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ABSTRACT. Hybrid logic extends modal logic with support for reasoning aboutviddal states,
designated by so-called nominals. We study hybrid logic in the broad damftemalgebraic seman-
tics, where Kripke frames are replaced with coalgebras for a giveetdy thus covering a wide range
of reasoning principles including, e.g., probabilistic, graded, defauttpalitional operators. Specif-
ically, we establish generic criteria for a given coalgebraic hybrid logicdtmiganamed canonical
models, with ensuing completeness proofs for pure extensions on ¢heao, and for an extended
hybrid language with local binding on the other. We instantiate our framewih a number of
examples. Notably, we prove completeness of graded hybrid logic with bhireding.

Introduction

Modal logics have traditionally played a central role in Computer Sciengeang, e.g., in the
guise of temporal logics, program logics such as PDL, epistemic logicslaterdas description
logics. The development of modal logics has seen extensions alongs@atveaaxes: the enhance-
ment of the expressive power of basic (relational) modal logic on the and,land the continual
extension, beyond the purely relational realm, of the class of structesesibed using modal logics
on the other hand. Hybrid logic falls into the first category, extending modat leith the ability
to reason about individual states in models. This feature, originally stegyédy Prior and first
studied in the context of tense logics and PDL (see [5] for referenisesi particular relevance in
knowledge representation languages and as such has found its way oonmndescription logics,
where it is denoted by the lettér in the standard naming scheme [2].

Extensions along the second axis — semantics beyond Kripke structutesmbourhood
models — include various probabilistic modal logics, interpreted over piligiabtransition sys-
tems, graded modal logic over multigraphs [8], conditional logics overeteftinction frames [6],
and coalition logic [17], interpreted over so-called game frames. As aingiemantic bracket
covering all these logics and many further ones, coalgebraic modal lagierherged ([7] gives a
survey). The scope of coalgebraic modal logic has recently beem@xgdo encompass nominals;
we refer to the arising class of logics esalgebraic hybrid logicsExisting results include a finite
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model result, an internalized tableaux calculus, and geresiBACFE upper bounds, but are so
far limited to logics that exclude frame conditions and local binding [14]. W&hatissing from
this picture technically is a theory ofamed canonical mode[S]. Named canonical models yield
not only strong completeness of the basic hybrid logic, but also complstehpsre extensions
defined by axioms that do not contain propositional variables (but mataiconominals; e.g. in
Kripke semantics, the pure axiofn)i — i, with i anominal defines transitive frames). More-
over, named canonical models establish completeness for an extendibldnyguage with a local
binding operatot x. ¢(z), read as “the current statesatisfiesp(x)”. Both pure extensions and the
language with (not addressed in [14]) are, in general, undecidable [1] (it shoailtbbed, however,
that fragments of the language witlover Kripke frames are decidable and as such play a role, e.g.,
in conjunctive query answering in description logic [11]). As a consega, completeness of pure
extensions and local binding is the best we can hope for — it establishesive enumerability of
the set of valid formulas, and it enables automated reasoning, if not depisioedures.

Specifically, we establish two separate criteria for the existence of nameelsnagtlthough
these criteria are (in all likelihood necessarily) less widely applicable thare swevious coalge-
braic results including those of [14], the generic results allow us to estaldishcompleteness
results for a wide variety of logics; in particular, we prove strong compéstef graded hybrid
logic, and ultimately an extension of the description lo§EOQ, with the | binder over a wide
variety of frame classes.

1. Coalgebraic Hybrid Logic

To make our treatment parametric in the syntax, we fix a modal similarity Aypensisting of
modal operators with associated arities throughout. For given countdiiiteérand disjoint sets
P of propositional variables and of nominals, the sef(A) of hybrid A-formulasis given by the
grammar

FA)2 90 u=pli|dAY|=0[D(d1,...,0n) | Qg
wherep € P,i € NandQ© € A is ann-ary modal operator. (Alternatively, we could regardposi-
tional variablesas nullary modal operators, thus avoiding their explicit mention altogetheked(e
them explicit here, following standard practice in modal logic, as we havedbwith valuations
anyway due to the presence of nominals.) We use the standard definititing &her propositional
connectives—, <, V. The set of nominals occurring in a formufas denoted byN(¢), similarly
for sets of formulas. A formula of the form; ¢ is called an@-formula Semantically, nominals
denote individual states in a model, afgp stipulates thap holds at state.

