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ABSTRACT. Hybrid logic extends modal logic with support for reasoning about individual states,
designated by so-called nominals. We study hybrid logic in the broad context of coalgebraic seman-
tics, where Kripke frames are replaced with coalgebras for a given functor, thus covering a wide range
of reasoning principles including, e.g., probabilistic, graded, default,or coalitional operators. Specif-
ically, we establish generic criteria for a given coalgebraic hybrid logic to admit named canonical
models, with ensuing completeness proofs for pure extensions on the one hand, and for an extended
hybrid language with local binding on the other. We instantiate our framework with a number of
examples. Notably, we prove completeness of graded hybrid logic with local binding.

Introduction

Modal logics have traditionally played a central role in Computer Science, appearing, e.g., in the
guise of temporal logics, program logics such as PDL, epistemic logics, andlater as description
logics. The development of modal logics has seen extensions along (at least) two axes: the enhance-
ment of the expressive power of basic (relational) modal logic on the one hand, and the continual
extension, beyond the purely relational realm, of the class of structures described using modal logics
on the other hand. Hybrid logic falls into the first category, extending modal logic with the ability
to reason about individual states in models. This feature, originally suggested by Prior and first
studied in the context of tense logics and PDL (see [5] for references), is of particular relevance in
knowledge representation languages and as such has found its way into modern description logics,
where it is denoted by the letterO in the standard naming scheme [2].

Extensions along the second axis – semantics beyond Kripke structures and neighbourhood
models – include various probabilistic modal logics, interpreted over probabilistic transition sys-
tems, graded modal logic over multigraphs [8], conditional logics over selection function frames [6],
and coalition logic [17], interpreted over so-called game frames. As a unifying semantic bracket
covering all these logics and many further ones, coalgebraic modal logic has emerged ([7] gives a
survey). The scope of coalgebraic modal logic has recently been expanded to encompass nominals;
we refer to the arising class of logics ascoalgebraic hybrid logics. Existing results include a finite
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model result, an internalized tableaux calculus, and genericPSPACE upper bounds, but are so
far limited to logics that exclude frame conditions and local binding [14]. Whatis missing from
this picture technically is a theory ofnamed canonical models[5]. Named canonical models yield
not only strong completeness of the basic hybrid logic, but also completeness of pure extensions,
defined by axioms that do not contain propositional variables (but may contain nominals; e.g. in
Kripke semantics, the pure axiom♦♦i → ♦i, with i a nominal, defines transitive frames). More-
over, named canonical models establish completeness for an extended hybrid language with a local
binding operator↓ x. φ(x), read as “the current statex satisfiesφ(x)”. Both pure extensions and the
language with↓ (not addressed in [14]) are, in general, undecidable [1] (it should be noted, however,
that fragments of the language with↓ over Kripke frames are decidable and as such play a role, e.g.,
in conjunctive query answering in description logic [11]). As a consequence, completeness of pure
extensions and local binding is the best we can hope for – it establishes recursive enumerability of
the set of valid formulas, and it enables automated reasoning, if not decision procedures.

Specifically, we establish two separate criteria for the existence of named models. Although
these criteria are (in all likelihood necessarily) less widely applicable than some previous coalge-
braic results including those of [14], the generic results allow us to establishnew completeness
results for a wide variety of logics; in particular, we prove strong completeness of graded hybrid
logic, and ultimately an extension of the description logicSHOQ, with the↓ binder over a wide
variety of frame classes.

1. Coalgebraic Hybrid Logic

To make our treatment parametric in the syntax, we fix a modal similarity typeΛ consisting of
modal operators with associated arities throughout. For given countably infinite and disjoint sets
P of propositional variables andN of nominals, the setF(Λ) of hybrid Λ-formulasis given by the
grammar

F(Λ) ∋ φ, ψ ::= p | i | φ ∧ ψ | ¬φ | ♥(φ1, . . . , φn) | @iφ

wherep ∈ P, i ∈ N and♥ ∈ Λ is ann-ary modal operator. (Alternatively, we could regardproposi-
tional variablesas nullary modal operators, thus avoiding their explicit mention altogether. Wekeep
them explicit here, following standard practice in modal logic, as we have to deal with valuations
anyway due to the presence of nominals.) We use the standard definitions for the other propositional
connectives→,↔,∨. The set of nominals occurring in a formulaφ is denoted byN(φ), similarly
for sets of formulas. A formula of the form@iφ is called an@-formula. Semantically, nominalsi
denote individual states in a model, and@iφ stipulates thatφ holds at statei.

