
Hindawi Publishing Corporation
Advances in Human-Computer Interaction
Volume 2010, Article ID 319406, 21 pages
doi:10.1155/2010/319406

Research Article

The SEMAINE API: Towards a Standards-Based Framework for
Building Emotion-Oriented Systems

Marc Schröder

German Research Center for Artificial Intelligence DFKI GmbH, Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

Correspondence should be addressed to Marc Schröder, schroed@dfki.de

Received 25 March 2009; Accepted 11 October 2009

Academic Editor: Anton Batliner

Copyright © 2010 Marc Schröder. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents the SEMAINE API, an open source framework for building emotion-oriented systems. By encouraging and
simplifying the use of standard representation formats, the framework aims to contribute to interoperability and reuse of system
components in the research community. By providing a Java and C++ wrapper around a message-oriented middleware, the API
makes it easy to integrate components running on different operating systems and written in different programming languages.
The SEMAINE system 1.0 is presented as an example of a full-scale system built on top of the SEMAINE API. Three small example
systems are described in detail to illustrate how integration between existing and new components is realised with minimal effort.

1. Introduction

Systems with some emotional competence, so-called “affec-
tive computing” systems, are a promising and growing trend
in human-machine interaction (HMI) technology. They
promise to register a user’s emotions and moods, for exam-
ple, to identify angry customers in interactive voice response
(IVR) systems and to generate situationally appropriate emo-
tional expression, such as the apologetic sound of a synthetic
voice when a customer request cannot be fulfilled; in certain
conditions they even aim to identify reasons for emotional
reactions, using so-called “affective reasoning” technology.
Ultimately, such technology may indeed lead to more natural
and intuitive interactions between humans and machines of
many different kinds, and thus contribute to bridging the
“digital divide” that leaves nontechy users helpless in front of
increasingly complex technology. This aim is certainly long
term; slightly more in reach is the use of emotion-oriented
technologies in the entertainment sector, such as in computer
games, where emotional competence, even in a rudimentary
state, can lead to new effects and user experiences.

In fact, an increasing number of interactive systems deal
with emotions and related states in one way or another.
Common tasks include the analysis of the user’s affective state
[1] from the face [2, 3], the voice [4, 5], or physiological mea-
sures [6], the evaluation of events in the world according to
affective criteria [7], and the generation of emotion-related

system behaviour, such as facial expression [8, 9] and voice
[10, 11], but also other media such as music and colour [12].

A number of elements are common to the different
systems. All of them need to represent emotional states
in order to process them; and many of the systems are
built from components, such as recognition, reasoning, or
generation components, which need to communicate with
one another to provide the system’s capabilities. In the
past, systems used custom solutions to these challenges,
usually in clearly delimited ways that were tailor made for
their respective application areas (see Section 2 for related
work). However, existing emotion-oriented systems neither
seem to be explicitly geared towards the use of standard
representations nor are they available as open source.

Standards enable interoperability and reuse. Nowadays,
standards are taken for granted in such things as the voltage
of electricity in a given country, fuel grade, or the dimensions
of screw threads [13]. More recently, standards for document
formats [14] have entered the public debate, under the
perspective of long-term accessibility of documents. Web
standards such as the Hyper-Text Markup Language HTML
[15] enable access to information in the world wide web
through a broad variety of software products supporting the
standard format.

Proprietary formats, on the other hand, can be used to
safeguard a company’s competitive advantage. By patenting,
or even by simply not documenting a representation format,

2 Advances in Human-Computer Interaction

a company can make sure not to open up the market to its
competitors.

The same considerations seem to apply in the emerging
area of emotion-oriented systems. Agreeing on standard
formats and interfaces would enable interoperability and
reuse. An initial investment of effort in defining suitably
broad but sufficiently delimited standard formats can be
expected to pay off in the long run by removing the need
to start from scratch with every new system built. Where
formats, software frameworks, and components are made
generally available, for example, as open source, these can be
used as starting points and building blocks for new systems,
speeding up development and research.

This paper describes the SEMAINE API, a toolkit and
middleware framework for building emotion-oriented sys-
tems in a modular way from components that communicate
using standard formats where possible. It describes one full-
scale system built using the framework and illustrates the
issue of reuse by showing how three simple applications can
be built with very limited effort.

The paper is structured as follows. Section 2 reviews
related work. Section 3 presents the SEMAINE API from
the technological point of view, including the support for
integrating components into a system and the supported
representation formats. Section 4 describes a first larger
system based on the API, the SEMAINE system 1.0, and
provides some detail on the system architecture and the
components used in the system. Section 5 exemplifies the
use of the SEMAINE API for building new emotion-oriented
systems by showing how to implement three demo systems.
Section 6 presents an evaluation of the framework in terms
of response times and developer friendliness.

2. Related Work

Several integrated research systems have been built in the
recent past which incorporate various aspects of emotional
competence. For example, the NECA project [16] generated
scripted dialogues between embodied conversational agents
in a web environment. Its system was based on a pipeline
architecture in which a Rich Representation Language (RRL)
[17] was successively enriched with component information.
The VirtualHuman project [18] supported dialogues involv-
ing multiple humans and multiple agents. Both humans and
agents were represented in the system by Conversational
Dialogue Engines [19] communicating with each other
using the concepts of an application-specific ontology. The
FearNot! system [20], an educational application helping
children to deal with bullying, uses an architecture involving
reactive and deliberative layers and memory components,
as well as sensors and effectors. Central to the processing
of emotions in FearNot are appraisal processes realised in
terms of the OCC model [21]. The project IDEAS4Games
realised an emotion-aware poker game, in which two agents
and a user played against each others with physical cards
carrying RFID tags [22]. The emotions of characters were
computed from game events using an affective reasoner [7]
and realised through the synthetic voice and through body
movements. Whereas all of these systems are conceptually

modular, none of them is explicitly geared towards the use of
standard representations, and none of the systems is available
as open source.

Existing programming environments provide relevant
component technologies but do not allow the user to
integrate components across programming languages and
operating system platforms. For example, the EMotion FX
SDK [23] is a character animation engine that supports
animation designers to streamline the process of designing
the graphical properties of games characters and include
them into a game environment. It includes facial animation
such as emotional facial expressions and lip synchronisation.
Luxand FaceSDK [24] is a facial feature point detection
software, which can be used for face detection, the generation
of 3D face models, and the automatic creation of animated
avatars. Both are relevant component technologies for an
emotion-oriented system, but do not solve the issue of how
to integrate heterogeneous components across platforms.

When looking beyond the immediate area of emotion-
oriented systems, however, we find several toolkits for
component integration.