To reflect parametricity also semantically, we equip hybrid logics witbadgebraic semantics
extending the standard coalgebraic semantics of modal logics [16]: wedixghout aA-structure
consisting of an endofunctdr : Set — Set on the category of sets, together with an assignment
of ann-ary predicate lifting[] to everyn-ary modal operato®? € A, i.e. a set-indexed family of
mappings[V]x : P(X)" — P(TX))xese: that satisfies

[Olx o ()" =(Tf) ' o [Oly
forall f : X — Y. In categorical termg[(’] is a natural transformatio@” — Q o T°°? where
Q : Set? — Set is the contravariant powerset functor.

In this setting,T-coalgebras play the roles &mes A T-coalgebrais a pair(C,~) where
C'is a set ofstatesand~ : C' — T'C' is thetransition function When~ is clear from the context,
we refer to(C, ~) just asC. A (hybrid) T-modelM = (C,~, V') consists of & -coalgebraC, v)
together with ehybrid valuationV/, i.e. a mapP UN — P(C) that assigns singleton sets to all
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nominalsi € N. We say that\V/ is basedon the frame(C,~). The singleton seV (i) is tacitly
identified with its unique element.

The semantics of (A) is a satisfaction relatiop= between states € C' in hybrid T-models
M = (C,~,V) and formulas) € F(A), inductively defined as follows. Fare N U P andi € N,

M, cl=ziff c€ V(x) and M, cl= Qo iff M,V (i) = ¢.
Modal operators are interpreted using their associated predicate liftivagss,

M,ec ): QQ(Qbh (RS ¢n) — ’V(C) € IIQ]]C(IId)l]]J\/[? B IIQZ)RHM)
whereQ® € Aisn-ary and[¢]y = {c € C | M,c |= ¢} denotes the truth-set of relative to
M. We write M |= ¢ if M,c |= ¢forallc e C. Forasetd C F(A) of formulas, we write
M,c E®if M,c|=¢forall¢p € &, andM = ¢ if M |= ¢ forall ¢ € . We say thatd is
satisfiablein a modelM if there exists a statein M such thatM/,c = ®. If A C F(A) is a set
of axioms, also referred to dsame conditionsa frame(C, v) is anA-frameif (C,~,V) |= ¢ for
all hybrid valuations/ and all¢ € A, and a model is apl-modelif it is based on and-frame. A
frame condition igoureif it does not contain any propositional variables (it may however contain
nominals). We recall notation from earlier work:

Notation 1. As usual, application of substitutions: P — F(A) to formulas¢ is denotedyo.
For a set® of formulas and a sab of operators, we writéD¥ or O(X) for the set of formulas
arising by prefixing elements af with an operator fronO; e.g.A(X) = {Q(¢1,...,¢,) | © €
An-ary,¢1,...,¢, € ¥} andQX := {@; | i € N}(X) = {@;¢ | i € N,¢ € ¥}. Moreover,
Prop(Z) denotes the set of propositional combinations of elements of sorde 5etr ¢ € Prop(Z),
we write X, 7 |= ¢ if ¢ evaluates tol in the boolean algebr®(X) under a valuationr : Z —
P(X). Fory € Prop(A(Z)), the interpretatioffy’[x ~ of ¢ in the boolean algebr&(7°X) under
7 is the inductive extension of the assignmé(py,...,pn)lrxr = [O]lx(7(p1),...,7(pn))-
We write TX, 7 = ¢ if [¢]rx, = TX, andt =rx, ¢ if t € [¢]rx-. A set of formulas
E C Prop(A(2)) is one-step satisfiable.r.t. 7 if (,cz[¢]rx,- # 0. We occasionally apply this
notation to set& C P(X) with 7 being just inclusion, in which case mentionofs suppressed.

In the sequel, we will be interested in bdthtal and global semantic consequence, where local
consequence refers to satisfaction in a single state and global consedaesatisfaction in entire
models. In fact, we consider local reasoning under global assumptiven a setd C F(A) of
global assumptions (BBoxin description logic terminology) and a claSof models, we say that
¢ is a local consequence @ under global assumption® for C-models in symbols®; ¥ |=C ¢,

if for all M € C such thatM = ®, M,c = ¢ wheneverM,c = V¥ (here, both® and ¥ are
sets of arbitrary formulas, in particular not subject to any restrictions@néisting depth of modal
operators). The standard notions of local and global consequeacegained from this general
definition by taking® or ¥ to be empty, respectively.

