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Abstract
The present paper addresses the issue of flexibility in ex-

pressive unit selection speech synthesis by using different style
selection techniques. We select units from a mixed-style unit se-
lection database, using either forced style switching, no control,
symbolic target cost, or acoustic target cost as a style selection
criterion. We assess the effect of selection technique, feature
weight and relative weight of target vs. join costs on a set of
objective measures for style specificity and smoothness.
Index Terms: expressive speech synthesis, unit selection, style
control, voice quality, acoustic target cost

1. Introduction
The synthesis of expressive speech is by no means a solved
problem [1]. Early approaches used explicit control models to
impose emotion-specific prosody in formant or diphone synthe-
sis [2]. The results were recognizable in terms of intended style,
but the quality was too unnatural for widespread use. When
data-driven synthesis approaches emerged, explicit control was
sacrificed in favor of quality. Unit selection synthesis is able
to synthesize expressive speech by simply using units recorded
while speaking in the intended style [3, 4, 5, 6, 7] – a method
that we refer to as a “playback” approach, since no modeling
whatsoever is required from the synthesis engine to produce
expressive speech. The expressivity in the synthesized output
is merely a side-effect of the nature of the recorded material,
which in turn means that in order to synthesize a new style,
a new database must be recorded. Statistical parametric ap-
proaches to expressive synthesis, when they derive their expres-
sivity exclusively from style-specific training [8] or adaptation
[9] data, use the “playback” approach as well, in that the ex-
pressivity is fully and automatically determined by the data.

The quality of “playback” expressive synthesis can be very
good, notably with limited domain unit selection synthesis
[4, 7]. A problem of a quantitative nature arises for general
domain unit selection: for every speaking style, a very large
expressive speech corpus would be needed to produce general
text-to-speech with high quality in that style. If it were possible
to somehow leverage a large neutral speech corpus to improve
expressive synthesis quality, the problem would become much
less severe. In HMM-based synthesis, this can be achieved us-
ing model adaptation techniques [9]; in unit selection, however,
there is no simple equivalent of that approach.

However, what is missing in “playback” approaches, both
unit selection and HMM-based, is flexibility and control. By
flexibility we mean the ability to generate a certain expression
only to a certain extent, such as an emotion being conveyed
with varying intensity. Control means that at synthesis time, it
is possible to trigger a given speaking style, e.g. through speech
synthesis markup.

The present paper investigates possibilities for increasing
control in expressive unit selection speech synthesis, while lim-
iting the need for large expressive databases.

Previous work on control of expressive unit selection syn-
thesis mainly focuses either on selection of suitable units from a
mixed-style database, or the modification of synthesized speech
using signal modification techniques. With respect to expres-
sive unit selection, [10] applied different acoustic selection cri-
teria to retrieve appropriate units from a mixed-style database.
In their study, hand-crafted prosodic selection rules outper-
formed automatically trained HMM-based predictors; the re-
sulting synthesis was perceived as intended for anger and sad-
ness, but not for joy. [11] and [12] used manual annotations
of emphasis to select emphatically spoken units when generat-
ing emphatically accented syllables in speech. [12] extended
this approach to acoustics-based selection by training acoustic
models of emphasis on the labeled part of the corpus, and using
these models to select candidates from the larger, unlabeled part
of the corpus. Results point in the right direction but are not yet
fully satisfactory.

Attempts to improve the control of expressivity in unit se-
lection through signal modification have also been reported, us-
ing either prosody manipulation (e.g. [13]) or voice conversion
(e.g. [14]). The problem with these approaches is the introduc-
tion of distortions arising from the signal manipulation, which
degrades the quality compared to the unmodified unit selection
synthesis.

In the present paper, we address the specific issue of se-
lecting units from a mixed-style unit selection database, using
either forced style switching, no control, symbolic target cost,
or acoustic target cost as a style selection criterion. We assess
the effects of selection technique, feature weight and relative
weight of target vs. join costs on a set of objective measures for
style specificity and smoothness.