In the area of ubiquitous computing, the project Com-
puters in the Human Loop (CHIL) investigated a broad range
of smart space technologies for smart meeting room appli-
cations. Its system integration middleware, named CHILix
[25], uses XML messages for integrating the components in
a smart space application. CHILix uses the freely available
NIST DataFlow System II [26] as the low-level message
routing middleware. The XML message format used seems
to be a domain-specific, custom format; documentation does
not seem to be freely available.

In the domain of interactive robots research, the project
CognitiveSystems (CoSy) has developed a system integra-
tion and communication layer called CoSy Architecture
Schema Toolkit (CAST) [27]. The components of a robot’s
architecture are structured into subarchitectures in which
components work on a jointly accessible working memory.
Access to data structures is through predefined types, similar
to objects. Communication passes through the object-
oriented middleware Ice [28].

The main features of the CHILix, CAST, and SEMAINE
API integration frameworks are summarised in Table 1. It
can be seen that out of these frameworks the SEMAINE API
is the only one that is based on standard formats and can be
flexibly used with closed and open source components due
to its less restrictive LGPL license.

3. The SEMAINE API

The SEMAINE API has been created in the EU-funded pro-
ject “SEMAINE: Sustained Emotionally coloured Machine-
human Interaction using Nonverbal Expression” [29], as a
basis for the project’s system integration. The project aims
to build a multimodal dialogue system with an emphasis
on nonverbal skills—detecting and emitting vocal and
facial signs related to the interaction, such as backchannel
signals, in order to register and express information such
as continued presence, attention or interest, an evaluation
of the content, or an emotional connotation. The system

Advances in Human-Computer Interaction 3

Table 1: Key properties of several component integration frameworks for real-time systems.

CHILix CAST SEMAINE API

Application domain Smart Spaces Interactive Robots Emotion-oriented systems

Integration approach XML messages Objects in shared working memory XML messages

Using standard formats No No Yes

Operating systems Windows, Linux, Mac Linux, Mac Windows, Linux, Mac

Programming languages C++, Java C++, Java C++, Java

Low-level communication platform NDFS II Ice ActiveMQ

Open source No Yes, GPL Yes, LGPL

has strong real-time constraints, because it must react to the
user’s behaviour while the user is still speaking [30].

The project’s approach is strongly oriented towards
making basic technology for emotion-oriented interactive
systems available to the research community, where possible
as open source. While the primary goal is to build a system
that can engage a human user in a conversation in a plausible
way, it is also an important aim to provide high-quality
audiovisual recordings of human-machine interactions, as
well as software components that can be reused by the
research community.

In front of this background, the SEMAINE API has the
following main aims:

(i) to integrate the software components needed by
the SEMAINE project in a robust, real-time system
capable of multimodal analysis and synthesis,

(ii) to enable others to reuse the SEMAINE components,
individually or in combination, as well as to add their
own components, in order to build new emotion-
oriented systems.

The present section describes how the SEMAINE API
supports these goals on a technical level. First, we present the
SEMAINE API’s approach to system integration, including
the message-oriented middleware used for communication
between components, as well as the software support pro-
vided for building components that integrate neatly into the
system and for producing and analysing the representation
formats used in the system. After that, we discuss the
representation formats used, their status with respect to
standardisation, and the extent to which domain-specific
representations appear to be needed.

3.1. System Integration. Commercial systems often come
as single, monolithic applications. In these systems, the
integration of system components is as tight as possible: any
system internal components communicate via shared mem-
ory access, and any modularity is hidden from the end user.

In the research world, the situation is different. Different
research teams, cooperating in research projects in different
constellations, are deeply rooted in different traditions; the
components they contribute to a system are often extensions
of preexisting code. In such situations, the only way to
fully integrate all system components into a single binary
executable would be to reimplement substantial portions of

the code. In most cases, research funding will not provide the
resources for that. Therefore, it is often necessary to build
an overall system from components that may be running
on different operating systems and that may be written in
different programming languages.

Key properties of system integration are as follows. The
SEMAINE API uses a message-oriented middleware (MOM;
see Section 3.1.1) for all communication in the system. As a
result, all communication is asynchronous, which decouples
the various parts of the system. The actual processing is done
in “components”, which communicate with one another
over “Topics” (see Section 3.1.2) below the named Topic
hierarchy semaine.data.∗. Each component has its own
“metamessenger”, which interfaces between the component
and a central system manager. When a component is
started, its metamessenger registers with the system man-
ager over a special metacommunication channel, the Topic
semaine.meta. At registration time, the metamessenger
describes the component in terms of the data Topics that it
sends data to and that it receives data from; if the component
is an input or output component (in the sense of the
user interface), that status is communicated as well. The
system manager is keeping track of the components that
have been registered and checks at regular intervals whether
all components are still alive by sending a “ping”. In reply
to such a ping, each metamessenger confirms the respective
component’s status and sends debug information such as the
average time spent processing incoming requests. The system
manager keeps track of the information about registered
components and sends global meta messages informing
all components that the overall system is ready or, if a
component has an error or is stalled, that the system is
not ready. Also, the system manager resets a global timer
to zero when the system becomes ready. All components
use this global time via their metamessenger, and thus can
meaningfully communicate about timing of user and system
events even across different computers with potentially
unsynchronised hardware clocks.

A centralised logging functionality uses the Topics below
semaine.log.∗. By convention, messages are sent to
semaine.log.<component>.<severity>, for example,
the Topic semaine.log. UtteranceInterpreter.
debug would be used for debug messages of component
UtteranceInterpreter. The severities used are “debug”,
“info”, “warn”, and “error”. Through this design, it is
possible for a log reader to subscribe, for example, to all

4 Advances in Human-Computer Interaction

message
logger

log reader

message-oriented
middleware

semaine.data.∗

semaine.log.∗

semaine.meta

system
manager

system monitor
GUI

component

component

meta
messenger

meta
messenger

...

Figure 1: SEMAINE API system architecture.

types of messages from one component or to all messages
from all components that have at least severity “info”,
and so forth. Furthermore, a configurable message logger
can optionally be used to log certain messages in order to
follow and trace them. Notably, it is possible to read
log messages in one central place, independently of the
computer, operating system, or programming language used
by any given component.

Figure 1 illustrates this system architecture. Compo-
nents communicate with each other via Topics in the
semaine.data hierarchy (indicated by black arrows).
Metainformation is passed between each component’s
metamessenger and the system manager via the semaine.
meta Topic (grey arrows). Optionally, components can write
log messages, and a message logger can log the content
messages being sent; a configurable log reader can receive and
display a configurable subset of the log messages (dashed grey
arrows).