The distinguishing feature of the coalgebraic approach to hybrid andlrwogyes is the para-
metricity in both the logical language and the notion of frame: concrete instansaifdhe general
framework, in other words a choice of modal operatérand aA-structurel’, capture the syntax
and semantics of a wide range of modal logics, as withessed by the folloxamgpdes.

Examples 1.1. 1. The hybrid version of the modal logi&, hybrid K for short, has a single
unary modal operatar], interpreted over the structure consisting of the powerset fuit{@rhich
takes a sei to its powerse® (X)) and the predicate lifting(]] x (A) = {B € P(X) | B C A}.

It is clear thatP-coalgebrasC, v : C — P(C)) are in 1-1 correspondence with Kripke frames, and
that the coalgebraic definition of satisfaction specializes to the usual semafitiiee box operator.
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2. Graded hybrid logichas modal operators;, ‘in more thank successors, it holds that'. It is
interpreted over the functd? that takes a seX to the sef3(X) = X — NU{oo} of multisets over
X by [Ox] x(A) ={B € B(X) | > ,c4 B(x) > k}. This captures the semantics of graded modal-
ities overmultigraphs[8], which are precisely th&-coalgebras. A more general set of operators
is that of Presburger logid9], which admits integer linear inequalitiés a; - #(¢;) > k among
formulas. Unlike in the purely modal case [19], hybrid multigraph semantidslyidiffers from
the more standard Kripke semantics of graded modalities, as the latter valitifdesalas -1,
i € N. However, both semantics agree if we additionally stiputatei as a global (pure) axiom.
Thus, our completeness results for multigraph semantics derived beloandédrto Kripke seman-
tics. In particular they apply to many description logics, which commonly fediatle nominals
and graded modal operators in the guisguadlified number restrictions

3. Hybrid CK, the hybrid extension of the basic conditional lodig, has a single binary
modal operator=-, written in infix notation. HybridCK is interpreted over the functarf that
maps a seX to the setP(X) — P(X), whose coalgebras are selection function models [6], by
putting[=]x (4, B) = {f : P(X) — P(X) | f(4) € B}.

4. Classical hybrid logidthe hybrid version of the logi&’ of neighbourhood frames, referred to
as (the minimal) classical modal logic in [6]) has a single, unary modal opéredad is interpreted
overneighbourhood frameghat is, coalgebras for the functdfX = P(P(X)) (more precisely,
the double contravariant powerset functor). The semantics of classadal logic is defined by
the lifting [O]x(4) = {S € NX | A € S}. Monotone hybrid logichas the same similarity
type, but is interpreted over upwards closed neighbourhood framesatgebras for the functor
MX = {S € NX | S upwards closedwhere upwards closure refers to subset inclusion.

5. The syntax of coalition logic over a sitof agents is given by the similarity tydéC] | C' C
N}, and the operatd(C] reads as “coalitio’ has a joint strategy to enforce ...”". The formulas of
(hybrid) coalition logic are interpreted over game frames, i.e., coalgetraise functor

G(X) ={(f, (S)ien) | ILien Si # 0, f : [Lien Si — X}
(a class-valued functor, technically speaking, which however daesange problems). The seman-
tics arises via the liftings

[[CT]x (A) = {(f; (Si)ien) € G(X) [ A(si)iccV(si)ienc(f((si)ien) € A}

We proceed to present a Hilbert-style proof system for coalgebraidchidgics, which we prove
to be sound and strongly complete. This requires that the logic at handesatisftain coherence
conditions between the axiomatization and the semantics — in fadatmeconditions as in the
purely modal case, which are easily verifledal properties that can be verified without reference
to T-models and are already known to hold for a large variety of logics [16, 19

Proof systems for coalgebraic logics are most conveniently describetia ¢ one-step rules,
as follows.

Definition 1.2. A one-step ruleover A is a rule¢ /¢ where¢ € Prop(P) andvy € Prop(A(P))
(in fact, v» may be restricted to be a disjunctive clause, which however is not releeags). The
rule ¢/v is one-step sound TX,7 | ¢ wheneverX,r |= ¢ for a valuationr : P — P(X).
Given a sefR of one-step rules and a valuation P — P(X), a set= C Prop(A(P)) is one-step
consisten{20] if the set= U {¢)c | ¢ : P — Prop(P); ¢/v € R; X, 7 = ¢o} is propositionally
consistent.

