite chain:

> v ∃P=1r.>

• Incrementation instructions are executed correctly: for all
Ii = +(p, qj),

Qi v ∀r.Qj uMp uKp u P (Rp) = 2 · P (Sp)
Mi v P=1Mi

Ki v P=1Ki

Si uMi v ∀r.Ri
¬Si uMi v ∀r.¬Ri
Ri uKi v ∀r.Ri
¬Ri uKi v ∀r.¬Ri

where i ranges over {1, 2};
• Decrementation instructions are executed correctly: for

all Ii = −(p, qj , qk),

Qi u P=1Rp v Qj uK1 uK2

Qi u ¬P=1Rp v Qk uMp uKp u P (Sp) = 2 · P (Rp)

• The halting state q` is never reached, and thus the compu-
tation is infinite:

> v ¬Q`
It is not difficult to prove that the computation ofM on (0, 0)
is finite iff KM is inconsistent.

We can adapt the reduction to Prob-ALC indep as follows.
To describe incrementation, we introduce an auxiliary con-
cept name Hp for each p ∈ {1, 2} and then replace the first
concept inclusion in the incrementation block of the Prob-
ALC lineq reduction with

indep(Hp, Rp)
Qi v ∀r.Qj uMp uKp u

P=.5Hp u P=1((Rp uHp)↔ Sp).

Note that, together with P=.5Hp, the independence con-
straint guarantees that the probability of Hp uRp is exactly
half the probability of Rp. To describe decrementation, we
introduce an auxiliary concept name H ′p for each p ∈ {1, 2}
and then replace the second concept inclusion in the decre-
mentation block with

indep(H ′p, SP )
Qi u ¬P=1Rp v Qk uMp uKp u

P=0.5H
′
p u P=1((Sp uH ′p)↔ Rp)

o

Theorem 12. Consistency in Prob-ALC01 is 2-EXPTIME-
complete.

Let K = (T ,A) be a knowledge base whose consistency is
to be decided, where we assume w.l.o.g. that T = {> v
CT }. We use similar notions as in the proof of Theorem 3,
sometimes defined in a slightly different way. To start with,
we define ccl(K) exactly as in the proof of Theorem 3 and
slightly extend acl(K) to denote the closure under single
negation and subABoxes of

A ∪ {C(a) | C ∈ ccl(K) ∧ a ∈ Ind(A)}∪
{P>0r(a, b) | r(a, b) ∈ A}

We define the notion of an ABox type and an element type
exactly as in the proof of Theorem 3 except that Condition 6
of ABox types is generalized from concepts ∃r.C to con-
cepts ∃α.C, α of the form r, P>0r, or P=1r. We use AK to
denote the set of all ABox types for K and TK to denote the
set of all element types for K. A quasiabox for K is a subset
Q ⊆ AK such that

1. there is a (t, 0) ∈ Q and a (t, 1) ∈ Q;
2. for all P>0A′ ∈ acl(K) and all (t, f) ∈ Q, we have
P>0A′ ∈ t iff there is a (t′, f ′) ∈ Q with A′ ∈ t′ and
f ′ = 1;

We use QK to denote the set of all quasiaboxes for K. A
quasielement is defined exactly in the same way as a quasi-
abox, but using element types instead of ABox types. We
use Q′K to denote the set of all quasielements for K. It is
easy to see that if Q is a quasiabox for K and a ∈ Ind(A),
then

Q[a] := {(S, f) | ∃(t, f) ∈ Q : S = {C(aε) | C(a) ∈ t}}
is a quasielement.

Let Q and Q′ be quasielements. A connection type
for Q and Q′ is a partial function ρ that maps pairs
((t, f), (t′, f)) ∈ Q×Q′ to a subset of {P>0r, r, P=1r | r ∈
rol(A)} such that the following conditions are satisfied for
all (t, f) ∈ Q and (t′, f) ∈ Q′, where “a ∈̃ ρ(x, y)” means
that a ∈ ρ(x, y) if ρ(x, y) is defined and “a ∈ ρ(x, y)”
means that ρ(x, y) is defined and contains a:

1. if P=1r ∈ ρ((t, f), (t′, f)), then r ∈̃ ρ((t̂, 1), (t̂′, 1)) for
all ((t̂, 1), (t̂′, 1)) ∈ Q×Q′;

2. if r ∈̃ ρ((t̂, 1), (t̂′, 1)) for all ((t̂, 1), (t̂′, 1)) ∈ Q × Q′,
then P=1r ∈̃ ρ((t, f), (t′, f));

3. if P>0r ∈ ρ((t, f), (t′, f)), then there is ((t̂, 1), (t̂′, 1)) ∈
Q×Q′ with r ∈ ρ((t̂, 1), (t̂′, 1));

4. if r ∈ ρ((t, f), (t′, f ′)), then P>0r ∈̃ ρ((t̂, 1), (t̂′, 1)) for
all ((t̂, 1), (t̂′, 1)) ∈ Q×Q′;

5. if ρ((t, f), (t′, f ′)) is defined, then (i) f = f ′ and
(ii) whenever C ∈ t′, ∃α.C ∈ ccl(K), and α ∈
ρ((t, f), (t′, f)), then ∃α.C ∈ t;

6. there is a (t̂, f) with ρ((t, f), (t̂, f)) defined.
Let ρ be a connection type for Q and Q′ and (t, f) ∈ Q with
∃α.C ∈ t. We say that ρ is a witness for ∃α.C in (t, f) if
there is a (t′, f) ∈ Q′ with α ∈ ρ((t, f), (t′, f)), andC ∈ t′.



A quasiworld forK is a (finite or infinite) node- and edge-
labeled tree M = (V,E, `, ρ) where
• the node-labeling function ` maps each node v ∈ V to an

element quasistate `(v) ∈ Q′K and
• the edge-labeling function ρ maps each edge (v, v′) ∈ E

to a connection type for `(v) and `(v′)
such that for each v ∈ V , (t, f) ∈ `(v), and ∃α.C ∈ t,
there is a v′ ∈ V with (v, v′) ∈ E and such that ρ(v, v′) is
a witness for ∃α.C in (t, f). For better readability, we often
write ρ(v, v′) as ρv,v′ .