Optionally, a system monitor GUI visualises the infor-
mation collected by the system manager as a message flow
graph. Input components are placed at the bottom left,
output components at the bottom right, and the other
components sorted to the extent possible based on the
data input/output relationships, along a half-circle from
left to right. Component B comes later in the graph than
component A if A’s output is an input to B or if there is
a sequence of components that can process A’s output into
B’s input. This criterion is overly simplistic for complex
architectures, especially with circular message flows, but is
sufficient for simple quasilinear message flow graphs. If a new
component is added, the organisation of the flow graph is
recomputed. This way, it is possible to visualise message flows
without having to prespecify the layout.

Figure 2 shows the system monitor GUI for the
SEMAINE system 1.0 described in Section 4. Components
are represented as ovals, whereas Topics are represented as
rectangles. Topics are shown in yellow when they have just
transported a new message and in grey when they have

not seen any recent messages. When the user clicks on the
Topic rectangle, the GUI shows a history of the messages
transported by a given Topic; debug information about a
component is shown when the user clicks on the component
oval. A log message reader is shown on the right-hand side.
It can be configured with respect to the components and the
severity of messages to show.

The remainder of this section describes the various
aspects involved in the system in some more detail.

3.1.1. Message-Oriented Middleware. A message-oriented
middleware (MOM) [31] is specifically designed to integrate
different applications or processes through messages being
routed from publishers to subscribers. The aim is to “glue
together applications both within and across organisations,
without having to reengineer individual components” [31].
One method for describing how messages should be sent
from sources to destinations is a message flow graph,
in which the nodes represent components and the arcs
represent message flows [31]. A major advantage of a
generic message-oriented middleware lies in its flexibility.
Through a publish-subscribe model, n-to-m connections are
trivial to realise; furthermore, the system architecture can be
rearranged very easily—adding or removing a component
consuming or producing a certain message type does not
require any changes elsewhere in the architecture. Commu-
nication is asynchronous, so that a publisher does not need to
wait for confirmation by subscribers that a message has been
received. Where a response is needed, this must be sent as a
separate asynchronous message, and the response’s receiver
needs to match it to the original request.

The SEMAINE API provides an abstraction layer over
a MOM that allows the components to deal with messages
in a type-specific way. The low-level serialisation and de-
serialisation processes are encapsulated and hidden from the
user code. As a result, it is potentially possible to exchange
one MOM against another one without any changes in the
user code.

Advances in Human-Computer Interaction 5

action.selected.f . . .

SpeechPreproces. . . action.selected. . .

DummyVisual FM . . .

synthesis.plan

SpeechBMLRealiser

synthesis.lowlev. . . synthesis.plan.s.

GretaBMLRealiser

synthesis.lowe synthesis.lowev. . . thesis.lowlev.

Gretaplayer

action selected

DummyActionSel. . .action.candidate. . .

UtteranceProposer

state.user.behav. . .

Utteranceinterpr. . .

state.dialog

TurnTakinginter. . .

nalysis.feature. . . state.user.emma

TurnFeatureExtra. . .

SEMAINE System Monitor

Figure 2: Screenshot of the system monitor GUI showing the implemented SEMAINE system 1.0.

The MOM currently used in the SEMAINE API is
ActiveMQ from the Apache project [32]. ActiveMQ is an
open-source implementation of the Java Message Service
(JMS) server specification [33]. It provides client code
in Java, C++, and various other programming languages,
is reasonably fast, and is actively used, supported, and
developed at the time of this writing.

3.1.2. Topics. In its “publish-subscribe” model, JMS routes
messages via so-called Topics which can be identified by
name. The SEMAINE API adopts this terminology. Names
of Topics can be arbitrarily chosen. In order to establish a
communication link from component A to component B,
it is sufficient for component A to register as a “publisher”
to a named Topic and for component B to register as a
“subscriber” to the same Topic. Whenever A sends a message
to the Topic, B will receive the message. Topics allow for an
arbitrary number of publishers and subscribers, so that it is
trivial to set up n-to-m communication structures.

For a given system, it is reasonable to choose Topics such
that they represent data of a specific type, that is, with a
well-defined meaning and representation format. This type
of data may be produced by several system components,
such as a range of modality-specific emotion classifiers. If
there are no compelling reasons why their outputs need to be
treated differently, it is possible to use a single Topic for their
joint output by registering all the components producing
this data type as publishers to the Topic. Similarly, several
components may reasonably take a given type of data as

input, in which case all of them should register as subscribers
to the respective Topic. Using Topics as “information hubs”
in this way immensely simplifies the clarity of information
flow, and consequently the message flow graph see Figure 2
for example.

3.1.3. Components. The creation of custom components is
made simple by the base class Component in the SEMAINE
API, which provides the basic functionality required for
the component to interact with the rest of the system. The
Component will register as a subscriber and/or as a publisher
to a configurable list of Topics using suitable, possibly type-
specific message receivers and message senders. Whenever a
message is received, the subclass’s react() method is called,
allowing the component to process the data and perform
some action, including the emission of an output message.
In addition, the method act() is called at configurable
intervals (every 100 ms by default), allowing for actions to
be triggered by component internal mechanisms such as
timeouts or custom process logic.

The Component base implementation also instantiates
the metamessenger (see Figure 1) which handles all meta
communication with the system manager, without requiring
customisation by user code in subclasses. Examples of simple
component classes are provided in Section 5.

3.1.4. API Support for Relevant Representation Types. The
SEMAINE API aims to be as easy to use as possible,
while allowing for state-of-the-art processing of data. This

6 Advances in Human-Computer Interaction

principle is reflected in an extensive set of support classes
and methods for parsing, interpreting, and creating XML
documents in general and the representations specially
supported (see Section 3.2) in particular. XML processing
is performed by the standards-compliant parser Xerces [34]
which converts between a textual representation contained
in messages and a user-friendly Document Object Model
(DOM) representation [35]. Parsing is done in a namespace-
aware manner in order to maintain a clear distinction
between the elements used in mixed representations. Exam-
ples of mixed representations are the use of the Extensible
Multimodal Annotation language (EMMA) to transport a
recognition result expressed in EmotionML and the use of
the Speech Synthesis Markup Language (SSML) to encode
the speech aspect of ECA behaviour in the Behaviour
Markup Language (BML). These combinations make perfect
sense; namespaces are a suitable method for clearly identify-
ing the markup type of any given element when interpreting
a mixed representation.