One-step sound rules are sound, and we will assume one-step sssitatitly in the sequel. Com-
pleteness hinges on variants of the notion of one-step completenesw/i€h, we define further
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below. As the notion of one-step rule does not involve hybrid featutétsfde rule sets can just be
inherited from the corresponding modal systems; for graded logicslittmmal logics, and many
others, such rule sets are found, e.g., in [22, 21]. We recall that thstep complete rule set for
(hybrid) K consists of the rules

a aANb—c

Oa OaAOb— Oc
A setR of one-step rules now gives rise to a Hilbert systém by adjoining propositional tautolo-
gies and the hybrid axioms, and closing under modus ponens, rule appljcaiti?-necessitation.
Formally, we write® . ¢ for a set® of formulas, theglobal assumptionéor theTBoX, and a
formula¢ if ¢ is contained in the smallest set that

e contains® and all instances of propositional tautologies
e contains all instances @f-introduction: A ¢ — @;¢ and make-or-break

(mob)  @ip — (Vqr, ..., qn) < C(Qip A qr, ..., Qip A qn))
together with all instances of the axiom$y; L, -Q;¢ < @Q;—¢, Q;(p A ) «— (Q;p A
@Zlﬂ)), Q;i, @Q;j < @ji, Q;k A @jp — @;p; and
e is closed under instances @fgeneralizatiorp/Q;p, instances of rules iR, and modus
ponens.

The second group of axioms ensures thatj := Q,j defines an equivalence relation on nominals
and that@; distributes over propositional connectives. The (mob) axiom captuecktt that the
truth set of ar@-formula is either empty or the whole model; in the case of hyhrjdt is equivalent

to the standard back axio@®;¢ — (0Q;¢.

We write &; ¥ -, ¢ if there areyq,...,¢, € ¥V suchthatd Fyr 1 A - A, — @
Thatis,®; ¥ k. ¢ if there is a proof ok from global assumption$ that additionally assumes
¥ locally. As we assume that all one-step rulesirare one-step sound, soundness for both local
and global consequence is immediate: we hby# |=C ¢ (for C the class of all models) whenever
O: U ,or ¢. In [14], a criterion has been given f@fR to beweakly complete.e. complete for
the case where both the TBdxand the setl of local assumptions are empty. Here, we extend
this result to combined strorgjobal and strondocal completeness, i.e. to cover both an arbitrary
TBox and an arbitrary set of local assumptions, evefiRfis extended with pure frame conditions
and local binding.

2. Strong Completeness of Pure Extensions

Pure completeness is a celebrated result in hybrid logic [3, Chapter f©3. nutshell, adding
pure axioms to an already complete proof system for the hybrid extensithre ahodal logickK
(Example 1.1), one retains completeness with respect to the class of franestisfy the additional
axioms. In contrast to arbitrary modal axioms, pure axioms do not contapopitional variables,
and therefore define — in the classical setting of hylfig- first-order frame conditions. Here, we
show that the same theorem is valid for a much larger class of logics, namebakjkebraic hybrid
logics satisfying one of two suitable sets of conditions. For the sake oabddy we restrict
the technical development (not the examples) to the case of unary ageiraim now on until
Section 2.2.

Definition 2.1. If A is a set of pure formulas an® is a set of one-step rules, we write
O: U Frrainame ¢ if there areyy,... 1, € ¥ such thaty; A ...vY, — ¢ is LR-derivable



from assumptions i® where additionally all substitution instances of axiomgiiand the rule

(i & N(¢))
may be used in deductions. As before, we Wite £z 4+ Name @ If @;0 FrR AL Name P-
In the above system, the ruldlame’) @;¢/¢ (i ¢ N(¢) and the rule

Qj(¢p =) .

— N

are derivable. The system is clearly sound for both global and localetuence oved-models in
the same sense th8R is sound ovefl-models.

Definition 2.2. Let A C F(A) be a set of pure axioms, and [t C F(A) be a TBox. A set
U C F(A)is (LRA+ Name)-P-inconsistentf there arey, . . ., ¢, € ¥ such tha® -,z _4+Name
=(1 A -+ A tpy,). Otherwise,U is (LR.A + Name)-®-consistent A subset of@F(A), i.e. a
set of @-formulas, is called a®\Box (again borrowing terminology from description logic). A
maximally(LR.A+Name)-®-consistent ABois a maximal elemernk’ among thé LR.A+Name)-
d-consistent ABoxes, ordered by inclusion. For sucli ave write S = {K; | i« € N}, where
K; = {¢ € F(A) | Q¢ € K}, and putvic (i) = {K;} = {K; € Sk | i € K;}.