The paper is organized as follows. We first describe the
PAVOQUE corpus of German expressive speech (Section 2)
that we have used to build expressive voices with different style
control methods (Section 3). We then describe our approach to
a comparative evaluation of these voices, and to measuring the
effects of tuning the cost weights (Section 4), and present the
results of this investigation (Section 5). We then discuss these
findings and conclude with an outlook of future work.

2. The PAVOQUE expressive speech
synthesis corpus

We designed and recorded a German speech synthesis corpus as
the basis for the present and other experiments with expressive
speech synthesis. The corpus consists of a relatively large body
of neutrally spoken speech material, and four smaller expressive
parts, all produced by the same speaker. The expressive styles



are cheerful, depressed, aggressive (corresponding roughly to
the frequently used terms happy, angry, and sad for emotional
speaking styles) as well as a “cool, laid back” speaking style
recorded for a virtual poker player [7] (referred to as the poker
style below).

2.1. Prompts

We designed a prompt list consisting of 3 000 sentences, which
were automatically pre-selected from the German Wikipedia
by a greedy algorithm aiming for best diphone coverage and
prosodic variation [15]. The pre-selected sentences were then
reviewed, manually corrected and altered where necessary by
two phonetically trained research assistants, both native speak-
ers of German. For the expressive voices we used a small subset
of 400 sentences selected out of the larger neutral prompt list
based exclusively on diphone coverage, disregarding prosodic
variation. This joint speech material provides at least a minimal
amount of diphone coverage for each expressive voice.

In addition, around 150 prompts typical to the respective
speaking style were added to each expressive prompt list; the
cheerful style includes utterances such as, “I am the eternal op-
timist,” whereas the depressed style includes utterances like, “I
don’t think you should be so positive,” and the poker voice con-
tains utterances such as “I have a Royal Flush.” The motiva-
tion for this design was to have high quality expressive voices
within domains suitable for the respective expressive style, but
sufficient diphone coverage to allow the synthesis of arbitrary
text input with reasonable quality.

2.2. Recording

For the recordings, we employed a male professional opera
singer, a native speaker of standard German who was also able
to produce foreign-language words and phrases naturally and
fluently. His voice was very versatile, and he was able to main-
tain a given expressive speaking style relatively consistently.

The recordings were carried out in a sound-proof room, us-
ing a high-quality room microphone positioned approximately
40 cm from the speaker’s mouth. The prompts were presented
to him on a computer screen, one at a time, using our record-
ing tool Redstart [16]. This tool can be used to record multiple
takes of each prompt, and detects temporal and amplitude clip-
ping automatically. Recordings were made at 24 bit per sample
and 44.1 kHz, and later downsampled to 16 bit, 16 kHz. The en-
tire recording procedure was supervised by phonetically trained
staff, who requested a repetition whenever necessary.

The speaker was instructed to produce the neutral part of
the corpus “in a news-reading style”. The expressive speaking
styles were defined in terms of the characters from the Sensi-
tive Artificial Listener scenario [17]. The character “Poppy”
was described as “nice, optimistic, happy-go-lucky”, “Spike”
as “aggressive, irritable and short-tempered” and “Obadiah” as
“a wet blanket kind of person”. The speaker was instructed to
produce the expressive prompts in-character for each of these
personas. No instructions as to how to achieve that effect were
given, and he was free to choose voice quality, speaking tempo,
intonation, etc. as he saw fit. Before the actual recordings be-
gan, the speaker experimented with possible renditions of each
style using a number of domain-specific sentences until he and
the experimenters felt comfortable with the speaking style used.

Recordings were carried out in sessions of up to five hours,
over a period of several weeks. Breaks were taken either at the
speaker’s request, or when the supervisors felt that the quality
of the recordings was declining (noticeable e.g. by the number

of takes required for a sentence, or the speaker “slipping out of
character” during the recording of expressive speech).