Support classes exist for the representation formats listed
in Section 3.2, notably as dedicated receiver, sender, and
message objects. For example, when a component registers
an EmmaReceiver to listen to a given Topic, it will receive
messages directly as SEMAINEEmmaMessage objects with
methods appropriate for interpreting the content of the
EMMA data; a FeatureSender will take an array of float
values and send it as a textual or binary feature message;
BinarySender and BinaryReceiver classes can be used
to transport, for example, audio data between components.

In sum, these support classes and methods simplify the
task of passing messages via the middleware and help avoid
errors in the process of message passing by implementing
standard encoding and decoding procedures. Where repre-
sentations beyond those previewed by the API are required,
the user always has the option to use lower-level methods
such as plain XML or even text messages and implement a
custom encoding and decoding mechanism.

3.1.5. Supported Platforms. The SEMAINE API is currently
available in Java and as a shared library in C++, for
Linux, Mac OS X, and Windows. State-of-the-art build tools
(Eclipse and ant for Java, Visual Studio for C++ on Windows,
GNU automake/autoconf for C++ on Linux and Mac) are
provided to make the use of the API as simple and portable
as possible.

3.1.6. Current Status. As of version 1.0.1, the SEMAINE
API is fully functional, but the support for the individual
representation formats is preliminary. Not all elements
and attributes defined in the specifications mentioned in
Section 3.2 are predefined as constants in the API support
classes. This limitation is an issue of coverage rather than
principle: on the one hand, it is straightforward to add the
missing element and attribute names to the lists of string
constants; on the other hand, user code can always add
custom string constants or use ad hoc strings to create or read
XML elements and attributes for which no constants have
been defined yet.

Other aspects are more interesting because the practical
implementation has hit limits with the current version of
draft specifications. For example, for the implementation
of symbolic timing markers between words, the draft BML
specification [36] proposes to use a <mark> element in
the default namespace; however, we noticed that treating
the speech markup as valid SSML requires the use of an
<ssml:mark> element in the SSML namespace. Experience
of this kind may be helpful in refining specifications based on
implementation feedback.

3.2. Representation Formats Supported in the SEMAINE API.
In view of future interoperability and reuse of components,
the SEMAINE API aims to use standard representation
formats where that seems possible and reasonable. For
example, results of analysis components can be represented
using EMMA (Extensible Multimodal Annotation), a World
Wide Web Consortium (W3C) Recommendation [37].
Input to a speech synthesiser can be represented using
SSML (Speech Synthesis Markup Language), also a W3C
Recommendation [38].

Several other relevant representation formats are not yet
standardised, but are in the process of being specified. This
includes the Emotion Markup Language EmotionML [39],
used for representing emotions and related states in a broad
range of contexts, and the Behaviour Markup Language
(BML) [40], which describes the behaviour to be shown by
an Embodied Conversational Agent (ECA). Furthermore, a
Functional Markup Language (FML) [41] is under discus-
sion, in order to represent the planned actions of an ECA
on the level of functions and meanings. By implementing
draft versions of these specifications, the SEMAINE API
can provide hands-on input to the standardisation process,
which may contribute to better standard formats.

On the other hand, it seems difficult to define a standard
format for representing the concepts inherent in a given
application’s logic. To be generic, such an endeavour would
ultimately require an ontology of the world. In the current
SEMAINE system, which does not aim at any sophisticated
reasoning over domain knowledge, a simple custom format
named SemaineML is used to represent those pieces of
information that are required in the system but which
cannot be adequately represented in an existing or emerging
standard format. It is conceivable that other applications
built on top of the SEMAINE API may want to use a more
sophisticated representation such as the Rich Description
Format (RDF) [42] to represent domain knowledge, in which
case the API could be extended accordingly.

Whereas all of the aforementioned representation for-
mats are based on the Extensible Markup Language XML
[43], there are a number of data types that are naturally
represented in different formats. This is particularly the case
for the representations of data close to input and output
components. At the input end, low-level analyses of human
behaviour are often represented as feature vectors. At the out-
put end, the input to a player component is likely to include
binary audio data or player-specific rendering directives.

Table 2 gives an overview of the representation formats
currently supported in the SEMAINE API. The following

Advances in Human-Computer Interaction 7

Table 2: Representation formats currently supported by the SEMAINE API.

Type of data Representation format Standardisation status

Low-level input features String or binary feature vectors ad hoc

Analysis results EMMA W3C Recommendation

Emotions and related states EmotionML W3C Incubator Report

Domain knowledge SemaineML ad hoc

Speech synthesis input SSML W3C recommendation

Functional action plan FML Very preliminary

Behavioural action plan BML Draft specification

Low-level output data Binary audio, player commands Player-dependent

0.000860535 rmsEnergy
12.6699 logEnergy
-2.59005e-05 rmsEnergy-De
-0.0809427 logEnergy-De
...

Figure 3: Textual representation of a feature vector.

subsections briefly describe the individual representation
formats.

3.2.1. Feature Vectors. Feature vectors can be represented
in an ad hoc format. In text form (see Figure 3), the
feature vectors consist of straightforward key-value pairs—
one feature per line—values preceding features.

As feature vectors may be sent very frequently (e.g., every
10 ms in the SEMAINE system 1.0), compact representation
is a relevant issue. For this reason, a binary representation
of feature vectors is also available. In binary form, the
feature names are omitted, and only feature values are
being communicated. The first four bytes represent an
integer containing the number of features in the vector; the
remaining bytes contain the float values one after the other.

3.2.2. EMMA. The Extensible Multimodal Annotation Lan-
guage (EMMA), a W3C Recommendation, is “an XML
markup language for containing and annotating the inter-
pretation of user input” [37]. As such, it is a wrapper
language that can carry various kinds of payload representing
the interpretation of user input. The EMMA language itself
provides, as its core, the <emma:interpretation> ele-
ment, containing all information about a single interpreta-
tion of user behaviour. Several such elements can be enclosed
within an <emma:one-of> element in cases where more
than one interpretation is present. An interpretation can have
an emma:confidence attribute, indicating how confident
the source of the annotation is that the interpretation is
correct, time-related information such as emma:start,
emma:end, and emma:duration, indicating the time span
for which the interpretation is provided, information about
the modality upon which the interpretation is based, through
the emma:medium and emma:mode attributes, and many
more.

Figure 4 shows an example EMMA document carrying
an interpretation of user behaviour represented using Emo-
tionML (see below). The interpretation refers to a start time.

It can be seen that the EMMA wrapper elements and the
EmotionML content are in different XML namespaces, so
that it is unambiguously determined which element belongs
to which part of the annotation.

EMMA can also be used to represent Automatic Speech
Recognition (ASR) output, either as the single most probable
word chain or as a word lattice, using the <emma:lattice>
element.