For the construction of a named model, we now fix a maxim@aliig.4+Name)-®-consistent ABox
K. Later, we will takeK to be a maximally consistent extension of a givendsef formulas, where
we may assume, thanks to the ridame’), that® C @QF(A). We note the following trivial facts:

(Name)

(NameCong)

Lemma 2.3. We have)o € K; for all 1) € A and all substitutiong, and moreovelk U ® C K;.
Our goal is the construction of named canonical models in the following sense
Definition 2.4. A named canonicak’-modelis a model(Sk,~, Vi) such that
1K) €[Vl iff V¢ € K;
for every nominal, wherep = {K; € Sk | ¢ € K;}.
It is clear that named canonical models are countable, as there are antgloly many nominals.

Lemma 2.5(Truth lemma for named canonical model)M = (Sk, v, Vi) is a named canonical
K-model andp is a hybrid formula, then for everi(; € Sk,

Hence,M = ®, and M is an.4-model.

The last clause of the truth lemma follows from Lemma 2.3, the crucial point blefttgatisfaction
of all substitution instances od implies frame satisfaction ofl because every state in the model
is denoted by some nominal. We now establish two criteria for the existencenafcheanonical
models. The first criterion assumes a stronger form of one-step cormgastdran the second, which
instead demands that the modalities lamended



2.1. Pure Completeness for Strongly One-Step Complete Logics

The construction of named models hinges on the following notion of pastedmkih assures that
nominals interact correctly across the whole model. For the rest of the Isestofix a one-step
complete rule sek, a setA of pure axioms, and a sé C F(A) of global assumptions, and we
write ‘consistent’ instead of CR.A + Name)-®—consistent’.

Definition 2.6. An ABox K is 0-pastedif wheneverQ;(¢ « 1) € K for all nominalsj, then
Q;(V¢ «— Q) € K for all nominalsi.

It is clear thatK can induce a named model only if is 0-pasted. The construction of pasted
ABoxes requires a Henkin-like extension of the logical language by gduiw nominalsGener-

ally, we denote byF(A)™ an extended language with countably many new nominals not appearing
in F(A). We note the fact (slightly glossed over in the literature) that this extensiomseceative:

Lemma 2.7. If ¥ C F(A) is consistent, the remains consistent ifF(A)*.

Lemma 2.8 (Extended Lindenbaum lemma forPasted Sets)if ¥ C F(A) is consistent, then
there exists @-pasted maximally consistent AB&X C @F(A)* and a nominal in F(A)* such

(The proof of the above version of the Lindenbaum lemma uses Lemma 8.@xploits theName’

rule to introduce the nominal) As we are aiming for strong completeness results, (weak) one-step
completeness as employed in weak completeness proofs firsitegnodels [14, 19] is no longer
adequate. Accordingly, our first criterion assumes a stronger condition

Definition 2.9. A rule setR is strongly one-step completifor every setX, every one-step con-
sistent subset dProp(A(P(X))) is one-step satisfiable.

Lemma 2.10(Named existence lemma, Version 1) K is 0-pasted andR is strongly one-step
complete, then there exists a named canonicahodel.

In summary, we have:

Theorem 2.11.If R is strongly one-step complete, then every extensiofi7ofby pure axioms
is both globally and locally strongly complete over countable hybrid mode&wvelgquipped with
the Name rule. That is, if®, ¥ C F(A) and¢ € F(A), then®; ¥ Frrainame ¢ Whenever
o, v \:C ¢, whereC is the class of countabld-models.

Proof. As usual, we show that evefy'R.A + Name)-®-consistent sel C F(A) is satisfiable in

a countable4-model M such thatM = & (where satisfiability is clearly invariant under passing
from F(A) to F(A)™). The extended Lindenbaum lemma yieldg-pasted maximally consistent
subset ABoxK C F(A)™ and a nominal in 7(A)* such that?; 7 C K. By the named existence
lemma, we find a named, hence countable, canoticadodel M = (Sk, v, Vi), and by the truth
lemma (Lemma 2.5))/ is an.A-model,M = @, andM, K; = V. n

Remark 2.12. In the literature (e.g. [3, Theorem 7.29]), the above completeness théssome-
times phrased as “completeness with respect to named models”, i.e. modelsewdgrstate is
the denotation of some nominal; such models also played a central role in ihhd@agiopment of
hybrid logic by the Sofia school (see e.g. [15]). In detalil, this means tleay state of the model
is the denotation of a nomin&h a language extended with countably many new nominakés
extension is necessary, as otherwise the consister{tset n € N} would be satisfiable in a
model where every state is named by a nomina N of the original language, which is clearly
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impossible. Completeness with respect to models where every state is nameabioynal in an
extended language, on the other hand, is an immediate consequence tdteasgs with respect
to countable models.