2.3. Labeling

The recorded utterances were automatically labeled using the
German MARY text-to-speech (TTS) phonemizer and forced-
aligned with EHMM1 through the MARY voice building toolkit
[16]. The entire corpus was then manually corrected by three
phonetically trained research assistants. Both temporal align-
ment and segmental deviations between the predicted and spo-
ken segment chain were corrected.

The labeling of the expressive material was carried out in
the same way as for the neutral material. There were no signif-
icant differences, but it is interesting to note that the automatic
labeling did not perform as well for some expressive material
due to voice quality issues (e.g. tense voice in the aggressive
style and creak in the poker style).

3. Building expressive voices
From the recordings described in the previous section, we cre-
ated a range of unit selection voices differing in the methods
used for style control. All voices were built using the MARY
voice building toolkit [16] to work with our open source MARY
TTS platform.2

3.1. Baseline voices

As a baseline for style control, five separate unit selection voices
were built: one voice containing speech material from all avail-
able styles but without any information about the style, and one
for each of the four expressive speaking styles.

Each of the expressive voices used only the 400 phoneti-
cally balanced prompts, without the additional domain-specific
prompts, to ensure comparable unit databases.3 Since each
of these voices was built only from recordings corresponding
to the respective speaking style, at synthesis time, style can
be strictly enforced by selecting the appropriate voice – we
therefore call these voices forced-style voices. On the other
hand, since each voice was built from less than 400 utterances,
smoothness was expected to be fairly low.

As a baseline for smoothness, one voice was built from the
neutrally spoken utterances and the four expressive parts of the
corpus used to build the forced-style voices. This allstyles voice
uses the full set of 3 014 phonetically balanced neutral prompts3

as well as the four sets of 400 expressive prompts. As with the
forced-style voices, no information about the style with which
a prompt was spoken is available in this voice. Due to the pre-
dominance of neutral material, this voice was expected to have
a higher smoothness than any of the forced-style voices; how-
ever, in the absence of any style information, it is a matter of
chance which style(s) will be used to synthesize a given target
utterance.

In these and all other voices, acoustic target weights for du-
ration and F0, which are normally used in MARY unit selection
voices, were set to zero to avoid any confounding effect. Thus,
only symbolic target costs were used in the baseline voices.

1http://festvox.org/
2http://mary.dfki.de/
3Due to labeling mismatches, a small number of utterances had to

be removed from this data, and the numbers of utterances from each
style actually used for voice building are as follows: aggressive 394;
cheerful, depressed, and poker 393 each; neutral 2 946.

http://festvox.org/
http://mary.dfki.de/


These voices represent the expected extremes regarding
style specificity and smoothness, respectively. The interesting
question is how style control can maintain a high level of style
specificity while improving smoothness.

3.2. Symbolic style target cost

As a first type of style control, we built a voice from the same
speech material as the allstyles voice, but providing style as a
target feature. At build time, all units receive a discrete value
for this feature, corresponding to the speaking style of the re-
spective source utterance. At synthesis time, speaking style can
be controlled by explicitly selecting it for some or all of the in-
put text. This approach, while more flexible than the baseline,
nevertheless relies entirely on the symbolic style labels assigned
to the individual recordings and is oblivious to the actual acous-
tic data they contain.

Another drawback lies in the binary target cost: any sim-
ilarities across speaking styles are ignored, and all styles that
differ from the intended style incur the same cost.

We call this voice symbolic. The expectation is that, de-
pending on the weight of the style feature relative to the other
target costs, and depending on the relative weight of target vs.
join costs, this voice’s performance will be somewhere between
those of the forced-style and the allstyles voices: when the fea-
ture weight is high enough to dominate all other selection cri-
teria, the voice should be similar to the forced-style voice of
the intended style; conversely, when the feature weight is very
low, or when the join cost dominates the target cost, the voice
should resemble the allstyles voice. The interesting area is at in-
termediate target feature weights, where the effect of allowing
some units that are not in the intended style may be beneficial to
smoothness without being too detrimental for style specificity.