Finally, a quasimodel for K is a pair (Q,Γ, π), where Q
is a quasiabox for K such that A ∈ t for some (t, 0) ∈ Q, Γ
is a collection of quasiworlds for K, and π is a mapping that
assigns to each a ∈ Ind(A) a quasiworld π(a) ∈ Γ such that
Q[a] = `(vε), where vε is the root of π(a).
Lemma 18. K is consistent iff there is a quasimodel for K.

Proof. “⇐”. Let M = (Q,Γ, π) be a quasimodel for K.
W.l.o.g., we assume that all trees in Γ have pairwise disjoint
sets of nodes. Let (V,E, `, ρ) denote the forest obtained by
taking the disjoint union of all the trees in Γ. We use va to
denote the root of the tree π(a) ∈ Γ in V . To convert M into
a probabilistic interpretation I = (∆I ,W, (Iw)w∈W , µ)
that is a model of K, we start with setting

∆I = V.

Defining the set of worlds W is much less trivial. By defini-
tion of quasiworlds, we can choose for each v ∈ V , (t, f) ∈
`(v), and ∃α.C ∈ t a node v′ ∈ V such that (v, v′) ∈ E
and ρ(v, v′) is a witness for ∃α.C in (t, f). We denote this
node v′ with wit(v, t, f, ∃α.C). By duplicating successors
in quasiworlds, we can achieve that there is another node v′′
that satisfies exactly the same properties just stated for v′,
but is distinct from it. We denote v′′ with wit′(v, t, f, ∃α.C).
By further duplicating nodes, we can ensure distinctness of
all witnesses, i.e., that (v, t, f, ∃α.C) 6= (v′, t′, f ′,∃α′.C ′)
implies

{wit(v, t, f, ∃α.C),wit′(v, t, f, ∃α.C)}
∩ {wit(v′, t′, f ′,∃α′.C ′),wit′(v′, t′, f ′,∃α′.C ′)} = ∅.

A run is a triple (f, t0, γ) with (t0, f) ∈ Q, and γ a mapping
that assigns a flag-less element type γ(v) to each v ∈ V
such that (γ(v), f) ∈ `(v) and the following conditions are
satisfied:

1. if ∃α.C ∈ γ(v), then there is a v′ ∈
{wit(v, γ(v), f,∃α.C),wit′(v, γ(v), f,∃α.C)} such
that α ∈ ρv,v′((γ(v), f), (γ(v′), f)) and C ∈ γ(v′);

2. for each a ∈ Ind(A), we have γ(va) = {C | C(a) ∈ t0};
3. for all (v, v′) ∈ E, ρ((γ(v), f), (γ(v′), f)) is defined.
As the set of worlds W , choose a countable set of runs such
that

(a) for all (v, v′) ∈ E, all (t, f) ∈ `(v) and (t′, f) ∈ `(v′)
with ρv,v′((t, f), (t′, f)) defined, there is a run (f, t0, γ)
such that γ(v) = t and γ(v′) = t′;

(b) for each (t, f) ∈ Q, there is a run (f, t, γ) ∈W .

Let us verify that such a W indeed exists. It suffices to show
that the runs stipulated in (a) and (b) actually exist as the
minimal set that satisfies (a) and (b) is clearly countable.
For (a), let (v, v′) ∈ E, (t, f) ∈ `(v) and (t′, f) ∈ `(v′)
with ρv,v′((t, f), (t′, f)) defined. To construct the required
run (f, t0, γ), we proceed inductively as follows to define γ,
determining the ABox type t0 as part of the induction start:

• Induction start. We set γ(v) = t and γ(v′) = t′. Next,
we define γ(va) for all a ∈ Ind(A), i.e., the γ-value of all
tree roots. There are two cases:

– va = v for some a ∈ Ind(A).
Then (t, f) ∈ `(va) and Q[a] = `(va) implies that
there is a (t̂, f) ∈ Qwith {C | C(a) ∈ t̂} = t. Set t0 =
t̂ and γ(vb) = {C | C(a) ∈ t̂} for all b ∈ Ind(A)\{a};

– va 6= v for all a ∈ Ind(A).
Then choose a (t̂, f) ∈ Q (which exists by Condition 1
of quasiaboxes) and set t0 = t̂ and γ(va) = {C |
C(a) ∈ t0} for all a ∈ Ind(A).

In both cases, note that (γ(va), f) ∈ `(va) for all a ∈
Ind(a) as required since, by definition of quasimodels,
Q[a] = `(va);

• Inductively extend the map γ to all nodes in V by walking
top-down through the trees in Γ, carefully avoiding to re-
define the γ-values of the nodes v and v′. More precisely,
for each node v̂ with γ(v̂) already defined we perform the
following two operations (in this order):

– for each ∃α.C ∈ γ(v̂), choose a node

v̂′ ∈ {wit(v̂, γ(v̂), f,∃α.C),wit′(v̂, γ(v̂), f,∃α.C)}

such that v̂′ /∈ {v, v′} (note that we exploit the dupli-
cated witnesses here). Then set γ(v̂′) = t̂′ for some
(t̂′, f) ∈ `(v̂′) with α ∈ ρbv,bv′(t̂, t̂′) and C ∈ t̂′, which
exists by definition of witnesses.

– for each v̂′ with (v̂, v̂′) ∈ E and γ(v̂′) undefined, pro-
ceed as follows: by Condition 6 of connection types,
there is a t̂ ∈ `(v̂′) with ρbv,bv′((γ(v̂), f), (t̂, f)) defined;
set γ(v̂′) = t̂.

It is now routine to check that the constructed triple (f, t0, γ)
is indeed a run and satisfies γ(v) = t and γ(v′) = t′ as
required. For (b), choose a (t, f) ∈ Q and set t0 = t. To
obtain a run (f, t, γ), the map γ can be defined as in the
proof of (a), but without the special cases for the nodes v, v′
whose γ-value had to be preselected in (a).

We have thus shown that a set of worldsW with the stated
conditions (a) and (b) indeed exists. Define the probability
function µ such that

• µ(f, t0, γ) = 0 if f = 0;

• µ(f, t0, γ) > 0 if f = 1;

•
∑

(f,t0,γ)∈W |f=1 µ(r) = 1.