3.2.3. EmotionML. The Emotion Markup Language Emo-
tionML is partially specified, at the time of this writing, by
the Final Report of the W3C Emotion Markup Language
Incubator Group [39]. The report provides elements of
a specification, but leaves a number of issues open. The
language is now being developed towards a formal W3C
Recommendation.

The SEMAINE API is one of the first pieces of software
to implement EmotionML. It is our intention to provide
an implementation report as input to the W3C standard-
isation process in due course, highlighting any problems
encountered with the current draft specification in the
implementation.

EmotionML aims to make concepts from major emotion
theories available in a broad range of technological contexts.
Being informed by the affective sciences, EmotionML recog-
nises the fact that there is no single agreed representation
of affective states, nor of vocabularies to use. Therefore,
an emotional state <emotion> can be characterised using
four types of descriptions: <category>, <dimensions>,
<appraisals>, and <action-tendencies>. Further-
more, the vocabulary used can be identified. The Emo-
tionML markup in Figure 4 uses a dimensional representa-
tion of emotions, using the dimension set “valence, arousal,
potency”, out of which two dimensions are annotated:
arousal and valence.

EmotionML is aimed at three use cases: (1) Human
annotation of emotion-related data; (2) automatic emo-
tion recognition; and (3) generation of emotional system
behaviour. In order to be suitable for all three domains,
EmotionML is conceived as a “plug-in” language that can be
used in different contexts. In the SEMAINE API, this plug-
in nature is applied with respect to recognition, centrally
held information, and generation, where EmotionML is used
in conjunction with different markups. EmotionML can be
used for representing the user emotion currently estimated

8 Advances in Human-Computer Interaction

<emma:emma xmlns:emma="http://www.w3.org/2003/04/emma"
version="1.0">

<emma:interpretation emma:start="123456789">
<emotion xmlns="http://www.w3.org/2005/Incubator/emotion">

<dimensions set="valenceArousalPotency">
<arousal value="-0.29"/>
<valence value="-0.22"/>

</dimensions>
</emotion>

</emma:interpretation>
</emma:emma>

Figure 4: An example EMMA document carrying EmotionML markup as interpretation payload.

<dialog-state xmlns="http://www.semaine-project.eu/semaineml"
version="0.0.1">

<speaker who="agent"/>
<listener who="user"/>

</dialog-state>

Figure 5: An example SemaineML document representing dialogue state.

<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis"
xml:lang="en-US">

<voice gender="female">
And then <break/> I <emphasis>wanted</emphasis> to go.

</voice>
</speak>

Figure 6: An example standalone SSML document.

from user behaviour, as payload to an EMMA message. It is
also suitable for representing the centrally held information
about the user state, the system’s “current best guess” of the
user state independently of the analysis of current behaviour.
Furthermore, the emotion to be expressed by the system
can also be represented by EmotionML. In this case, it is
necessary to combine EmotionML with the output languages
FML, BML, and SSML.

3.2.4. SemaineML. A number of custom representations are
needed to represent the kinds of information that play a
role in the SEMAINE demonstrator systems. Currently, this
includes the centrally held beliefs about the user state, the
agent state, and the dialogue state. Most of the information
represented here is domain specific and does not lend itself
to easy generalisation or reuse. Figure 5 shows an example
of a dialogue state representation, focused on the specific
situation of an agent-user dialogue targeted in the SEMAINE
system 1.0 (see Section 4).

The exact list of phenomena that must be encoded in the
custom SemaineML representation is evolving as the system
becomes more mature. For example, it remains to be seen
whether analysis results in terms of user behaviour (such as
a smile) can be represented in BML or whether they need to
be represented using custom markup.

3.2.5. SSML. The Speech Synthesis Markup Language
(SSML) [38] is a well-established W3C Recommendation
supported by a range of commercial text-to-speech (TTS)
systems. It is the most established of the representation
formats described in this section.

The main purpose of SSML is to provide information to
a TTS system on how to speak a given text. This includes the
possibility to add <emphasis> on certain words, to provide

pronunciation hints via a <say-as> tag, to select a <voice>
which is to be used for speaking the text, or to request a
<break> at a certain point in the text. Furthermore, SSML
provides the possibility to set markers via the SSML <mark>
tag. Figure 6 shows an example SSML document that could
be used as input to a TTS engine. It requests a female US
English voice; the word “wanted” should be emphasised, and
there should be a pause after “then”.

3.2.6. FML. The functional markup language (FML) is
still under discussion [41]. Its functionality being needed
nevertheless, a working language FML-APML was created
[44] as a combination of the ideas of FML with the former
Affective Presentation Markup Language (APML) [45].

Figure 7 shows an example FML-APML document which
contains the key elements. An <fml-apml> document
contains a <bml> section in which the <speech> content
contains <ssml:mark> markers identifying points in time
in a symbolic way. An <fml> section then refers to those
points in time to represent the fact, in this case, that
an announcement is made and that the speaker herself is
being referred to between marks s1:tm2 and s1:tm4. This
information can be used, for example, to generate relevant
gestures when producing behaviour from the functional
descriptions.

The representations in the <fml> section are provisional
and are likely to change as consensus is formed in the
community.

For the conversion from FML to BML, information about
pitch accents and boundaries is useful for the prediction of
plausible behaviour time-aligned with the macrostructure
of speech. In our current implementation, a speech pre-
processor computes this information using TTS technology
(see Section 4.2). The information is added to the end of

Advances in Human-Computer Interaction 9

<fml-apml version="0.1">
<bml xmlns="http://www.mindmakers.org/projects/BML" id="bml1">

<speech id="s1" language="en-US" text="Hi, I’m Poppy."
ssml:xmlns="http://www.w3.org/2001/10/synthesis">
<ssml:mark name="s1:tm1"/>
Hi,
<ssml:mark name="s1:tm2"/>
I’m
<ssml:mark name="s1:tm3"/>
Poppy.
<ssml:mark name="s1:tm4"/>

</speech>
</bml>
<fml xmlns="http://www.mindmakers.org/fml" id="fml1">

<performative id="p2" type="announce" start="s1:tm1" end="s1:tm4"/>
<world id="w1" ref_type="person" ref_id="self" start="s1:tm2"

end="s1:tm4"/>
</fml>

</fml-apml>

Figure 7: An example FML-APML document.