3.3. Acoustics-based style target cost

As a more experimental alternative to symbolic selection of
style, we have investigated the use of an acoustic feature ex-
tracted from the speech data itself. Pitch and spectral mea-
sures such as formant frequencies and bandwidths,4 and spec-
trum intensity on different frequency bands were used to calcu-
late voice quality parameters as described by [18], specifically
open quotient gradient (OQG), glottal opening gradient (GOG),
skewness gradient (SKG), rate of closure gradient (ROC), and
incompleteness of closure (IC). These gradient measures are
rough spectral estimates of traditional voice quality parameters
normally calculated in the time domain. The voice quality mea-
sures were extracted frame synchronously (frame length 25 ms;
frame shift 5 ms) from the voiced frames of the data. These gra-
dient voice quality measures have been successfully applied to
the classification of emotions [18].

Principal component analysis (PCA) of these parameters
shows that 79.2 % of the variance is explained by the first princi-
pal component, with a loading of 0.976 for OQG.5 In our initial
approach, we therefore focus on OQG.

The voiced frames in the speech data were used to train
a classification and regression tree (CART),6 which is used at
synthesis time to predict an OQG value for each target unit. It

4Pitch and formant extraction performed with Snack (http://
www.speech.kth.se/snack/)

5PCA performed with R (http://www.r-project.org/) us-
ing the covariance matrix

6CART building performed with Edinburgh Speech Tools (http:
//www.cstr.ed.ac.uk/projects/speech_tools/)

was found that using utterance mean OQG values ranked the
style feature at the top of the resulting CART, confirming our
expectations that style and voice quality should be correlated.

The unit selection process was extended with a continuous-
value target cost feature representing the CART-predicted OQG
value, and a single voice was built with this parameter as the
only acoustic target cost.7 We refer to this voice as vq (for voice
quality).

4. Evaluation
We carried out a systematic objective evaluation of the different
voices built as described above, with the following rationale.
Given the fact that the mixed style databases consist of a large
neutral part and a small expressive part for each of the expres-
sive styles, there is a natural trade-off between style-specificity
and smoothness: utterances that are synthesized from the large
neutral section of the corpus are more likely to find smoothly
fitting units, whereas the selection within any of the small ex-
pressive sections has only a very limited set of candidate units
available. Conversely, the more neutral units are used to syn-
thesize an utterance, the less likely it is that the output sounds
specific to an expressive intended style.

This reasoning provides us with two types of objective cri-
teria to evaluate the performance of unit selection with an ex-
pressive intended style:

(a) the proportion of units from the intended style as a simple
measure of style specificity; and

(b) the mean span length (of consecutive units which are adja-
cent in a source utterance) as an indication of smoothness.

The expected extrema of these criteria are represented by
our baseline voices: the forced-style voices necessarily produce
speech entirely from the intended style, and should sound the
least smooth; the allstyles voice built from the full corpus but
without the style feature is expected to produce the smoothest
output but to use predominantly neutral material.

The acoustic similarity of units across intended speaking
styles is more difficult to assess objectively. Given the impor-
tance of voice quality for the intended style, it seems reason-
able to assume that a spectral distance measure between a syn-
thesized utterance and a gold standard may be able to capture
some of the relevant similarities and differences. For this pur-
pose, we employ the same distance measure as previously used
in research on voice conversion with the same speech material
[19]. As the gold standard, we use the full set of 400 utterances
recorded in each intended style (while dynamically blacklisting
the corresponding utterances, see Section 4.3).

In the following, we compare the symbolic and acoustic
style control methods with respect to their performance on the
two criteria as the weights of the respective style feature and
of the join costs are systematically varied. It is expected that
for some non-extreme weights, it may be possible to retain a
good deal of style specificity while at the same time improving
smoothness beyond that of the forced-style voices.

4.1. Style specificity

The style specificity measure is computed as the percentage of
units in a synthesized utterance which come from source utter-
ances recorded in the intended style.