Example 2.13. The previous theorem establishes strong completeness results forxpemsiens

of all hybrid logics with neighbourhood semantics (Example 1.1.4) that dneedieby rank-1 ax-
ioms [20], i.e. modal formulas where the nesting depth of modalities is uniformigleqg1 (such

as the monotonicity axiol(a A b) — [Jb). For the monotonic cases, i.e. extensions of monotonic
hybrid logic, these results are essentially known [24], while they seem toetefor the non-
monotonic cases, i.e. extensions of classical hybrid logic not containingndinetonicity axiom,
including, e.g., various deontic logics [12]. Moreover, the theorem newdyes strong complete-
ness of the hybridization of coalition logic, as Theorem 3.2 of [17] esdbnsi@tes that coalition
logic satisfies strong one-step completeness.

2.2. Pure Completeness for Bounded Logics

The condition of strong one-step completeness used in the previous de@icomparatively rare
phenomenon [20]; the strength of the condition becomes clear in the faaitiige in the classical
case of Kripke semantics, the above did not require a notionpstedness [5]. We proceed to
present an alternative approach for the case where one doesrhamalague of theRaste-1) rule

— this is the case if the operators dreundedi.e., their satisfaction hinges, in each case, on only
finitely and boundedly many states of a model.

Definition 2.14. A modal operatof? is k-boundedor k£ € N with respect to a\-structurel’ if for
every setX and everyA C X,

[[@]]X(A) = UBgA,#ng [[@]]X(B)'
(This implies in particular tha® is monotonic.) We say that is bounded w.r.tT" if every modal
operatorQ in A is ko-bounded for soméo.

The boundedness of an operator can now be internalized in the logdudtitn system. In partic-
ular, for k-bounded operatof8, one has th@aste rule
QA ANQyEAQQO( V- Vi) >3

Q; Q¢ — ¢
with the side condition that thej. are pairwise distinct fresh nominals.  We write
D FrrALNamerPaste @ If ¢ IS derivable from assumptions i in the systemCR + Name where
additionally the rulgPaste®(k)) may be used in deductions férbounded operator®. This in-
duces the notion af£R.A+ Name + Paste)-®-consistency, which we briefly refer to as consistency
as we fix®, A, andR throughout. Again, the system is clearly sound, fe¥ =C ¢ whenever
O: U R A+Name+Paste @, WhereC is the class ofd-models.

(PasteQ(k))

Examples 2.15. 1. Hybrid K. The modal operatof) is 1-bounded. The arising paste rule
(Paste((1)) is precisely the rulépaste() of [4].
2. Graded hybrid logicThe modal operatad;, is (k + 1)-bounded. One thus has a paste rule
Qo N---ANQj L O NQOK(JLV -V Jrg1) —
Q;0rp — ¢

(PasteQr(k + 1))

with side conditions as before.



3. Positive Presburger hybrid logicA Presburger operatoy’ a; - #(—;) > k (Example 1.1) is
k-bounded if thes; are positive. E.g., this still allows expressing the statement, generally believed
to be valid in the German national football league, that a team that has aiTgasints will not be
relegateds - #win + 1 - #tdraw > 37 — —relegated.

The generalized-pastedness condition for bounded operators is as follows.

Definition 2.16. Let A be bounded. An ABoxX is 1-pastedif wheneverQ is k-bounded and
@;Q¢ € K, then{Q; ¢,...,Q; ¢, Q;Q(j1 V---Vj)} C K for some nominalgy, . .., ji.

Again, itis clear that ifA is bounded, thei’k can induce a named model only &fis 1-pasted. Itis
easy to see that iR is one-step complete andis bounded (in fact already R derives monotony
for everyQ € A), then everyl-pasted set is aldo-pasted (Definition 2.6).

Lemma 2.17(Extended Lindenbaum lemma forpasted sets)Let A be bounded. It C F(A) is
consistent, then there existlgpasted maximally consistent AB&x C @QF(A)™ and a nominak
in F(A)" such thata; ¥ C K, whereF(A)* is as in Section 2.1.