It is easy to see how to do this both if there are only finitely
many runs in W with f = 1 and if there are countably in-
ifinitely many such runs. To complete the definition of I,



it thus remains to define the extension of concept, role, and
individual names, which is done as follows:
AI,(f,t0,γ) = {v ∈ V | A ∈ γ(v)}
rI,(f,t0,γ) = {(v, v′) | (v, v′) ∈ E and

r ∈ ρv,v′((γ(v), f), (γ(v′), f))}∪
{(va, vb) | r(a, b) ∈ t0}

aI,(f,t0,γ) = va

This finishes the construction of the probabilistic interpreta-
tion I. We show the following:

Claim 1. For all C ∈ ccl(K), v ∈ ∆I , and (f, t0, γ) ∈ W ,
we have v ∈ CI,(f,t0,γ) iff C ∈ γ(v).

The proof is by induction on the structure of C. The in-
duction start, where C is a concept name, is immediate by
definition of I. For the induction step, we distinguish the
following cases:
• C = ¬D orC = D1uD2. It suffices to use the semantics,

induction hypothesis, and Conditions 2 and 3 of element
types.

• C = P>0D. We have v ∈ CI,(f,t0,γ) iff there is a
(1, t′0, γ

′) ∈ W with v ∈ DI,(1,t
′
0,γ

′) iff there is a
(1, t′0, γ

′) ∈ W with D ∈ γ′(v). It thus remains to show
that
P>0D ∈ γ(v) iff there is a (1, t′0, γ

′) ∈W with D ∈ γ′(v).
First let P>0D ∈ γ(v). Then (γ(v), f) ∈ `(v). By Con-
dition 7 of quasielements, there is a (t, 1) ∈ `(v) with
D ∈ t. By Property (a) of the selected set of worlds
W , there is a run (1, t′0, γ

′) with γ′(v) = t and thus we
done. For the converse direction, let (1, t′0, γ

′) ∈ W with
D ∈ γ′(v). Then (γ(v), f) ∈ `(v), (γ′(v), 1) ∈ `(v′),
and Condition 2 of quasielements yields P>0D ∈ γ(v).

• C = ∃α.C. For the “only if” direction, let v ∈
CI,(f,t0,γ). Then there is a v′ ∈ DI,(f,t0,γ) with (v, v′) ∈
αI,(f,t0,γ). By induction hypothesis, we get D ∈ γ(v′).
By definition of I and the semantics of probabilistic roles,
we can distinguish two cases:

1. (v, v′) ∈ E.
Let ρ = ρ(v, v′). We show that, in this case, (v, v′) ∈
αI,(f,t0,γ) implies that α ∈ ρ((γ(v), f), (γ(v′), f)):

– if α = r, then this follows directly from the definition
of I;

– if α = P>0r, then (v, v′) ∈ αI,(f,t0,γ) implies
(v, v′) ∈ rI,(1,t′0,γ′) for some (1, t′0, γ

′) ∈ W implies
r ∈ ρ((γ′(v), 1), (γ′(v′), 1)) for some (1, t′0, γ

′) ∈
W implies α ∈ ρ((γ(v), f), (γ(v′), f)) by Condi-
tion 4 of connection types.

– if α = P=1r, then (v, v′) ∈ αI,(f,t0,γ) implies
(v, v′) ∈ rI,(1,t

′
0,γ

′) for all (1, t′0, γ
′) ∈ W im-

plies r ∈ ρ((γ′(v), 1), (γ′(v′), 1)) for all (1, t′0, γ
′) ∈

W . By Property (a) of the set of runs W , this im-
plies r ∈ ρ((t, 1), (t′, 1)) for all (t, 1) ∈ `(v) and
(t′, 1) ∈ `(v′) with ρ((t, 1), (t′, 1)) defined. This im-
plies α ∈ ρ((γ(v), f), (γ(v′), f)) due to Condition 2
of connection types.

Now, α ∈ ρ((γ(v), f), (γ(v′), f)) and D ∈ γ(v′) im-
plies C ∈ γ(v) by Condition 5 of connection types.

2. v = va and v′ = vb for some a, b ∈ Ind(A). We show
that, then, α(a, b) ∈ t0:

– if α = r, then this follows directly from the definition
of I;

– if α = P>0r, then (v, v′) ∈ αI,(f,t0,γ) implies
(v, v′) ∈ rI,(1,t

′
0,γ

′) for some (1, t′0, γ
′) ∈ W im-

plies r(a, b) ∈ t′0 for some (1, t′0, γ
′) ∈ W implies

α(a, b) ∈ t0 by Condition 2 of quasiaboxes.
– if α = P=1r, then (v, v′) ∈ αI,(f,t0,γ) implies

(v, v′) ∈ rI,(1,t
′
0,γ

′) for all (1, t′0, γ
′) ∈ W implies

r(a, b) ∈ t0 for all (1, t′0, γ
′) ∈W . By Property (b) of

the set of runs W , this implies r(a, b) ∈ (t, 1) for all
(t, 1) ∈ Q. This implies α(a, b) = ¬P>0¬r(a, b) ∈
t0 due to Condition 2 of quasiaboxes and Condition 4
of ABox types.

By Condition 2 of runs, D ∈ γ(v′) implies D(b) ∈ t0.
Since α(a, b) ∈ t0, Condition 6 of ABox types yields
C(a) ∈ t0. Again by Condition 2 of runs, we get C ∈
γ(v) as required.

Now for the “if” direction. Let C ∈ γ(v). By Condi-
tion 1 of runs, there is a v′ ∈ V such that (v, v′) ∈ E,
α ∈ ρ((γ(v), f), (γ(v′), f)) where ρ = ρ(v, v′), and
D ∈ γ(v′). By induction hypothesis, the latter yields
v′ ∈ DI,(f,t0,γ), it thus remains to show that (v, v′) ∈
αI,(f,t0,γ), which can be done as follows:

– If α = r, then this follows directly from the definition
of I;

– if α = P>0r, then α ∈ ρ((γ(v), f), (γ(v′), f)) implies
r ∈ ρ((t, 1), (t′, 1)) for some (t, 1) ∈ `(v) and (t′, 1) ∈
`(v′) by Condition 3 of connection types. By Prop-
erty (a) of W , there is a run (1, t′0, γ

′) with γ′(v) = t

and γ′(v′) = t′. We have (v, v′) ∈ αI,(1,t′0,γ′) by def-
inition of I, which yields (v, v′) ∈ αI,(f,t0,γ) by the
semantics.