7The symbolic style feature target cost was set to zero.

http://www.speech.kth.se/snack/
http://www.speech.kth.se/snack/
http://www.r-project.org/
http://www.cstr.ed.ac.uk/projects/speech_tools/
http://www.cstr.ed.ac.uk/projects/speech_tools/


4.2. Smoothness

Units which are adjacent to one another in the recorded speech
data incur zero join cost, and if several of such units are selected
in sequence, this consecutive span will sound as smooth as pos-
sible. We use the mean span length (in units) in a synthesized
utterance as a simple measure of smoothness.8

4.3. Dynamic utterance blacklisting

During evaluation, each synthesized utterance under scrutiny is
compared to a gold standard: the original utterance produced by
the speaker. If this utterance were available in the unit selection
database, there would be a strong bias to select and concatenate
only units from that utterance, to the extreme of recreating a
perfect copy of the original recording. Comparing such a syn-
thesis result with the gold standard would be meaningless.

To avoid this problem and force units to be selected from
different source utterances in the voice data, it is common prac-
tice to withhold a test set of utterances, excluding them from
the voice building. Consequently, the result will typically sound
less smooth and natural than the gold standard, but how much
less depends on factors such as the voice data and the unit se-
lection itself.

However, a few drawbacks are introduced by this exclu-
sion process. Firstly, it is possible that by removing more than
one of the withheld utterances at a time from the voice data,
a synthesized test utterance is prevented from selecting units
from any of these excluded utterances, not just from the single
corresponding one. If the set of withheld utterances is chosen
differently, units from otherwise excluded utterances would be-
come available and might be selected. Therefore, withholding
a set of several unrelated utterances during voice building may
influence the unit selection evaluation itself.

Secondly, only those utterances that were withheld can be
tested against the gold standard in a meaningful way. Subse-
quent further testing is only possible after extending the exclu-
sion set and rebuilding the voice, which is typically a lengthy
process, especially for large amounts of speech. Furthermore,
as a corollary of the previous point, the extended set may ex-
clude units selected in previous tests, invalidating their results.

For these reasons, the present study sidesteps the issue by
introducing the notion of selective utterance blacklisting. In this
flexible approach, the utterances to be excluded are present in
the voice data, but their units are not considered as candidates
during unit selection. This is controlled dynamically at synthe-
sis time by providing a list of zero or more utterance codes as
the blacklist; every candidate unit is then checked and discarded
if its source utterance appears in the blacklist.

4.4. Spectral distance from the gold standard

As a spectral distance measure, we used the root-mean-squared
error (RMSE) of Bark-scaled line spectral frequency (LSF) val-
ues [19]. RMSE between a synthesized style-specific utterance
and the respective gold standard is estimated using:

RMSEi =

√√√√ 1

P

P−1∑
k=0

(gi(k)− sm(i)(k))2 (1)

where P is the linear prediction (LP) order, g and s are the
mapped Bark-scaled LSF vectors of gold-standard and synthe-
sized utterances, respectively, i is the speech frame index and

8It is inversely correlated with the ratio of join count to unit count.

m(i) is the mapping of speech frame indices using phonetic
alignment information. An LP order of 18 was used for 16 kHz
recordings. The mean RMSE values were computed excluding
initial and trailing silence in the signal.

4.5. Varying weights

For the symbolic and vq voices, we systematically vary the
weights to observe the effect on our objective measures. We
start with a clear predominance of target costs, by setting the
relative weight of target vs. join costs in the overall cost func-
tion to 0.95, giving join costs an extremely low contribution
to the total cost. This is a setting which in our experience is
suboptimal for perceived quality, and has a negative impact on
smoothness in particular; we use it only to ensure that we are
able to make the style selection feature the dominant factor in
unit selection.

Keeping this join cost weight constant, we then vary the
target cost weight of the style feature (symbolic style in the
symbolic voice, and the OQG parameter in the vq voice), from
low to high values. We expect only a very limited effect of
style-based selection for low feature weights, and the maximum
achievable effect for high feature weights.