Bounded operators now allow us to use a weaker version of one-stepleteness. Instead of
requiring that all one-step consistent sets are one-step satisfiable ywestract tofinite extensions
of propositional variables.

Definition 2.18. We say thatR is strongly finitary one-step completefor every setX, every
one-step consistent subsetfybp(A(Ps,(X))) is one-step satisfiable.

Clearly, any strongly one-step complete rule set is also strongly finitargt@pecomplete, but the
example of graded hybrid logic witnesses that the converse is not truexoWehat the weaker
criterion still fails for probabilistic logics due to inherent non-compactn28§ probabilistic logics
also fail to be bounded, as a given probabifitg [0, 1] can be split into any number of summands.
Together with boundedness, the above condition enables a secoruh\arthe named existence
lemma.

Lemma 2.19(Named existence lemma, Version 2 A is boundedR is strongly finitary one-step
complete, and( is 1-pasted, then there exists a named canonic¢ainodel.

Summarizing the above, we have the following extended completeness result.

Theorem 2.20. Let A be bounded, and IR be strongly finitary one-step complete. Then every
extension ofZLR by pure axioms is globally and locally strongly complete over countableidhybr
models when equipped with tNeme andPaste rules. In other words, i, ¥ C F(A), ¢ € F(A),
andC is the class of all countableé-models, the®; ¥ b 27 44 Name+Paste ® Wheneved; U =C ¢,

The proof follows the same route via extended Lindenbaum lemma, existenosaleand truth
lemma as for Theorem 2.11.

Example 2.21. By Example 2.15 and the fact that the known complete axiomatizations of the
associated modal logics are in fact strongly finitary one-step completerehieyps theorem proves
completeness of pure extensions of hyhkid graded hybrid logic, and positive Presburger hybrid
logic. Except for the standard case of hybfd these results seem to be new. In particular, we
obtain completeness of pure extensions of graded (or positive Pgesphybrid logic defining the
following frame classes in multigraph semantics:

e The class oKripke framesseen as the class of multigraphs where the transition multiplicity

between two individual states is always at mbsiefined by the pure axiomdi.
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e The class ofeflexivemultigraphs, defined by the pure axiam- ¢gi.

e The class ofransitivemultigraphs, defined by the pure axiofgd,i — Oni, n > 0.

e The class oBymmetrianultigraphs, i.e., those where the transition multiplicity frerto y
always equals the one fropto =, which is defined by the pure axioms\ ¢;.j — @;Oi.

Other frame classes of interest, see e.g. [3, Section 7.3], can beteh@extsimilarly by translating
the corresponding frame conditions from Kripke to multigraph semantics.

2.3. The Mixed Case

In some cases, the two methods laid out in the preceding sections can be edrfdyinmodal
operators with several arguments that adhere, in each of their argyrteatse of the respective
sets of semantic conditions. For the sake of readability, we formulate this ilypdicly for the
mixed binary case with a single modal operator, i.e. we assume in this sectiohn adt0} with
Q@ binary; the generalization to arbitrary numbers of arguments, severallmpérators etc. should
be obvious, and essentially only requires more elaborate terminology &atitbno

Definition 2.22. We say thatR is (strongly, strongly finitary) one-step complét@very one-step
consistent subset &frop(A(P(X) x Pgn(X))) is one-step satisfiable. Moreover, we say thas
k-bounded in the second argumédat & € N if for every setX and allA, B C X, [V] (A, B) =

Uccago<k [Pl x (4, C).
In the same manner as for Theorems 2.11 and 2.20, we derive:

Theorem 2.23.1f R is (strongly, strongly finitary) one-step complete dfds k-bounded in the
second argument, then every extensiof Bf by pure axioms is both locally and globally strongly
complete over countable hybrid models when equipped with the appropiaie andPaste rules.

Example 2.24. Hybrid CK (Example 1.1) is easily seen to be (strongly, strongly finitary) one-step
complete, and the operator defined from the conditional operater by a > b :— —(a = —b)

is 1-bounded in the second argument. By the above, it follows that evegygxiension of hybrid
CK is strongly complete over countable hybrid selection function models. E.g. wedefae

the class of conditional frames where all expressible conditions inductsitive relations by pure
axioms(¢ > ¢ > i) — (¢ > i). Such frames satisfy also the dual axiom (using a propositional
variablea) (¢ = a) — (¢ = (¢ = a)), an axiom for duplicating conditional assumptions. Similar
statements apply to a combination of graded and conditional logic (obtainabjmsdionally using

the methods of [21]), which has operators of the farms>; b “if a, then one normally has more
thank instances 0b”.