– if α = P=1r, then α ∈ ρ((γ(v), f), (γ(v′), f)) im-
plies r ∈ ρ((t, 1), (t′, 1)) for all (t, 1) ∈ `(v) and
(t′, 1) ∈ `(v′) with ρ((γ(v), f), (γ(v′), f)) defined by
Condition 1 of connection types. This implies (v, v′) ∈
αI,(1,t

′
0,γ

′) for all runs (1, t′0, γ
′) By Propery 3 of runs

and definition of rI , thus (v, v′) ∈ αI,(f,t0,γ) by the
semantics.

This finishes the proof of Claim 1. Together with Condi-
tion 1 of element types, Claim 1 yields that I is a model of
T . It thus remains to show that it is also a model of A. This
is based on the following claim.

Claim 2. For all A′ ∈ acl(K) and (f, t0, γ) ∈ W , we have
I, (f, t0, γ) |= A′ iff A′ ∈ t0.

The proof is by induction on the structure of A′. The base
cases are:

• A′ = C(a). By the semantics, I, (f, t0, γ) |= C(a) iff
va ∈ CI,(f,t0,γ). By Claim 1, va ∈ CI,(f,t0,γ) iff C ∈
γ(va). By Property 2 of runs, C ∈ γ(va) iff C(a) ∈ t0.



• A′ = r(a, b). Immediate by definition of I.

The induction step consists of the following cases:

• A′ = ¬A′′ or A′ = A′′ ∧ A′′′. It suffices to use the
semantics, induction hypothesis, and Conditions 4 and 5
of ABox types.

• A′ = P>0A′′. “only if”. By the semantics,
I, (f, t0, γ) |= A′ implies I, (1, t′0, γ′) |= A′′ for some
(1, t′0, γ

′) ∈ W . By induction hypothesis, A′′ ∈ t′0. By
Condition 2 of quasiaboxes, this yields A′ ∈ t0.
“if” By Condition 2 of quasiaboxes, A′ ∈ t0 implies
A′′ ∈ t for some (t, 1) ∈ Q. By Property (b) of W ,
there is a run (1, t, γ′) ∈ W . By induction hypothesis,
I, (1, t, γ′) |= A′′. By the semantics, I, (f, t0, γ) |= A′.

By definition of quasimodels, there is a (t, 0) ∈ Q with
A ∈ t. By Property (b) of the set W of runs, there is a
run (0, t0, γ) ∈ W . By Claim 2, we have I, (0, t0, γ) |= A.
Thus, I is a model of A as required.

“⇒”. Let K be consistent and I = (∆I ,W, (Iw)w∈W , µ)
a model of K. By Lemma 1, we can assume that there is
a world wA with I, wA |= A and µ(wA) = 0. With each
w ∈W and d ∈ ∆I , associate element and ABox types

tIw(d) = ({C ∈ ccl(K) | d ∈ CI,w}, f(w))
T Iw = ({A′ ∈ acl(K) | I, w |= A′}, f(w))

where f(w) = 0 if µ(w) = 0 and f(w) = 1 otherwise.
With each d ∈ ∆, associate a quasielement/quasiabox:

tI(d) = {tIw(d) | w ∈W}
T I = {T Iw | w ∈W}

A path is a sequence p = ad0d1 · · · dn, n ≥ 0, with a ∈
Ind(A) and d0, . . . , dn elements of ∆ such that

• aI = d0;

• for each i < n, there is a w ∈ W and a role name r that
occurs in K and such that (di, di+1) ∈ rI,w.

We use tail(p) to denote dn. For each a ∈ Ind(A), we want
to define a quasiworld Ωa = (Va, Ea, `a, ρa). Start by set-
ting

Vw = the set of all paths that start with a
Ew = {(p, pd) | p, pd ∈ Vw}

`w(p) = tIw(tail(p))

To define ρa(p, pd), for p, pd ∈ Va (from now on ρp,pd
for short), we proceed as follows. Let (t, f) ∈ `a(p) and
(t′, f) ∈ `a(p′). If there is a world w with

• tIw(tail(p)) = t,

• tIw(d) = t′, and

• µ(w) = 0 iff f = 0,

then set

ρp,pd((t, f), (t′, f)) =
{α ∈ {P>0r, r, P=1r | r ∈ rol(K)} | (tail(p), d) ∈ αI,w}.

If there is no such w, ρp,pd((t, f), (t′, f)) remains unde-
fined. For each a ∈ Ind(A), set π(a) = Ωa. Finally, define
a quasimodel

M = (T I , {Ωa | a ∈ Ind(A)}, π).

It is tedious but straightforward to verify that M is a quasi-
model for K. o

By Lemma 18, we can decide the satisfiability of a Prob-
ALC01 knowledge base K by checking whether there is a
quasimodel of K. This is done by a ‘type elimination’-style
algorithm. For pairs (Q0,Q

′
0) and (Q1,Q

′
1) with Q0,Q1 ⊆

QK and Q′0,Q
′
1 ⊆ Q′K, we write (Q0,Q

′
0) ⊆ (Q1,Q

′
1)

iff Q0 ⊆ Q1 and Q′0 ⊆ Q′1. The algorithm computes a
sequence

(Q0,Q
′
0) ⊇ (Q1,Q

′
1) ⊇ · · ·

by starting with Q0 = QK and Qi = Q′K and then repeat-
edly eleminating quasiaboxes from Qi and quasielements
from Q′i as follows:
1. Qi+1 consists of all those Q ∈ Qi such that for each
a ∈ Ind(A), (t, f) ∈ Q[a], and ∃α.C ∈ t, there is a
Q′ ∈ Q′i and a connection type ρ for Q[a] and Q′ that is
a witness for ∃α.C in (t, f);

2. Q′i+1 consists of all those Q ∈ Q′i such that for each
(t, f) ∈ Q and ∃α.C ∈ t, there is a Q′ ∈ Q′i and a
connection type ρ for Q and Q′ that is a witness for ∃α.C
in (t, f).