5. Results
5.1. Style specificity

The proportion of units chosen from neutral or the intended
style, or a different style can be seen in Figure 1 for the sym-
bolic voice and in Figure 2 for the vq voice, for different style
feature weights. It can be seen that the allstyles voice, which
corresponds to either the symbolic or the vq voice with a weight
of 0 on the respective style feature, selects more than 91 %
of its units from the neutral style, as expected. For the sym-
bolic voice, the units are selected mostly from neutral or the
intended style; the style feature weight has the expected effect,
and at weight 100 already completely dominates the selection,
with 97 % of units selected from the intended style. Increasing
the weight further does not remove the remaining neutral units,
probably due to the fact that these represent diphones unavail-
able in the expressive sub-corpora, so they are force-selected
from the neutral sub-corpus.

The picture for the vq voice is quite different (Figure 2). As
expected, the acoustic style feature selects units from different
styles than the intended one, for all weight values. However, the
OQG feature by itself does not succeed, even at high weights,
in selecting the majority of units from the intended style. In fact
(not shown in Figure 2), only for the depressed intended style is
a substantial proportion of 25 % of the units selected from the
depressed source style. This value is already reached at weight
100, and then stays nearly constant. For the other styles, there
is no clear success in selecting units from the intended style.
This pattern seems to agree with the distribution of OQG values
across the styles in the database (Figure 3), where depressed is
most clearly different from the other styles. Apparently, this
style feature is not sufficient to distinguish the other styles.

To test the hypothesis that additional acoustic features
might be able to add distinctive power to the style selection,
we built a variant of the vq voice with a style feature weight of
100, that also included the acoustic features log F0 and dura-
tion, predicted by CARTs which included symbolic style as a
predictive feature in a way similar to the OQG parameter. It can
be seen (rightmost column in Figure 2) that this slightly shifts
the distribution between intended and other styles, but not the



Figure 1: Unit source style for voice symbolic for different style
feature weights. Voice allstyles corresponds to voice symbolic
with zero weight on the style feature.

Figure 2: Unit source style for voice vq for different style feature
weights. Voice 100+pros. corresponds to voice vq with weight
100 on the OQG feature and weights for log F0 and duration
tuned such that their contribution to the total target cost is ap-
proximately the same as that of OQG.

aggressive

cheerful

depressed

neutral

poker

−4 −2 0 2 4 6

OQG

Figure 3: Distribution of OQG values in the PAVOQUE corpus.

proportion of neutral units chosen. Detailed data per intended
style (not shown) reveal that this is due to a substantially higher
selection of aggressive units as intended compared to the corre-
sponding vq voice without prosody features.

5.2. Smoothness

Our measure of smoothness, the mean span length of units ad-
jacent in a single source utterance, is shown in Figure 4. The
reference landmarks allstyles and forced-style are drawn as hor-
izontal lines, which were expected to act as the upper and lower
bounds of the smoothness values for the symbolic mixed-style
voices.

The expected pattern can be observed for the symbolic style
for weights 10 and 100. However, mean span length rises again
for higher style feature weights. We suspect this to be a side
effect of the following: all target cost weights are normalized
so that they sum to 1. Therefore, a higher weight on one feature
lowers the effective weights on all other features. The extremely
high weight for the symbolic style feature therefore reduces the
importance of the other target cost features; given the ceiling ef-
fect on the style feature itself, which most of the time produces
a cost of 0 (match) for the selected candidate units, this results
in an increased importance of the join costs.

The mean span length measure for the vq voice exhibits the

Figure 4: Mean span length (in halfphone units) for different
style feature weights. Constant values for the forced-style and
allstyles voices shown for reference.

Figure 5: Effect of changing relative weight of target vs. join
costs on mean span length. Style feature weight is kept constant
at 100.

expected trend, with higher weights on the style feature lead-
ing to lower mean span length. However, it is unclear at this
time why mean span length drops below the baseline for very
high weights. Similarly, we currently cannot explain why the
vq+prosody voice (single point at weight 100) has very long
unit spans. More work is needed to investigate this point.