<fml-apml version="0.1">
<bml xmlns="http://www.mindmakers.org/projects/BML" id="bml1">

<speech id="s1" language="en_US" text="Hi, I’m Poppy."
ssml:xmlns="http://www.w3.org/2001/10/synthesis">
<ssml:mark name="s1:tm1"/>
Hi,
<ssml:mark name="s1:tm2"/>
I’m
<ssml:mark name="s1:tm3"/>
Poppy.
<ssml:mark name="s1:tm4"/>
<pitchaccent id="xpa1" start="s1:tm1" end="s1:tm2"/>
<pitchaccent id="xpa2" start="s1:tm3" end="s1:tm4"/>
<boundary id="b1" time="s1:tm4"/>

</speech>
</bml>
<fml xmlns="http://www.mindmakers.org/fml" id="fml1">

<performative id="p2" type="announce" start="s1:tm1" end="s1:tm4"/>
<world id="w1" ref_type="person" ref_id="self" start="s1:tm2" end="s1:tm4"/>

</fml>
</fml-apml>

Figure 8: Pitch accent and boundary information added to the FML-APML document of Figure 7.

the <speech> section as shown in Figure 8. This is an ad
hoc solution which should be reconsidered in the process of
specifying FML.

3.2.7. BML. The aim of the Behaviour Markup Language
(BML) [40] is to represent the behaviour to be realised by
an Embodied Conversational Agent. BML is at a relatively
concrete level of specification, but is still in draft status [36].

A standalone BML document is partly similar to the
<bml> section of an FML-APML document (see Figure 7);
however, whereas the <bml> section of FML-APML contains
only a <speech> tag, a BML document can contain
elements representing expressive behaviour in the ECA at a
broad range of levels, including <head>, <face>, <gaze>,
<body>, <speech>, and others. Figure 9 shows an example
of gaze and head nod behaviour added to the example of
Figure 7.

While creating an audio-visual rendition of the BML
document, we use TTS to produce the audio and the timing
information needed for lip synchronisation. Whereas BML
in principle previews a <lip> element for representing this
information, we are uncertain how to represent exact timing
information with it in a way that preserves the information
about syllable structure and stressed syllables. For this

reason, we currently use a custom representation based on
the MaryXML format from the MARY TTS system [46] to
represent the exact timing of speech sounds. Figure 10 shows
the timing information for the word “Poppy”, which is a two-
syllable word of which the first one is the stressed syllable.

The custom format we use for representing timing
information for lip synchronisation clearly deserves to be
revised towards a general BML syntax, as BML evolves.

3.2.8. Player Data. Player data is currently treated as unpa-
rsed data. Audio data is binary, whereas player directives are
considered to be plain text. This works well with the current
MPEG-4 player we use (see Section 4) but may need to be
generalised as other players are integrated into the system.

4. The SEMAINE System 1.0

The first system built with the SEMAINE API is the
SEMAINE system 1.0, created by the SEMAINE project. It
is an early-integration system which does not yet represent
the intended application domain of SEMAINE, the Sensitive
Artificial Listeners [30], but achieves a first integrated system
based on existing components from the project partners.

10 Advances in Human-Computer Interaction

<bml xmlns="http://www.mindmakers.org/projects/BML" id="bml1">
<speech id="s1" language="en_US" text="Hi, I’m Poppy."

ssml:xmlns="http://www.w3.org/2001/10/synthesis">
<ssml:mark name="s1:tm1"/>
Hi,
<ssml:mark name="s1:tm2"/>
I’m
<ssml:mark name="s1:tm3"/>
Poppy.

<ssml:mark name="s1:tm4"/>
<pitchaccent id="xpa1" start="s1:tm1" end="s1:tm2"/>
<pitchaccent id="xpa2" start="s1:tm3" end="s1:tm4"/>
<boundary id="b1" time="s1:tm4"/>

</speech>
<gaze id="g1" start="s1:tm1" end="s1:tm4">

...
</gaze>
<head id="h1" start="s1:tm3" end="s1:tm4" type="NOD">

...
</head>

</bml>

Figure 9: An example BML document containing SSML and gestural markup.

<bml xmlns="http://www.mindmakers.org/projects/BML" id="bml1">
<speech id="s1" language="en_US" text="Hi, I’m Poppy."

ssml:xmlns="http://www.w3.org/2001/10/synthesis"
mary:xmlns="http://mary.dfki.de/2002/MaryXML">

...
<ssml:mark name="s1:tm3"/>
Poppy.
<mary:syllable stress="1">

<mary:ph d="0.092" end="1.011" p="p"/>
<mary:ph d="0.112" end="1.123" p="A"/>
<mary:ph d="0.093" end="1.216" p="p"/>

</mary:syllable>
<mary:syllable>

<mary:ph d="0.141" end="1.357" p="i"/>
</mary:syllable>
<ssml:mark name="s1:tm4"/>

...
</bml>

Figure 10: An excerpt of a BML document enriched with TTS timing information for lip synchronisation.

Analysers

Features

Feature extractors

Interpreters

User state Dialogue state Agent state

Action proposers Candidate
action

Action selection

Action

Behaviour planner

Behaviour
plan

Behaviour realiser

Behaviour
data

Player

Figure 11: Conceptual message flow graph of the SEMAINE system.

Advances in Human-Computer Interaction 11

The present section describes the system 1.0, first from
the perspective of system architecture and integration, then
with respect to the components which at the same time are
available as building blocks for creating new systems with
limited effort see Section 5, for examples.

4.1. Conceptual System Architecture. Figure 2 shows a mes-
sage flow graph representing the conceptual system archi-
tecture of the intended SEMAINE system [30], which is
partially instantiated by the SEMAINE system 1.0 [47].
Processing components are represented as ovals and data as
rectangles. Arrows are always between components and data
and indicate which data is produced by or is accessible to
which component.

It can be seen that the rough organisation follows
the simple tripartition of input (left), central processing
(middle), and output (right) and that arrows indicate a
rough pipeline for the data flow, from input analysis via
central processing to output generation.

The main aspects of the architecture are outlined as
follows. Feature extractors analyse the low-level audio and
video signals and provide feature vectors periodically to the
following components. A collection of analysers, such as
monomodal or multimodal classifiers, produce a context-
free, short-term interpretation of the current user state, in
terms of behaviour (e.g., a smile) or of epistemic-affective
states (emotion, interest, etc.). These analysers usually have
no access to centrally held information about the state of the
user, the agent, and the dialogue; only the speech recognition
needs to know about the dialogue state, whether the user or
the agent is currently speaking.

A set of interpreter components evaluate the short-term
analyses of user state in the context of the current state of
information regarding the user, the dialogue, and the agent
itself and update these information states.