The algorithm terminates when (Qi,Q
′
i) = (Qi+1,Q

′
i+1).

It returns ‘consistent’ when there is aQ ∈ Qi and (t, 0) ∈ Q
with A ∈ t, and ‘inconsistent’ otherwise.
Lemma 19. The algorithm returns ‘consistent’ if K is con-
sistent and inconsistent otherwise.

Proof. If the algorithm returns consistent, then
(Qi,Q

′
i) = (Qi+1,Q

′
i+1) for some i and there is aQ0 ∈ Qi

and a (t, 0) ∈ Q0 with A ∈ t. To show that K is consis-
tent, it suffices to prove the existence of a quasimodel for
K. For each a ∈ Ind(A), we can construct a quasiworld
Ωa = (V,E, `, ρ) as follows: start with V = {va} and
set `(va) = Q0[a]. Then repeatedly add successors to each
node v in the tree as follows: for each Q ∈ `(v), (t, f) ∈ Q,
and ∃α.C ∈ t, choose a Q′ ∈ Q′i and a connection type
ρ for Q and Q′ that is a witness for ∃α.C in (t, f), and
set `(v′) = Q′ and ρ(v, v′) = ρ. Note that the required
node v′ exists since since `(v) was not eliminated from Qi,
`(va) = Q[a] for some Q ∈ Qi, and `(v) ∈ Q′i for all
v 6= va. For each a ∈ Ind(A), set π(a) = Ωa. Now it is
easy to see that

M = (Q0, {Ωa | a ∈ Ind(A)}, π).

is a quasimodel for K.
Conversely, let K be consistent and (Q0,Γ, π) a quasi-

model for K. Let

Q′ = {`(v) | (V,E, `, ρ) ∈ Γ ∧ v ∈ V }.

It is not hard to show by induction on i that
• Q0 ∈ Qi for all i ≥ 0;



• Q′ ⊆ Q′i for all i ≥ 0.
Since termination of our algorithm is immediate and, by def-
inition of quasimodels, there is a (t, 0) ∈ Q0 withA ∈ t, the
algorithm returns “consistent”. o

To establish Theorem 12, it thus remains to analyze the time
complexity of the algorithm. First, the number of com-
puted pairs (Qi,Q

′
i) is clearly bounded by the cardinality

of QK∪Q′K, which is 22p(|K|)
, p a polynomial. And second,

each pair (Qi+1,Q
′
i+1) can be computed from (Qi,Q

′
i) in

time 22p(|K|)
. In particular, for two element types Q and Q′,

we can check the existence of the connection type required
in construction rules 1 and 2 above by simply enumerating
all partial functions from Q × Q to {P>0r, r, P=1r | r ∈
rol(A)}, of which there are 22p(|K|)

many.

Proofs for Prob-EL Lower Bounds
Theorem 13. In EL extended with any of P>nC, P≥n,
∃P>nr.>, and ∃P≥nr.>, instance checking is EXPTIME-
hard. In the former two cases, it is EXPTIME-complete.

Proof. The lower bounds are shown by reduction of the
satisfiability of a concept name w.r.t. an ALC-TBox (set
of inclusions C v D), where a concept name A is sat-
isfiable w.r.t. an ALC-TBox T if there is a model I of T
with AI 6= ∅. This problem is well-known to be EXPTIME-
complete (Baader et al. 2003). We only deal with the exten-
sion of EL with P>nC, the other cases are similar.

Suppose that anALC-TBox T and a concept nameA0 are
given for which satisfiability is to be decided. We assume
thatALC-concepts in T are built only from the constructors
¬, u, and ∃r.C. First, we manipulate the TBox T as follows:

(a) Ensure that negation ¬ occurs in front of concept names,
only: for every subconcept ¬C in T with C complex,
introduce a fresh concept name A, replace ¬C with ¬A,
and add A v C and C v A to T .

(b) Eliminate negation: for every subconcept ¬A, introduce
a fresh concept name A, replace every occurrence of ¬A
with A, and add > v A tA and A uA v ⊥ to T .

(c) Eliminate disjunction: modulo introduction of new con-
cept names, we may assume that t occur in T only in the
form (i) A tB v C and (ii) C v A tB, where A and B
are concept names and C is disjunction free. The former
kind of inclusion is replaced with A v C and B v C.
The latter one is replaced with

C v P>0.4A1 u P>0.4A2 u P>0.4A3

P>0(A1 uA2) v A

P>0(A1 uA3) v A

P>0(A2 uA3) v B

where A1, A2, A3 are fresh concept names.
Let T ′ be the TBox obtained by these manipulations. It is
standard to prove that A0 is satisfiable w.r.t. T iff A0 is sat-
isfiable w.r.t. T ′.

The TBox T ′ contains only the operators u, ∃, >, ⊥,
and P>n. We now reduce satisfiability of A0 w.r.t. T ′ to

(the complement of) instance checking in EL extended with
P>nC. Introduce a fresh concept name L, replace every oc-
currence of ⊥ with L and extend T ′ with ∃r.L v L, for
every role r from T ′. Then A0 is satisfiable w.r.t. T ′ iff
(T ′′, A0(a)) 6|= L(a). o

Let Prob-EL01
r=1 (resp. Prob-EL01

r=1) be the extension of
EL with P>0C and ∃P=1r.C (resp. ∃P>0r.C). It can be
shown that both logics are convex.

Lemma 20. Prob-EL01
r=1 and Prob-EL01

r>0 lack the FMP.

Proof. For Prob-EL01
r=1, it can be verified that we have K =

(T , ∅) 6|= B(a), where

T = {> v P>0A
> v ∃P=1r.>

∃r.A v A′

∃r.A′ v A′

A uA′ v B
∃r.B v B
P>0B v B}

but that all finite models I of K satisfy aI ∈ BI,w for all
w ∈ ∆I . The same example works for Prob-EL01

r>0 if > v
∃P=1r.> is replaced with > v ∃P>0r.> and all concepts
∃r.C are replaced with ∃P>0r.C. o

Theorem 14. Instance checking in Prob-EL01
r=1 and Prob-

EL01
r>0 is PSPACE-hard.