To reflect parametricity also semantically, we equip hybrid logics with acoalgebraic semantics
extending the standard coalgebraic semantics of modal logics [16]: we fix throughout aΛ-structure
consisting of an endofunctorT : Set → Set on the category of sets, together with an assignment
of ann-ary predicate liftingJ♥K to everyn-ary modal operator♥ ∈ Λ, i.e. a set-indexed family of
mappings(J♥KX : P(X)n → P(TX))X∈Set that satisfies

J♥KX ◦ (f−1)n = (Tf)−1 ◦ J♥KY

for all f : X → Y . In categorical terms,[[♥]] is a natural transformationQn → Q ◦ T op where
Q : Setop → Set is the contravariant powerset functor.

In this setting,T -coalgebras play the roles offrames. A T -coalgebrais a pair(C, γ) where
C is a set ofstatesandγ : C → TC is thetransition function. Whenγ is clear from the context,
we refer to(C, γ) just asC. A (hybrid) T -modelM = (C, γ, V ) consists of aT -coalgebra(C, γ)
together with ahybrid valuationV , i.e. a mapP ∪ N → P(C) that assigns singleton sets to all
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nominalsi ∈ N. We say thatM is basedon the frame(C, γ). The singleton setV (i) is tacitly
identified with its unique element.

The semantics ofF(Λ) is a satisfaction relation|= between statesc ∈ C in hybrid T -models
M = (C, γ, V ) and formulasφ ∈ F(Λ), inductively defined as follows. Forx ∈ N ∪ P andi ∈ N,

M, c |= x iff c ∈ V (x) and M, c |= @iφ iff M, V (i) |= φ.

Modal operators are interpreted using their associated predicate liftings,that is,

M, c |= ♥(φ1, . . . , φn) ⇐⇒ γ(c) ∈ J♥KC(Jφ1KM , . . . , JφnKM )

where♥ ∈ Λ is n-ary andJφKM = {c ∈ C | M, c |= φ} denotes the truth-set ofφ relative to
M . We writeM |= φ if M, c |= φ for all c ∈ C. For a setΦ ⊆ F(Λ) of formulas, we write
M, c |= Φ if M, c |= φ for all φ ∈ Φ, andM |= Φ if M |= φ for all φ ∈ Φ. We say thatΦ is
satisfiablein a modelM if there exists a statec in M such thatM, c |= Φ. If A ⊆ F(Λ) is a set
of axioms, also referred to asframe conditions, a frame(C, γ) is anA-frameif (C, γ, V ) |= φ for
all hybrid valuationsV and allφ ∈ A, and a model is anA-modelif it is based on anA-frame. A
frame condition ispure if it does not contain any propositional variables (it may however contain
nominals). We recall notation from earlier work:

Notation 1. As usual, application of substitutionsσ : P → F(Λ) to formulasφ is denotedφσ.
For a setΣ of formulas and a setO of operators, we writeOΣ or O(Σ) for the set of formulas
arising by prefixing elements ofΣ with an operator fromO; e.g.Λ(Σ) = {♥(φ1, . . . , φn) | ♥ ∈
Λ n-ary, φ1, . . . , φn ∈ Σ} and@Σ := {@i | i ∈ N}(Σ) = {@iφ | i ∈ N, φ ∈ Σ}. Moreover,
Prop(Z) denotes the set of propositional combinations of elements of some setZ. Forφ ∈ Prop(Z),
we writeX, τ |= φ if φ evaluates to⊤ in the boolean algebraP(X) under a valuationτ : Z →
P(X). Forψ ∈ Prop(Λ(Z)), the interpretationJψKTX,τ of ψ in the boolean algebraP(TX) under
τ is the inductive extension of the assignmentJ♥(p1, . . . , pn)KTX,τ = J♥KX(τ(p1), . . . , τ(pn)).
We write TX, τ |= ψ if JψKTX,τ = TX, and t |=TX,τ ψ if t ∈ JψKTX,τ . A set of formulas
Ξ ⊆ Prop(Λ(Z)) is one-step satisfiablew.r.t. τ if

⋂
φ∈ΞJφKTX,τ 6= ∅. We occasionally apply this

notation to setsZ ⊆ P(X) with τ being just inclusion, in which case mention ofτ is suppressed.

In the sequel, we will be interested in bothlocal andglobal semantic consequence, where local
consequence refers to satisfaction in a single state and global consequence to satisfaction in entire
models. In fact, we consider local reasoning under global assumptions:given a setΦ ⊆ F(Λ) of
global assumptions (aTBoxin description logic terminology) and a classC of models, we say that
φ is a local consequence ofΨ under global assumptionsΦ for C-models, in symbolsΦ; Ψ |=C φ,
if for all M ∈ C such thatM |= Φ, M, c |= φ wheneverM, c |= Ψ (here, bothΦ andΨ are
sets of arbitrary formulas, in particular not subject to any restrictions on the nesting depth of modal
operators). The standard notions of local and global consequence are regained from this general
definition by takingΦ or Ψ to be empty, respectively.