We studied the effect of raising the join cost weight as fol-
lows. The style target feature weight was kept constant at 100,
while the relative weight of target cost vs. join cost was succes-
sively reduced from 0.95. The effect on the mean span length
can be seen in Figure 5: for both voices, mean span length in-
creases with the join cost weight.

5.3. Spectral distance

The range of expected spectral distances to the gold standard
can be seen by comparing the forced-style voices (which should
be closest to the gold standard) to the allstyles voice (which
should exhibit the highest distance). Figure 6 shows this pattern
for the intended styles aggressive, poker and depressed, but not
for cheerful utterances in the corpus. Presumably the recorded
cheerful utterances do not differ spectrally from neutral speech
in a systematic way.

The effect of the style feature weight on spectral distance
is shown for aggressive speech in Figure 7. For the symbolic
voice, the distance drops to the lowest expected value from
weight 100 and greater; this is expected since most units are

Figure 6: Spectral distances from gold standard for forced-style
and allstyles voices.



Figure 7: Spectral distances from gold standard, for aggressive
intended style and different style feature weights. Constant val-
ues for the forced-style and allstyles voices shown for reference.

selected from the intended style. However, the distance mea-
sure indicates that the vq voice does not become more similar to
the gold standard with higher style feature weights; on the con-
trary, the distance increases. The variant of the vq voice which
includes the prosodic features (see Section 5.1), shown as a sin-
gle data point at weight 100, clearly has a smaller distance than
the corresponding version of the vq voice without prosody.

6. Discussion and conclusion
We have investigated two different style control techniques: a
direct technique, using the intended speaking style as a sym-
bolic target cost feature, and an indirect technique, using acous-
tic features predicted using a CART. The symbolic style feature
behaves as expected when its weight is varied. The situation for
acoustic style features is more complex. The single acoustic fea-
ture OQG can partially recover depressed units from a mixed-
style database, but cannot distinguish the other features; adding
F0 and duration increases the selection of aggressive base fea-
tures. OQG alone does not manage to reduce the spectral dis-
tance to the gold standard in the intended style. Adding F0 and
duration predictors seems to help, judging from the single data
point that we obtained in this study.

We consider these results to be promising on various lev-
els. On the one hand, the objective measures we have inves-
tigated seem to behave meaningfully, even though it is clear
that their perceptual relevance remains to be investigated. The
use of acoustic style selection criteria appears to deserve fur-
ther exploration. While the limited feature set we used did
not yet prove powerful enough to recover suitable units from
the mixed-style database for every intended style, it did select
about 25 % of units from the intended style for aggressive and
depressed speaking styles. To what extent this results in a rec-
ognizable rendition of these styles remains to be determined.
Adding more acoustic features should increase the ability to re-
cover suitable styles. Further work is required to understand the
observation that the acoustics-based selection tends to produce
smoother synthesis.
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[19] O. Türk and M. Schröder, “A comparison of voice conversion
methods for transforming voice quality in emotional speech syn-
thesis,” in Proc. Interspeech, Brisbane, Australia, 2008, pp. 2282–
2285.

http://mary.dfki.de/pavoque/publications/diplomarbeit-annahunecke.pdf
http://mary.dfki.de/pavoque/publications/diplomarbeit-annahunecke.pdf

	 Introduction
	 The PAVOQUE expressive speech synthesis corpus
	 Prompts
	 Recording
	 Labeling

	 Building expressive voices
	 Baseline voices
	 Symbolic style target cost
	 Acoustics-based style target cost

	 Evaluation
	 Style specificity
	 Smoothness
	 Dynamic utterance blacklisting
	 Spectral distance from the gold standard
	 Varying weights

	 Results
	 Style specificity
	 Smoothness
	 Spectral distance

	 Discussion and conclusion
	 Acknowledgments
	 References