Proof. We concentrate on Prob-EL01
r=1 and only sketch

the modifications required for Prob-EL01
r>0. The proof is

by reduction of the word problem of deterministic, poly-
nomially space-bounded Turing machines. Let M =
(Q,Σ,Γ, δ, q0, qacc, qrej) be such a machine, x ∈ Σ an in-
put of length n, and m = p(n) the space bound of M on x.
We assume w.l.o.g. that M terminates on every input, that it
never attempts to move left on the left-most end of the tape,
and that there are no transitions defined for qacc and qrej. Our
aim is to construct in polynomial time a TBox T and con-
cept C0 such that K = (T , ∅) |= C0(a) iff M accepts x. We
use the following signature:
• the elements of Q are used as concept names;

• concept names σ(i) for σ ∈ Γ and i < m indicate that the
content of the i-th tape cell is σ;

• concept names Hi for i < m indicate that the head is on
the i-th cell;

• a role name r.
Each model I of T will take the form of an infinite r-chain
of probability 1, i.e., there are d0, d1, . . . ∈ ∆I such that
pIdi,di+1

(r) = 1 for all i ≥ 0. For every di, there will be a
world w such that the concept memberships of d represent
the initial configuration of M on x. When going backwards
in the chain but staying in the world w, the concept member-
ships evolve according to the computation of M on x. Since
this holds for all di (i.e., at arbitrary distance from d0), it
follows that for each configuration c that is encountered dur-
ing the computation, there is a world w where the concept



memberships of d0 represent c. It is then easy to use C0 to
check whether any of these configurations is accepting.

More specifically, the TBox T contains the following im-
plications:

• Models take the form of an infinite r-chain:

> v ∃P=1r.>

• At every point of the chain, there is a world that describes
the initial configuration:

> v P>0(q0uH0ux(0)
0 u· · ·ux

(n−1)
n−1 uB(n)u· · ·uB(m−1))

where x = x0 · · ·xn−1 is the input and B denotes the
blank symbol.

• The computation proceeds as required by M :

∃r.(q uHi u σ(i)) v q′ uHi−1 u γ(i)

for 0 < i < m, δ(q, σ) = (q′, γ, L)
∃r.(q uHi u σ(i)) v q′ uHi+1 u γ(i)

for i < m− 1, δ(q, σ) = (q′, γ, R)
∃r.(σ(i) uHj) v σ(i) for i, j < m, i 6= j

Finally, set C0 to P>0qacc.

Claim. K |= C0(a) iff M accepts x.

“⇒”. Assume that M does not accept x. Let c0, . . . , ck−1

be the (rejecting) computation of M on x, represented in the
obvious way as sets of concept names. Define a probabilistic
interpretation I = (∆I ,W, (Iw)w∈W , µ) by setting:

• ∆I = W = N;

• µ(0) = 1/2, µ(1) = 1/4, µ(2) = 1/8, . . .

• AI,j = {i ∈ ∆I | j − i < k ∧A ∈ cj−i};

• rI,j = {(i, i+ 1) | i ∈ ∆};

• aI = 0.

It is not hard to see that I is a model of T with aI /∈ CI,00 .

“⇐”. Assume that M accepts x and let c0, . . . , ck−1 be the
(accepting) computation of M on x, again represented as
sets of concept names. Let I be a probabilistic model of
T , d0 ∈ ∆I , and w0 ∈ W . By definition of T , there is
an infinite chain d0, d1, · · · ∈ ∆I such that pIdi,di+1

(r) = 1.
Again by definition of T , there is a worldw such that dk−1 ∈
AI,w for all A ∈ ck−1. Using once more the definition of
T , we derive that for all j < k, dj ∈ AI,w for all A ∈ cj . It
follows that d0 ∈ qI,wacc and thus d0 ∈ (P>0qacc)I,w0 .

To adapt the described reduction to Prob-EL01
r>0, proceed as

in the proof of the lacking FMP: replace> v ∃P=1r.> with
> v ∃P>0r.> and all concepts ∃r.C with ∃P>0r.C. o

Proofs for Prob-EL Upper Bounds

Lemma 15. For all A0 ∈ NC and a ∈ Ind(A), K |= A0(a0)
iff A0 ∈ Q̂(a0, 0).

Proof. “⇒”. Assume that A0 /∈ Q̂(a0, 0). We define a
model I = (∆I ,W, (Iw)w∈W , µ) of K which shows that
K 6|= A0(a0). Set

∆I := Ind(A) ∪ (NKC × V )
W := V

µ(0) := 0
µ(w) := 1/|W \ {0}| for all w ∈W \ {0}
aI = a for all a ∈ NC

To define the ‘local’ interpretations Iw, first fix for eachw ∈
W \{0} a bijection πw : W →W such that πw(w) = ε and
πw(0) = 0. Moreover, let π0 be the identity mapping on W .
Now set

AI,w = {a | A ∈ Q̂(a,w)} ∪
{(B, v) ∈ ∆I | A ∈ fB,γ(v)(πv(w))}

rI,w = {(a, b) | w = 0 ∧ r(a, b) ∈ A} ∪
{(a, b) | w = P>0r(a, b)} ∪
{(a, b) | P=1r(a, b) ∈ A} ∪
{(a, (A,w)) | X ∈ Q̂(a,w)∧

X v ∃r.A ∈ T } ∪
{((B, v), (A,w)) | X ∈ fB,γ(v)(πv(w))∧

X v ∃r.A ∈ T }

By construction of I and since A0 /∈ Q̂(a0, 0), we clearly
have aI0 /∈ AI,0. It thus remains to show that I is a model
of K = (T ,A). We first prove that

(i) X ∈ Q̂(a,w) iff a ∈ XI,w;

(ii) X ∈ fA,γ(v)(πv(w)) iff (A, v) ∈ XI,w.

The proof of (∗) is by a case distinction according to the
possible forms of X:

• X = >.
Trivial since> ∈ Q̂(a,w) for all a ∈ Ind(A) andw ∈W ,
> ∈ fA,i(w) for allA ∈ NKC , i ∈ {0, ε}, and w ∈W , and
by the semantics of >.

• X = A ∈ NC.
Trivial by definition of I.