The distinguishing feature of the coalgebraic approach to hybrid and modal logics is the para-
metricity in both the logical language and the notion of frame: concrete instantiations of the general
framework, in other words a choice of modal operatorsΛ and aΛ-structureT , capture the syntax
and semantics of a wide range of modal logics, as witnessed by the following examples.

Examples 1.1. 1. The hybrid version of the modal logicK, hybrid K for short, has a single
unary modal operator¤, interpreted over the structure consisting of the powerset functorP (which
takes a setX to its powersetP(X)) and the predicate liftingJ¤KX(A) = {B ∈ P(X) | B ⊆ A}.
It is clear thatP-coalgebras(C, γ : C → P(C)) are in 1-1 correspondence with Kripke frames, and
that the coalgebraic definition of satisfaction specializes to the usual semantics of the box operator.
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2. Graded hybrid logichas modal operators♦k ‘in more thank successors, it holds that’. It is
interpreted over the functorB that takes a setX to the setB(X) = X → N∪{∞} of multisets over
X by [[♦k]]X(A) = {B ∈ B(X) |

∑
x∈A B(x) > k}. This captures the semantics of graded modal-

ities overmultigraphs[8], which are precisely theB-coalgebras. A more general set of operators
is that ofPresburger logic[9], which admits integer linear inequalities

∑
ai · #(φi) ≥ k among

formulas. Unlike in the purely modal case [19], hybrid multigraph semantics visibly differs from
the more standard Kripke semantics of graded modalities, as the latter validates all formulas¬♦1i,
i ∈ N. However, both semantics agree if we additionally stipulate¬♦1i as a global (pure) axiom.
Thus, our completeness results for multigraph semantics derived below do transfer to Kripke seman-
tics. In particular they apply to many description logics, which commonly featureboth nominals
and graded modal operators in the guise ofqualified number restrictions.

3. Hybrid CK , the hybrid extension of the basic conditional logicCK , has a single binary
modal operator⇒, written in infix notation. HybridCK is interpreted over the functorCf that
maps a setX to the setP(X) → P(X), whose coalgebras are selection function models [6], by
putting[[⇒]]X(A, B) = {f : P(X) → P(X) | f(A) ⊆ B}.

4. Classical hybrid logic(the hybrid version of the logicE of neighbourhood frames, referred to
as (the minimal) classical modal logic in [6]) has a single, unary modal operator ¤ and is interpreted
overneighbourhood frames, that is, coalgebras for the functorNX = P(P(X)) (more precisely,
the double contravariant powerset functor). The semantics of classical modal logic is defined by
the lifting J¤KX(A) = {S ∈ NX | A ∈ S}. Monotone hybrid logichas the same similarity
type, but is interpreted over upwards closed neighbourhood frames, or coalgebras for the functor
MX = {S ∈ NX | S upwards closed} where upwards closure refers to subset inclusion.

5. The syntax of coalition logic over a setN of agents is given by the similarity type{[C] | C ⊆
N}, and the operator[C] reads as “coalitionC has a joint strategy to enforce . . . ”. The formulas of
(hybrid) coalition logic are interpreted over game frames, i.e., coalgebras for the functor

G(X) = {(f, (Si)i∈N ) |
∏

i∈N Si 6= ∅, f :
∏

i∈N Si → X}

(a class-valued functor, technically speaking, which however does not cause problems). The seman-
tics arises via the liftings

J[C]KX(A) = {(f, (Si)i∈N ) ∈ G(X) | ∃(si)i∈C∀(si)i∈N\C(f((si)i∈N ) ∈ A}.

We proceed to present a Hilbert-style proof system for coalgebraic hybrid logics, which we prove
to be sound and strongly complete. This requires that the logic at hand satisfies certain coherence
conditions between the axiomatization and the semantics — in fact thesameconditions as in the
purely modal case, which are easily verifiedlocal properties that can be verified without reference
to T -models and are already known to hold for a large variety of logics [16, 19].

Proof systems for coalgebraic logics are most conveniently described in terms of one-step rules,
as follows.

Definition 1.2. A one-step ruleover Λ is a ruleφ/ψ whereφ ∈ Prop(P) andψ ∈ Prop(Λ(P))
(in fact, ψ may be restricted to be a disjunctive clause, which however is not relevanthere). The
rule φ/ψ is one-step soundif TX, τ |= ψ wheneverX, τ |= φ for a valuationτ : P → P(X).
Given a setR of one-step rules and a valuationτ : P → P(X), a setΞ ⊆ Prop(Λ(P)) is one-step
consistent[20] if the setΞ ∪ {ψσ | σ : P → Prop(P); φ/ψ ∈ R; X, τ |= φσ} is propositionally
consistent.