A range of action proposers produce candidate actions,
independently of one another. An utterance producer will
propose the agent’s next verbal utterance, given the dialogue
history, the user’s emotion, the topic under discussion, and
the agent’s own emotion. An automatic backchannel genera-
tor identifies suitable points in time to emit a backchannel. A
mimicry component will propose to imitate, to some extent,
the user’s low-level behaviour. Finally, a nonverbal behaviour
component needs to generate some “background” behaviour
continuously, especially when the agent is listening, but also
when it is speaking.

The actions proposed may be contradictory, and thus
must be filtered by an action selection component. A selected
action is converted from a description in terms of its
functions into a behaviour plan, which is then realised in
terms of low-level data that can be used directly by a player.

Similar to an efferent copy in human motor prediction
[48], behaviour data is also available to feature extractors as
a prediction of expected perception. For example, this can
be used to filter out the agent’s speech from the microphone
signal.

4.2. Components in the SEMAINE System 1.0. The actual
implementation of this conceptual architecture is visualised

in the system monitor screenshot in Figure 2. The following
paragraphs briefly describe the individual system compo-
nents. A more detailed description can be found in [47].

Low-level audio features are extracted using the open-
SMILE (Speech and Music Interpretation by Large-Space
Extraction) feature extractor [49]. The SMILE auto-
matic emotion recognition component [50] performs
continuous emotion detection in terms of the emotion
dimensions arousal and valence. The current models
have been trained on preliminary Sensitive Artificial Lis-
tener data from the HUMAINE project [51]. The Auto-
matic Speech Recognition component is based on the
ATK (http://htk.eng.cam.ac.uk/develop/atk.shtml) real-time
speech recognition engine which is a C++ layer sitting
on top of HTK (http://htk.eng.cam.ac.uk/). The speaker
independent triphone models were trained on the Wall
Street Journal corpus [52] and on the AMIDA Meeting
corpus [53]. The trigram language model was trained on
the preliminary SAL corpus [51] and therefore includes
about 1900 words which typically occur in spontaneous
emotionally coloured speech. The module for recognition
of human interest was trained on the AVIC database [54],
a database which contains data of a real-world scenario
where an experimenter leads a subject through a commercial
presentation. The subject interacted with the experimenter
and thereby naturally and spontaneously expressed different
levels of interest. The module discriminates three different
levels of interest: “bored”, “neutral”, and “high interest”.

Turn taking is a complex conversational system in which
the participants negotiate who will be the main speaker in
the next period. The SEMAINE system 1.0 implements a
simplistic mechanism: when the user is silent for more than
2 seconds, the system decides that the agent has the turn.

When the agent receives the turn, the system will analyse
what the user did and said. The User utterance interpreter
will look at the utterances of the user that were detected in
the previous turn. The utterances are tagged with general
semantic features such as the semantic polarity, the time, and
the subject of the utterances, and the user state is updated
accordingly.

The function of the agent utterance proposer is to
select an appropriate response when the agent has to say
something. It starts working when it receives an extended
user utterance from the user utterance interpreter, because in
the current system this also means that the agent has the turn.
Using the added features, it searches its response model for
responses that fit the current context. This response model is
based on the Sensitive Artificial Listener script [55] and con-
tains fitting contexts (i.e., a list of semantic features) for every
possible response. When no information about the previous
user utterance is available, it will pick a response from a list
of generic responses which fit in almost all circumstances.

A backchannel proposer (not shown in Figure 2) can
be used to generate behaviour such as the nods and “uh-
huh” sounds produced by listeners during the other’s turn.
The current simplistic implementation triggers a nonspecific
backchannel after 300 ms of silence by the user.

In the case of conflicting action proposals, an action
selection component is needed to decide which actions to

12 Advances in Human-Computer Interaction

1 public class HelloInput extends Component {
2
3 private Sender textSender = new Sender("semaine.data.hello.text", "TEXT", getName());;
4 private BufferedReader inputReader = new BufferedReader(new InputStreamReader(System.in));
5
6 public HelloInput() throws JMSException {
7 super("HelloInput", true/*is input*/, false);
8 senders.add(textSender);
9 }

10
11 @Override protected void act() throws IOException, JMSException {
12 if (inputReader.ready()) {
13 String line = inputReader.readLine();
14 textSender.sendTextMessage(line, meta.getTime());
15 }
16 }
17 }

Figure 12: The HelloInput component sending text messages via the SEMAINE API.

realise. The implementation in the SEMAINE system 1.0 is a
dummy implementation which simply accepts all proposed
actions.

The speech preprocessing component is part of the
conceptual behaviour planner component. It uses the MARY
TTS system [46] to add pitch accent and phrase boundary
information to FML documents in preparation of the
realisation of functions in terms of visual behaviour.

Conceptually, the visual behaviour planner component
identifies behaviour patterns that are appropriate for real-
ising the functions contained in an FML document. At this
stage, the component is a dummy implementation only
which does nothing.

The speech synthesis component is part of the conceptual
behaviour realiser component. It uses the MARY TTS system
[46] to produce synthetic speech audio data as well as timing
information in an extended BML document suitable as input
to the visual behaviour realiser. As a proof of concept, the
current version of the speech synthesiser also generates vocal
backchannels upon request.

The visual behaviour realiser component generates the
animation for the Greta agent [9] as MPEG-4 Facial Anima-
tion Parameters (FAP) [56] and Body Animation Parameters
(BAP). The input of the module is specified by the BML
language. It contains the text to be spoken and/or a set of
nonverbal signals to be displayed. The list of phonemes and
their respective duration, provided by the speech synthesis
component, are used to compute the lips movements.

When the Behaviour Realiser receives no input, the agent
does not remain still. It generates some idle movements
whenever it does not receive any input. Periodically a piece
of animation is computed and is sent to the player. It avoids
unnatural “freezing” of the agent.

The Greta player [9] receives the animation generated by
the behaviour realiser and plays it in a graphic window. The
animation is defined by the Facial Animation Parameters
(FAPs) and the Body Animation Parameters (BAPs). Each
FAP or BAP frame received by the player carries also the time
intended for its visualisation as computed by the behaviour
realiser.

4.3. System Properties. The combination of the system com-
ponents described above enables a simple kind of dialogue

interaction. While the user is speaking, audio features
are extracted. When silence is detected, estimates of the
user’s emotion and interest during the turn are computed,
and the ASR produces an estimate of the words spoken.
When the silence duration exceeds a threshold, backchannels
are triggered (if the system is configured to include the
backchannel proposer component); after a longer silence, the
agent takes the turn and proposes a verbal utterance from
the SAL script [55]. Even where no meaningful analysis of
the user input can be made, the script will propose a generic
utterance such as “Why?” or “Go on.” which is suitable in
many contexts. The utterances are realised with a generic TTS
voice and rendered, using either the audiovisual Greta player
or an audio-only player.