• X = P>0A.
For the “⇒” direction of (i), let P>0A ∈ Q̂(a,w). By R2,
this yields A ∈ Q̂(a, P>0A). Thus trivially a ∈ AI,P>0A

and the semantics yields a ∈ (P>0A)I,w. For the “⇐”
direction, let a ∈ (P>0A)I,w. Then there is a v ∈W \{0}
with a ∈ AI,v . Trivially, A ∈ Q̂(a, v). By R4, P>0A ∈
Q̂(a,w).

For the “⇒” direction of (ii), let P>0B ∈ fA,γ(v)(πv(w)).
By R2, this yields B ∈ fA,γ(v)(a, P>0B). Thus triv-
ially (A, v) ∈ BI,u with πv(u) = P>0B. The defini-
tion of πv and I yields µ(u) > 0 and thus we obtain



a ∈ (P>0A)I,u by the semantics. For the “⇐” direction,
let (A, v) ∈ (P>0B)I,w. Then there is a u ∈ W \ {0}
with a ∈ AI,u. Trivially, A ∈ fA,γ(v)(πv(u)). By defini-
tion of πv , πv(u) 6= 0. By R4, P>0A ∈ Q̂(a,w).

• X = P=1A.
For the “⇒” direction of (i), let P=1A ∈ Q̂(a,w). By R3,
this yieldsA ∈ Q̂(a, v) for all v ∈W \{0}. Thus trivially
a ∈ AI,v for all these v and the construction of I together
with the semantics yields a ∈ (P=1A)I,w. For the “⇐”
direction, let a ∈ (P=1A)I,w. Then a ∈ AI,1. Trivially,
A ∈ Q̂(a, 1). By R5, P=1A ∈ Q̂(a,w). We leave (ii) to
the reader.

We now show that I is a model of T , using a case distinction
according to the different forms of concept inclusions:

• X1 u · · · uXn v X .
First let a ∈ (X1 u · · · u Xn)I,w. By the semantics, we
have a ∈ XI,wi for 1 ≤ i ≤ n. By (i), Xi ∈ Q̂(a,w) for
1 ≤ i ≤ n. By R1, X ∈ Q̂(a,w). It thus remains to once
more apply (ii). The case (A, v) ∈ (X1 u · · · uXn)I,w is
analogous.

• X v ∃r.A.
Let a ∈ XI,w. Then X ∈ Q̂(a,w). By construction of
I, we have (a, (A,w)) ∈ rI,w. By initialization of the
quasimodel, A ∈ fA,γ(w)(γ(w)). Since πw(w) = γ(w)
and by (ii), we get (A,w) ∈ AI,w. By the semantics,
a ∈ (∃r.A)I,w as required.

• ∃r.X v A.
Let a ∈ (∃r.X)I,w. Then there is an α ∈ ∆I with
(a, α) ∈ rI,w and α ∈ XI,w. By definition of I, we
can distinguish four cases:

1. w = 0, α = b, and r(a, b) ∈ A.
By (i), α ∈ XI,w yields X ∈ Q̂(b, 0). Thus, R7 yields
A ∈ Q̂(a, 0) and it remains to once more apply (i).

2. w = P>0r(a, b) ∈ A and α = b.
By (i), α ∈ XI,w yields X ∈ Q̂(b, P>0r(a, b)). Thus,
R8 yields A ∈ Q̂(a, P>0r(a, b)) and it remains to once
more apply (i).

3. α = b and P=1 ∈ A.
By (i), α ∈ XI,w yields X ∈ Q̂(b, w). Thus, R9 yields
A ∈ Q̂(a,w) and it remains to once more apply (i).

4. α = (B,w), Y ∈ Q̂(a,w), Y v ∃r.B ∈ T .
By (ii), α ∈ XI,w yields X ∈ fB,γ(w)(πw(w)). Since
πw(w) = γw, R6 yields A ∈ Q̂(a,w). By (i), we get
a ∈ AI,w.

Now let (B′, v) ∈ (∃r.X)I,w. Then there is an α ∈ ∆I
with ((B′, v), α) ∈ rI,w and α ∈ XI,w. By defini-
tion of I, there are B, Y such that α = (B,w), Y ∈
fB′,γ(v)(πv(w)), and Y v ∃r.B ∈ T . By (ii), α ∈ XI,w
yields X ∈ fB,γ(w)(πw(w)). Since πw(w) = γw, rules
R6 and R7 yield A ∈ fB′,γ(v)(πv(w)). By (ii), we get
(B′, v) ∈ AI,w.

It remains to show that I, 0 |= A. We make a case distinc-
tion according to the types of assertions in A:
• A(a).

By definition of the initial quasimodel, we have A ∈
Q̂(a, 0). By (i), this yields a ∈ AI,0.

• r(a, b).
By construction of I, (a, b) ∈ rI,0.

• P>0r(a, b).
By construction of I, (a, b) ∈ rI,P>0r(a,b). By the se-
mantics, I, 0 |= P>0r(a, b).

• P=1r(a, b).
By the construction of I, (a, b) ∈ rI,w for all w ∈ W \
{0}. By the definition of µ and the semantics, I, 0 |=
P=1r(a, b).

“⇐”. We show by induction on the number of rule applica-
tions that the following invariants are satisfied:

1. for all X ∈ CK and a ∈ Ind(A), X ∈ Q̂(a, 0) implies
K |= X(a);

2. for all X ∈ CK and a ∈ Ind(A), X ∈ Q̂(a, 1) implies
K |= P=1X(a);

3. for all X ∈ CK, a ∈ Ind(A), and v ∈ V \ {0}, X ∈
Q̂(v, 1) implies K |= P>0X(a);

4. for all X ∈ CK and (A, 0) ∈ Ω, X ∈ fA,0(0) implies
K |= A v X;

5. for all X ∈ CK and (A, 0) ∈ Ω, X ∈ fA,0(1) implies
K |= A v P=1X;

6. for all X ∈ CK, (A, 0) ∈ Ω, and v ∈ V \ {0}, X ∈
fA,0(v) implies K |= A v P>0X;

7. for all X ∈ CK and (A, ε) ∈ Ω, X ∈ fA,ε(0) implies
K |= P>0A v X;

8. for all X ∈ CK and (A, ε) ∈ Ω, X ∈ fA,ε(1) implies
K |= P>0A v P=1X;

9. for all X ∈ CK, (A, ε) ∈ Ω, and v ∈ V \ {0}, X ∈
fA,ε(v) implies K |= P>0A v P>0X .