One-step sound rules are sound, and we will assume one-step soundness tacitly in the sequel. Com-
pleteness hinges on variants of the notion of one-step completeness [19],which we define further
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below. As the notion of one-step rule does not involve hybrid features, suitable rule sets can just be
inherited from the corresponding modal systems; for graded logics, conditional logics, and many
others, such rule sets are found, e.g., in [22, 21]. We recall that the one-step complete rule set for
(hybrid)K consists of the rules

a

¤a

a ∧ b → c

¤a ∧ ¤b → ¤c
.

A setR of one-step rules now gives rise to a Hilbert systemLR by adjoining propositional tautolo-
gies and the hybrid axioms, and closing under modus ponens, rule application, and@-necessitation.
Formally, we writeΦ ⊢LR φ for a setΦ of formulas, theglobal assumptions(or theTBox), and a
formulaφ if φ is contained in the smallest set that

• containsΦ and all instances of propositional tautologies
• contains all instances of@-introductioni ∧ φ → @iφ and make-or-break

(mob) @ip → (♥(q1, . . . , qn) ↔ ♥(@ip ∧ q1, . . . ,@ip ∧ qn))

together with all instances of the axioms¬@i⊥, ¬@iφ ↔ @i¬φ, @i(φ ∧ ψ) ↔ (@iφ ∧
@iψ)), @ii, @ij ↔ @ji, @ik ∧ @jp → @ip; and

• is closed under instances of@-generalizationp/@ip, instances of rules inR, and modus
ponens.

The second group of axioms ensures thati ∼ j :≡ @ij defines an equivalence relation on nominals
and that@i distributes over propositional connectives. The (mob) axiom captures the fact that the
truth set of an@-formula is either empty or the whole model; in the case of hybridK, it is equivalent
to the standard back axiom@iφ → ¤@iφ.

We write Φ; Ψ ⊢LR φ if there areψ1, . . . , ψn ∈ Ψ such thatΦ ⊢LR ψ1 ∧ · · · ∧ ψn → φ.
That is,Φ; Ψ ⊢LR φ if there is a proof ofφ from global assumptionsΦ that additionally assumes
Ψ locally. As we assume that all one-step rules inR are one-step sound, soundness for both local
and global consequence is immediate: we haveΦ; Ψ |=C φ (for C the class of all models) whenever
Φ; Ψ ⊢LR φ. In [14], a criterion has been given forLR to beweakly complete, i.e. complete for
the case where both the TBoxΦ and the setΨ of local assumptions are empty. Here, we extend
this result to combined strongglobal and stronglocal completeness, i.e. to cover both an arbitrary
TBox and an arbitrary set of local assumptions, even ifLR is extended with pure frame conditions
and local binding.

2. Strong Completeness of Pure Extensions

Pure completeness is a celebrated result in hybrid logic [3, Chapter 7.3]. In a nutshell, adding
pure axioms to an already complete proof system for the hybrid extension ofthe modal logicK
(Example 1.1), one retains completeness with respect to the class of frames that satisfy the additional
axioms. In contrast to arbitrary modal axioms, pure axioms do not contain propositional variables,
and therefore define – in the classical setting of hybridK – first-order frame conditions. Here, we
show that the same theorem is valid for a much larger class of logics, namely allcoalgebraic hybrid
logics satisfying one of two suitable sets of conditions. For the sake of readability, we restrict
the technical development (not the examples) to the case of unary operators from now on until
Section 2.2.

Definition 2.1. If A is a set of pure formulas andR is a set of one-step rules, we write
Φ; Ψ ⊢LRA+Name φ if there areψ1, . . . , ψn ∈ Ψ such thatψ1 ∧ . . . ψn → φ is LR-derivable
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from assumptions inΦ where additionally all substitution instances of axioms inA and the rule

(Name)
i → φ

φ
(i /∈ N(φ))

may be used in deductions. As before, we writeΦ ⊢LRA+Name φ if Φ; ∅ ⊢LRA+Name φ.

In the above system, the rule(Name′) @iφ/φ (i /∈ N(φ) and the rule

(NameCong)
@j(φ ↔ ψ)

♥φ ↔ ♥ψ
(j /∈ N(φ, ψ))

are derivable. The system is clearly sound for both global and local consequence overA-models in
the same sense thatLR is sound overT -models.

Definition 2.2. Let A ⊆ F(Λ) be a set of pure axioms, and letΦ ⊆ F(Λ) be a TBox. A set
Ψ ⊆ F(Λ) is (LRA+Name)-Φ-inconsistentif there areψ1, . . . , ψn ∈ Ψ such thatΦ ⊢LRA+Name

¬(ψ1 ∧ · · · ∧ ψn). Otherwise,Ψ is (LRA + Name)-Φ-consistent. A subset of@F(Λ), i.e. a
set of @-formulas, is called anABox (again borrowing terminology from description logic). A
maximally(LRA+Name)-Φ-consistent ABoxis a maximal elementK among the(LRA+Name)-
Φ-consistent ABoxes, ordered by inclusion. For such aK, we writeSK = {Ki | i ∈ N}, where
Ki = {φ ∈ F(Λ) | @iφ ∈ K}, and putVK(i) = {Ki} = {Kj ∈ SK | i ∈ Kj}.