The semantics of conditional logics in general has complex ramificationdyiingoe.g., pref-
erence orderings or systems of spheres (see, e.g., [10, 18]);ajmpliof our methods to conditional
logics beyondCK is the subject of further investigation. We note that pure completenessybfid h
extension of Lewis’ logic of counterfactuals has been establishedthe¢&8).

3. Local Binding

We next investigate completeness of a stronger hybrid language thateadiue| binder, which
binds a state variable to the current state. Concretely, we allow formulas fafrth | 7. ¢, wherein
the nominali is locally bound (for compactness of presentation, we give up the usialadion
between nominals and state variables). Given a modal similarity Aypee write 7| (A) for the
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ensuing extension af (A). The reading of the formuld i.¢ is “¢ holds for the current statg.
The satisfaction relation in the extended logic is defined by an additionakdlauthe| binder,

(C7, V) ElLi.giff (C,v,Vie/i]) E ¢
wherec is a state in a coalgebr@d andV [¢/i] is obtained froml/ by modifying the value of to c.
The semantics of thg binder immediately translates into the axiom scheme (see e.g. [4])

(DA)  @i((1 j. ¢) < 9li/J])-
Given a setR of A-rules, a set C F|(A) of formulas and a sed C QF (A) of pure ax-
ioms, we writed % 41 NametPaste-DA ¢ fOr the extension of the associated provability predicate
F 2R A+Name+Paste With (DA). Using (DA), one easily proves an extension of the truth lemma for
named models (Lemma 2.5) # (A ), so that the completeness results for pure extensions proved
before (Theorems 2.11, 2.20, and 2.23) transfer immediatef}) to/Ve make this explicit for the
bounded case:

Theorem 3.1. If A is bounded andr is strongly finitary one-step complete, then every pure exten-
sion of £, is strongly locally and globally complete over countable hybrid models. leratiords,
;U =C ¢ iff @; W FrratNamerPasterDA ¢ forall ¢ € F(A) and all ®, ¥ C F(A), whereC is

the class of all countablgl-models.

Remark 3.2. As noted in [24], the named model construction more generally yields comptsten
for any locally definableextension of the hybrid language, i.e. any extension whose semahtics
named states defined by a formula similar tA).

Example 3.3. Continuing Example 2.15, Theorem 3.1 reproves not only the known comphste

of pure extensions of hybrid with |, but also the completeness of pure extensions of graded (or
positive Presburger) hybrid logic with This extends easily to the multi-agent case, or, in descrip-
tion logic terminology, to description logics with multiple roles. As, moreover, batieahierarchy

and transitivity of roles can be defined using pure axioms, we thus atigecomplete axiomati-
zation of an extension of the description loglg{© Q with satisfaction operators arid which has
been used in connection with conjunctive query answering [11], andsle.g., talking about the
number of stepchildren of a stepmother, in continuation of the stepmother kxaom [13], .

4. Conclusions

We have laid out two criteria for the existence of hamed canonical models getwaic hybrid
logics — one that applies to cases where one has an analogue of theddPeastet rule of stan-
dard hybrid logic, and one which applies to cases where one does edtang such rule. While
the latter means essentially that the logic is equipped with a neighbourhood semtetitormer
requires that all modal operators of the logic are bounded, i.e. themgagsbnly a bounded num-
ber of states relevant for their satisfaction at each point. Our main ngaet@e of this type is
graded hybrid logic (and an extension of it using certain Presburgerliiesl$9]). The named
model construction entails completeness of pure extensions and comptetémasended hybrid
languages with the local binder(of which the I-me construct of [13] is a single-variable restric-
tion), which we thus obtain as new results for, e.g., hybrid coalition logicritiydbassical modal
logic, several hybrid deontic logics, hybrid conditional logic, gradelortiylogic, and an extension
of the description logicHO Q. An open question that remains is the existence of so-called ortho-
dox axiomatizations [4] in the presence |gfas well as to find an analogue of the characterization
result of [24] stating that a variant of the Pastedle characterizes the Kripke models among the
11



topological models of4. A further topic of investigation is to find decidable fragments of the lan-
guage with|; we note slightly speculatively that the fragment used in [13] may, in our tedouy,

be seen as requiring that a suitably defined NNF of a formula contains ositje occurrences of
bound nominals under bounded modal operators.
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