It is a matter of routine to verify that the initial quasimodel
satisfies these invariants, and that they are preserved by
each rule application. Obviously, Invariant 1 then yields
the desired result, i.e., for all A0 ∈ NC and a0 ∈ Ind(A),
A0 ∈ Q̂(a0, 0) implies K |= A0(a0). o

Theorem 16. Instance checking in Prob-EL01
c can be de-

cided in PTIME.

Proof. Since Lemma 15 established the soundness and cor-
rectness of the described procedure, it remains to verify that
it runs in polytime. This is simple: the rules are mono-
tonic in the sense that they only extend the sets Q̂(a, v) and
fA,i(v), (A, i) ∈ Ω, but never shrink them. The number of
these sets is bounded by O(|K|2) and each set contains at
most |K| elements. It thus remains to note that each rule ap-
plication can clearly be carried out in polynomial time.

o



Statistical Probabilities and Type 1
Probabilistic FOL

Apart from Type 2 probabilistic FOL for subjective
probabilities, which we have used to define Prob-ALC,
Halpern (1990) also considers Type 1 logics for statistical
probabilities (and even combines the two into what he calls
Type 3 logics). As explained in the introduction, the main
difference between Type 1 and Type 2 is a different seman-
tics: the former uses probability distributions on the domain
of discourse, whereas the latter is concerned with probabil-
ity distributions on a set of possible worlds, each associated
with a standard FO interpretation. In this section, we define
a probabilistic DL that is obtained from Type 1 probabilis-
tic FOL in the same way as Prob-ALC was obtained from
Type 2 probabilistic FOL. Alas, it turns out that the result-
ing logic is of very limited expressive power.

In the logic Prob1-ALC, concepts are built as in ALC,
i.e., according to the syntax rule

C ::= A | ¬C | C uD | ∃r.C

A TBox is a set of concept inclusions C v D and TBox
inequalities, which are linear inequalities over expressions
P (C), C a concept. It is easy to encode conditional proba-
bilities in the standard way, i.e., to introduce the abbreviation

P (α|β) ≥ n for P (α ∧ β) ≥ n · P (β)

and similarly for other comparison operators. For example,
the following is a TBox in Prob1-ALC:

{strokePatient = ∃ hasDisease. stroke,

ischemicStroke = stroke u ∃ hasCause. ischemia,

elderlyPerson = person u ∃ hasAge. over65,

P (strokePatient | male) ≥ 0.01,
P (ischemicStroke | stroke) ≥ 0.8,
P (elderlyPerson | strokePatient ≥ 0.75}.

Besides the obvious (crisp) terminology definitions, it states
that 1% of all (living) males are stroke patients, that at least
80% of all strokes are ischemic, and that 75% of all stroke
patients are over 65.

A type 1 probabilistic interpretation is a structure

I = (∆I , ·I , µ)

where (∆I , ·I) is a standard DL interpretation and µ a dis-
crete probability distribution over ∆I . The interpretation
of concepts is standard and does not refer to µ. For each
concept C, we use µ(CI) to denote

∑
d∈CI µ(d). An inter-

pretation I satisfies
• a concept inclusion C v D simply if CI ⊆ DI ;
• a TBox inequality E if E is true when each P (C) is re-

placed with µ(CI). It is a model of a TBox T if it satisfies
all TBox statements in T .

As Halpern argues and as we have explained in the introduc-
tion, assertions of facts on the ‘instance level’ necessarily re-
main crisp when we are concerned with statistical probabil-
ities. For this reason, it is not meaningful to equip ABoxes

in Prob1-ALC with probabilistic features and they would
simply have to be sets of assertions C(a) and r(a, b). Such
ABoxes have a non-trivial interaction with the TBox if and
only if we impose at the same time that named individuals
have positive probability (otherwise, we can satisfy the en-
tire ABox in worlds of probability 0); e.g. if the TBox con-
tains an axiom C v D and the ABox contains (Du¬C)(a),
then we can infer P (C) < P (D). However, since the view
of probability is intended to be statistical in this case, such
an interaction would seem to be undesirable: a statistic as-
sertion should not be affected by knowledge about single
individuals; indeed, this appears to be the whole point of
statistics. It therefore seems reasonable to exclude ABoxes
in Type 1 logics altogether. In a slogan, purely statistical
probabilities mean that only TBox reasoning is relevant.

Therefore, we consider the problem of TBox entailment
as the relevant reasoning task, which is defined as follows:
given a TBox T and a TBox inequality E , decide whether
E is satisfied in all models of T (written T |= E). Note
that negations of single linear inequalities are again linear
inequalities, so that TBox entailment reduces to TBox con-
sistency. Thus, the following theorem fixes the complexity
of TBox entailment.
Theorem 21. Consistency in Prob1-ALC is EXPTIME-
complete.

Proof. The lower bound is inherited from ALC; we
prove the upper bound. Call a type t satisfiable if there ex-
ists a standard ALC interpretation (disregarding the TBox)
in which t has non-empty interpretation. By the standard
method of type elimination, we can compute the set T of
satisfiable types in exponential time and define an ALC-
interpretation I on T that satisfies the truth lemma, i.e. for
every t ∈ T and every conceptC in the closure of T , t ∈ CI
iff C ∈ T .

Then the TBox T induces a set E(T ) of linear inequalities
over the set of variable {xt | t ∈ T} containing
• The equation

∑
t∈T xt = 1;

• for each t ∈ T , the inequality xt ≥ 0; and
• for each α =

∑n
i=1 aiP (Ci) ∗ r (where a1, . . . , an, r are

rational numbers and ∗ ∈ {≥, >}) in T , an inequality∑n
i=1 ai

∑
C∈t xt ∗ r.

Since linear programming is in P and the system is of ex-
ponential size (as T is of exponential size), we can decide
in exponential time whether E(T ) has a solution. Thus we
are done once we show that T is satisfiable iff E(T ) has a
solution. However, this is clear by the truth lemma for the
underlying ALC-interpretation on T . o

Thus, the computational behaviour of Prob1-ALC is rather
good. However, the expressive power provided by this logic
is clearly limit. A more careful analysis of Type 1 proba-
bilistic DLs is left for future work.