For the construction of a named model, we now fix a maximally(LRA+Name)-Φ-consistent ABox
K. Later, we will takeK to be a maximally consistent extension of a given setΦ of formulas, where
we may assume, thanks to the rule(Name′), thatΦ ⊆ @F(Λ). We note the following trivial facts:

Lemma 2.3. We haveψσ ∈ Ki for all ψ ∈ A and all substitutionsσ, and moreoverK ∪ Φ ⊆ Ki.

Our goal is the construction of named canonical models in the following sense:

Definition 2.4. A named canonicalK-modelis a model(SK , γ, VK) such that

γ(Ki) ∈ [[♥]]φ̂ iff ♥φ ∈ Ki

for every nominali, whereφ̂ = {Kj ∈ SK | φ ∈ Kj}.

It is clear that named canonical models are countable, as there are only countably many nominals.

Lemma 2.5(Truth lemma for named canonical models). If M = (SK , γ, VK) is a named canonical
K-model andφ is a hybrid formula, then for everyKi ∈ SK ,

M, Ki |= φ iff φ ∈ Ki.

Hence,M |= Φ, andM is anA-model.

The last clause of the truth lemma follows from Lemma 2.3, the crucial point beingthat satisfaction
of all substitution instances ofA implies frame satisfaction ofA because every state in the model
is denoted by some nominal. We now establish two criteria for the existence of named canonical
models. The first criterion assumes a stronger form of one-step completeness than the second, which
instead demands that the modalities arebounded.
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2.1. Pure Completeness for Strongly One-Step Complete Logics

The construction of named models hinges on the following notion of pastedness, which assures that
nominals interact correctly across the whole model. For the rest of the section, we fix a one-step
complete rule setR, a setA of pure axioms, and a setΦ ⊆ F(Λ) of global assumptions, and we
write ‘consistent’ instead of ‘(LRA + Name)-Φ–consistent’.

Definition 2.6. An ABox K is 0-pastedif whenever@j(φ ↔ ψ) ∈ K for all nominalsj, then
@i(♥φ ↔ ♥ψ) ∈ K for all nominalsi.

It is clear thatK can induce a named model only ifK is 0-pasted. The construction of pasted
ABoxes requires a Henkin-like extension of the logical language by adding new nominals.Gener-
ally, we denote byF(Λ)+ an extended language with countably many new nominals not appearing
in F(Λ). We note the fact (slightly glossed over in the literature) that this extension is conservative:

Lemma 2.7. If Ψ ⊆ F(Λ) is consistent, thenΨ remains consistent inF(Λ)+.

Lemma 2.8 (Extended Lindenbaum lemma for0-Pasted Sets). If Ψ ⊆ F(Λ) is consistent, then
there exists a0-pasted maximally consistent ABoxK ⊆ @F(Λ)+ and a nominali in F(Λ)+ such
that@iΨ ⊆ K.

(The proof of the above version of the Lindenbaum lemma uses Lemma 2.7, and exploits theName′

rule to introduce the nominali.) As we are aiming for strong completeness results, (weak) one-step
completeness as employed in weak completeness proofs usingfinite models [14, 19] is no longer
adequate. Accordingly, our first criterion assumes a stronger condition:

Definition 2.9. A rule setR is strongly one-step completeif for every setX, every one-step con-
sistent subset ofProp(Λ(P(X))) is one-step satisfiable.

Lemma 2.10(Named existence lemma, Version 1). If K is 0-pasted andR is strongly one-step
complete, then there exists a named canonicalK-model.

In summary, we have:

Theorem 2.11. If R is strongly one-step complete, then every extension ofLR by pure axioms
is both globally and locally strongly complete over countable hybrid models when equipped with
the Name rule. That is, ifΦ, Ψ ⊆ F(Λ) and φ ∈ F(Λ), thenΦ; Ψ ⊢LRA+Name φ whenever
Φ; Ψ |=C φ, whereC is the class of countableA-models.

Proof. As usual, we show that every(LRA + Name)-Φ-consistent setΨ ⊆ F(Λ) is satisfiable in
a countableA-modelM such thatM |= Φ (where satisfiability is clearly invariant under passing
from F(Λ) to F(Λ)+). The extended Lindenbaum lemma yields a0-pasted maximally consistent
subset ABoxK ⊆ F(Λ)+ and a nominali in F(Λ)+ such that@iΨ ⊆ K. By the named existence
lemma, we find a named, hence countable, canonicalK-modelM = (SK , γ, VK), and by the truth
lemma (Lemma 2.5),M is anA-model,M |= Φ, andM, Ki |= Ψ.

Remark 2.12. In the literature (e.g. [3, Theorem 7.29]), the above completeness theorem is some-
times phrased as “completeness with respect to named models”, i.e. models whereevery state is
the denotation of some nominal; such models also played a central role in the early development of
hybrid logic by the Sofia school (see e.g. [15]). In detail, this means that every state of the model
is the denotation of a nominalin a language extended with countably many new nominals. This
extension is necessary, as otherwise the consistent set{¬n | n ∈ N} would be satisfiable in a
model where every state is named by a nominaln ∈ N of the original language, which is clearly
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impossible. Completeness with respect to models where every state is named by anominal in an
extended language, on the other hand, is an immediate consequence of completeness with respect
to countable models.

Example 2.13. The previous theorem establishes strong completeness results for pure extensions
of all hybrid logics with neighbourhood semantics (Example 1.1.4) that are defined by rank-1 ax-
ioms [20], i.e. modal formulas where the nesting depth of modalities is uniformly equal to1 (such
as the monotonicity axiom¤(a ∧ b) → ¤b). For the monotonic cases, i.e. extensions of monotonic
hybrid logic, these results are essentially known [24], while they seem to benew for the non-
monotonic cases, i.e. extensions of classical hybrid logic not containing themonotonicity axiom,
including, e.g., various deontic logics [12]. Moreover, the theorem newlyproves strong complete-
ness of the hybridization of coalition logic, as Theorem 3.2 of [17] essentially states that coalition
logic satisfies strong one-step completeness.

2.2. Pure Completeness for Bounded Logics

The condition of strong one-step completeness used in the previous sectionis a comparatively rare
phenomenon [20]; the strength of the condition becomes clear in the fact that, unlike in the classical
case of Kripke semantics, the above did not require a notion of1-pastedness [5]. We proceed to
present an alternative approach for the case where one does have an analogue of the (Paste-1) rule
— this is the case if the operators arebounded, i.e., their satisfaction hinges, in each case, on only
finitely and boundedly many states of a model.

Definition 2.14. A modal operator♥ is k-boundedfor k ∈ N with respect to aΛ-structureT if for
every setX and everyA ⊆ X,

[[♥]]X(A) =
⋃

B⊆A,#B≤k [[♥]]X(B).

(This implies in particular that♥ is monotonic.) We say thatΛ is bounded w.r.t.T if every modal
operator♥ in Λ is k♥-bounded for somek♥.

The boundedness of an operator can now be internalized in the logical deduction system. In partic-
ular, fork-bounded operators♥, one has thepaste rule

(Paste♥(k))
@j1φ ∧ · · · ∧ @jk

φ ∧ @i♥(j1 ∨ · · · ∨ jk) → ψ

@i♥φ → ψ

with the side condition that thejr are pairwise distinct fresh nominals. We write
Φ ⊢LRA+Name+Paste φ if φ is derivable from assumptions inΦ in the systemLR + Name where
additionally the rule(Paste♥(k)) may be used in deductions fork-bounded operators♥. This in-
duces the notion of(LRA+Name+Paste)-Φ-consistency, which we briefly refer to as consistency
as we fixΦ, A, andR throughout. Again, the system is clearly sound, i.e.Φ; Ψ |=C φ whenever
Φ; Ψ ⊢LRA+Name+Paste φ, whereC is the class ofA-models.

Examples 2.15. 1. Hybrid K. The modal operator♦ is 1-bounded. The arising paste rule
(Paste♦(1)) is precisely the rule(paste♦) of [4].

2. Graded hybrid logic.The modal operator♦k is (k + 1)-bounded. One thus has a paste rule

(Paste♦k(k + 1))
@j1φ ∧ · · · ∧ @jk+1

φ ∧ @i♦k(j1 ∨ · · · ∨ jk+1) → ψ

@i♦kφ → ψ

with side conditions as before.
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3. Positive Presburger hybrid logic.A Presburger operator
∑

ai · #( i) ≥ k (Example 1.1) is
k-bounded if theai are positive. E.g., this still allows expressing the statement, generally believed
to be valid in the German national football league, that a team that has at least37 points will not be
relegated:3 · #win + 1 · #draw ≥ 37 → ¬relegated.

The generalized1-pastedness condition for bounded operators is as follows.

Definition 2.16. Let Λ be bounded. An ABoxK is 1-pastedif whenever♥ is k-bounded and
@i♥φ ∈ K, then{@j1φ, . . . ,@jk

φ, @i♥(j1 ∨ · · · ∨ jk)} ⊆ K for some nominalsj1, . . . , jk.

Again, it is clear that ifΛ is bounded, thenK can induce a named model only ofK is 1-pasted. It is
easy to see that ifR is one-step complete andΛ is bounded (in fact already ifR derives monotony
for every♥ ∈ Λ), then every1-pasted set is also0-pasted (Definition 2.6).

Lemma 2.17(Extended Lindenbaum lemma for1-pasted sets). LetΛ be bounded. IfΨ ⊆ F(Λ) is
consistent, then there exist a1-pasted maximally consistent ABoxK ⊆ @F(Λ)+ and a nominali
in F(Λ)+ such that@iΨ ⊆ K, whereF(Λ)+ is as in Section 2.1.

Bounded operators now allow us to use a weaker version of one-step completeness. Instead of
requiring that all one-step consistent sets are one-step satisfiable, we may restrict tofinite extensions
of propositional variables.

Definition 2.18. We say thatR is strongly finitary one-step completeif for every setX, every
one-step consistent subset ofProp(Λ(Pfin(X))) is one-step satisfiable.

Clearly, any strongly one-step complete rule set is also strongly finitary one-step complete, but the
example of graded hybrid logic witnesses that the converse is not true. Wenote that the weaker
criterion still fails for probabilistic logics due to inherent non-compactness [23]; probabilistic logics
also fail to be bounded, as a given probabilityp ∈ [0, 1] can be split into any number of summands.
Together with boundedness, the above condition enables a second version of the named existence
lemma.

Lemma 2.19(Named existence lemma, Version 2). If Λ is bounded,R is strongly finitary one-step
complete, andK is 1-pasted, then there exists a named canonicalK-model.

Summarizing the above, we have the following extended completeness result.

Theorem 2.20. Let Λ be bounded, and letR be strongly finitary one-step complete. Then every
extension ofLR by pure axioms is globally and locally strongly complete over countable hybrid
models when equipped with theName andPaste rules. In other words, ifΦ, Ψ ⊆ F(Λ), φ ∈ F(Λ),
andC is the class of all countableA-models, thenΦ; Ψ ⊢LRA+Name+Paste φ wheneverΦ; Ψ |=C φ.

The proof follows the same route via extended Lindenbaum lemma, existence lemma, and truth
lemma as for Theorem 2.11.

Example 2.21. By Example 2.15 and the fact that the known complete axiomatizations of the
associated modal logics are in fact strongly finitary one-step complete, the previous theorem proves
completeness of pure extensions of hybridK, graded hybrid logic, and positive Presburger hybrid
logic. Except for the standard case of hybridK, these results seem to be new. In particular, we
obtain completeness of pure extensions of graded (or positive Presburger) hybrid logic defining the
following frame classes in multigraph semantics:

• The class ofKripke frames, seen as the class of multigraphs where the transition multiplicity
between two individual states is always at most1, defined by the pure axiom¬♦1i.
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• The class ofreflexivemultigraphs, defined by the pure axiomi → ♦0i.
• The class oftransitivemultigraphs, defined by the pure axioms♦0♦ni → ♦ni, n ≥ 0.
• The class ofsymmetricmultigraphs, i.e., those where the transition multiplicity fromx to y

always equals the one fromy to x, which is defined by the pure axiomsi ∧ ♦kj → @j♦ki.

Other frame classes of interest, see e.g. [3, Section 7.3], can be characterized similarly by translating
the corresponding frame conditions from Kripke to multigraph semantics.

2.3. The Mixed Case

In some cases, the two methods laid out in the preceding sections can be combined for modal
operators with several arguments that adhere, in each of their arguments, to one of the respective
sets of semantic conditions. For the sake of readability, we formulate this explicitly only for the
mixed binary case with a single modal operator, i.e. we assume in this section thatΛ = {♥} with
♥ binary; the generalization to arbitrary numbers of arguments, several modal operators etc. should
be obvious, and essentially only requires more elaborate terminology and notation.

Definition 2.22. We say thatR is (strongly, strongly finitary) one-step completeif every one-step
consistent subset ofProp(Λ(P(X) × Pfin(X))) is one-step satisfiable. Moreover, we say that♥ is
k-bounded in the second argumentfor k ∈ N if for every setX and allA, B ⊆ X, [[♥]]X(A, B) =⋃

C⊆A,#C≤k [[♥]]X(A, C).

In the same manner as for Theorems 2.11 and 2.20, we derive:

Theorem 2.23. If R is (strongly, strongly finitary) one-step complete and♥ is k-bounded in the
second argument, then every extension ofLR by pure axioms is both locally and globally strongly
complete over countable hybrid models when equipped with the appropriateName andPaste rules.

Example 2.24.Hybrid CK (Example 1.1) is easily seen to be (strongly, strongly finitary) one-step
complete, and the operator> defined from the conditional operator⇒ by a > b :↔ ¬(a ⇒ ¬b)
is 1-bounded in the second argument. By the above, it follows that every pure extension of hybrid
CK is strongly complete over countable hybrid selection function models. E.g. we maydefine
the class of conditional frames where all expressible conditions induce transitive relations by pure
axioms(φ > φ > i) → (φ > i). Such frames satisfy also the dual axiom (using a propositional
variablea) (φ ⇒ a) → (φ ⇒ (φ ⇒ a)), an axiom for duplicating conditional assumptions. Similar
statements apply to a combination of graded and conditional logic (obtainable compositionally using
the methods of [21]), which has operators of the forma ⇒k b “if a, then one normally has more
thank instances ofb”.

The semantics of conditional logics in general has complex ramifications, involving, e.g., pref-
erence orderings or systems of spheres (see, e.g., [10, 18]); application of our methods to conditional
logics beyondCK is the subject of further investigation. We note that pure completeness of a hybrid
extension of Lewis’ logic of counterfactuals has been established recently [18].

3. Local Binding

We next investigate completeness of a stronger hybrid language that includes the↓ binder, which
binds a state variable to the current state. Concretely, we allow formulas of the form↓ i. φ, wherein
the nominali is locally bound (for compactness of presentation, we give up the usual distinction
between nominals and state variables). Given a modal similarity typeΛ, we writeF↓(Λ) for the
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ensuing extension ofF(Λ). The reading of the formula↓ i.φ is “φ holds for the current statei”.
The satisfaction relation in the extended logic is defined by an additional clause for the↓ binder,

(C, γ, V ) |=↓ i. φ iff (C, γ, V [c/i]) |= φ

wherec is a state in a coalgebraC andV [c/i] is obtained fromV by modifying the value ofi to c.
The semantics of the↓ binder immediately translates into the axiom scheme (see e.g. [4])

(DA) @i((↓ j. φ) ↔ φ[i/j]).

Given a setR of Λ-rules, a setΦ ⊆ F↓(Λ) of formulas and a setA ⊆ @F↓(Λ) of pure ax-
ioms, we writeΦ ⊢LRA+Name+Paste+DA φ for the extension of the associated provability predicate
⊢LRA+Name+Paste with (DA). Using(DA), one easily proves an extension of the truth lemma for
named models (Lemma 2.5) toF↓(Λ), so that the completeness results for pure extensions proved
before (Theorems 2.11, 2.20, and 2.23) transfer immediately toL↓. We make this explicit for the
bounded case:

Theorem 3.1. If Λ is bounded andR is strongly finitary one-step complete, then every pure exten-
sion ofL↓ is strongly locally and globally complete over countable hybrid models. In other words,
Φ; Ψ |=C φ iff Φ; Ψ ⊢LRA+Name+Paste+DA φ for all φ ∈ F↓(Λ) and all Φ, Ψ ⊆ F(Λ), whereC is
the class of all countableA-models.

Remark 3.2. As noted in [24], the named model construction more generally yields completeness
for any locally definableextension of the hybrid language, i.e. any extension whose semanticsat
named statesis defined by a formula similar to(DA).

Example 3.3. Continuing Example 2.15, Theorem 3.1 reproves not only the known completeness
of pure extensions of hybridK with ↓, but also the completeness of pure extensions of graded (or
positive Presburger) hybrid logic with↓. This extends easily to the multi-agent case, or, in descrip-
tion logic terminology, to description logics with multiple roles. As, moreover, both arole hierarchy
and transitivity of roles can be defined using pure axioms, we thus arriveat a complete axiomati-
zation of an extension of the description logicSHOQ with satisfaction operators and↓, which has
been used in connection with conjunctive query answering [11], and allows, e.g., talking about the
number of stepchildren of a stepmother, in continuation of the stepmother example from [13], .

4. Conclusions

We have laid out two criteria for the existence of named canonical models in coalgebraic hybrid
logics — one that applies to cases where one has an analogue of the so-called Paste-1 rule of stan-
dard hybrid logic, and one which applies to cases where one does not need any such rule. While
the latter means essentially that the logic is equipped with a neighbourhood semantics, the former
requires that all modal operators of the logic are bounded, i.e. there is always only a bounded num-
ber of states relevant for their satisfaction at each point. Our main novel example of this type is
graded hybrid logic (and an extension of it using certain Presburger modalities [9]). The named
model construction entails completeness of pure extensions and completeness of extended hybrid
languages with the local binder↓ (of which the I–me construct of [13] is a single-variable restric-
tion), which we thus obtain as new results for, e.g., hybrid coalition logic, hybrid classical modal
logic, several hybrid deontic logics, hybrid conditional logic, graded hybrid logic, and an extension
of the description logicSHOQ. An open question that remains is the existence of so-called ortho-
dox axiomatizations [4] in the presence of↓, as well as to find an analogue of the characterization
result of [24] stating that a variant of the Paste-1 rule characterizes the Kripke models among the
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topological models ofS4. A further topic of investigation is to find decidable fragments of the lan-
guage with↓; we note slightly speculatively that the fragment used in [13] may, in our terminology,
be seen as requiring that a suitably defined NNF of a formula contains only positive occurrences of
bound nominals under bounded modal operators.
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