This description shows that the system is not yet
capable of much meaningful interaction, since its perceptual
components are limited and the dialogue model is not fully
fleshed out yet. Nevertheless, the main types of components
needed for an emotion-aware interactive system are present,
including emotion analysis from user input, central process-
ing, and multimodal output. This makes the system suitable
for experimenting with emotion-aware systems in various
configurations, as the following section will illustrate.

5. Building Emotion-Oriented Systems
with the SEMAINE API

This section presents three emotion-oriented example sys-
tems, in order to corroborate the claim that the SEMAINE
API is easy to use for building new emotion-oriented systems
out of new and/or existing components. Source code is
provided in order to allow the reader to follow in detail the
steps needed for using the SEMAINE API. The code is written
in Java and can be obtained from the SEMAINE sourceforge
page [57]. The SEMAINE API parts of the code would look
very similar in C++.

5.1. Hello World. The “Hello” example realises a simple text-
based interactive system. The user types arbitrary text; an
analyser component spots keywords and deduces an affective
state from them; and a rendering component outputs an
emoticon corresponding to this text. Despite its simplicity,

Advances in Human-Computer Interaction 13

Table 3: Ad hoc emoticons used to represent positions in the
arousal-valence plane.

Valence

— 0 +

A
ro

u
sa

l + 8-(8-| 8-)

0 :-(:-| :-)

— ∗-(∗-| ∗-)

the example is instructive because it displays the main
elements of an emotion-oriented system.

The input component (Figure 12) simply reads one
line of text at a time and sends it on. It has an input
device (Figure 12, line 4) and a Sender writing TEXT data
to the Topic semaine.data.hello.text (line 3). In its
constructor, the component registers itself as an input
component (l. 7) and registers its sender (l. 8). Its act()
method, which is automatically called every 100 ms while the
system is running, checks for new input (l. 12), reads it (l. 13),
and sends it to the Topic (l. 14).

As a simplistic central processing component, the Hel-
loAnalyser (Figure 13) makes emotional judgements about
the input. It registers a Receiver (l. 7) for the Topic that
HelloInput writes to and sets up (l. 3) and registers (l. 8) an
XML Sender producing data of type EmotionML. Whenever
a message is received, the method react() is called (l. 11).
It receives (l. 13) and analyses (l. 14–17) the input text
and computes values for the emotion dimensions arousal
and valence from the text. Finally, it creates an EmotionML
document (l. 18) and sends it (l. 19).

As the SEMAINE API does not yet provide built-in sup-
port for standalone EmotionML documents, the component
uses a generic XMLSender (l. 3) and uses the XMLTool to
build up the EmotionML document (l. 23–30).

The output of the Hello system should be an emoticon
representing an area in the arousal-valence plane as shown
in Table 3. The EmoticonOutput component (Figure 14)
registers an XML Receiver (l. 5) to the Topic that the
HelloAnalyser sends to. Whenever a message is received,
the react() method is called (l. 8), which analyses the
XML document in terms of EmotionML markup (l. 10–12)
and extracts the arousal and valence values (l. 14-15). The
emotion display is rendered as a function of these values (l.
17–19).

In order to build a system from the components, a
configuration file is created (Figure 15). It includes the
SystemManager component as well as the three newly cre-
ated components. Furthermore, it requests a visible system
manager GUI providing a message flow graph.

The system is started in the same way as all Java-
based SEMAINE API systems: activemq; java eu.
semaine.system.ComponentRunner example-hello.
config. Figure 16 shows a screenshot of the resulting
message flow graph. As the communication passes via the
middleware ActiveMQ, the system would behave in the exact
same way if the four components were started as separate
processes, on different machines, or if some of them were
written in C++ rather than Java.

5.2. Emotion Mirror. The Emotion mirror is a variant of
the Hello system. Instead of analysing text and deducing
emotions from keywords, it uses the openSMILE speech
feature extraction and emotion detection (see Section 4.2)
for interpreting the user’s emotion. The output is rendered
using the same EmoticonOutput component from the Hello
system in Section 5.1.

Only one new component is needed to build this system.
EmotionExtractor (Figure 17) has an emotion Sender (l.
2 and l. 7) just like the one HelloAnalyser had, but uses
an EMMA Receiver (l. 6) to read from the topic that the
Emotion detection component from the SEMAINE system
(see Section 4.2) publishes to, as documented in [47]. Upon
reception of an EMMA message, the method react() is
called (l. 10). As the only receiver registered by the compo-
nent is an EMMA receiver, the message can be directly cast
into an EMMA message (l. 11) which allows for comfortable
access to the document structure to extract emotion markup
(l. 12-13). Where emotion markup is present, it is inserted
into a standalone EmotionML document (l. 16–18) and sent
to the output Topic (l. 19).

The configuration file contains only the components
SystemManager, EmotionExtractor, and EmoticonOutput.
As the SMILE component is written in C++, it needs to be
started as a separate process as documented in the SEMAINE
wiki documentation [58]. The resulting message flow graph
is shown in Figure 18.

5.3. A Game Driven by Emotional Speech: The Swimmer’s
Game. The third example system is a simple game applica-
tion in which the user must use emotional speech to win
the game. The game scenario is as follows. A swimmer is
being pulled backwards by the stream towards a waterfall
(Figure 19). The user can help the swimmer to move forward
towards the river bank by cheering him up through high-
arousal speech. Low arousal, on the other hand, discourages
the swimmer and drives him more quickly to the waterfall.

The system requires the openSMILE components as in
the Emotion mirror system, a component computing the
swimmer’s position as time passes and considering the user’s
input, and a rendering component for the user interface.
Furthermore, we will illustrate the use of TTS output in the
SEMAINE API by implementing a commentator providing
input to the speech synthesis component of the SEMAINE
system 1.0 (Section 4.2).

The PositionComputer (Figure 20) combines a react()
and an act() method. Messages are received via an EMMA
receiver and lead to a change in the internal parameter
position (l. 22). The act() method implements the
backward drift (l. 29) and sends regular position updates (l.
30) as a plain-text message.

The SwimmerDisplay (Figure 21) implements the user
interface shown in Figure 19. Its messaging part consist of a
simple text-based Receiver (l. 5) and an interpretation of the
text messages as single float values (l. 10).

Due to the separation of position computer and swim-
mer display, it is now very simple to add a Commentator

14 Advances in Human-Computer Interaction

1 public class HelloAnalyser extends Component {
2
3 private XMLSender emotionSender =

new XMLSender("semaine.data.hello.emotion", "EmotionML", getName());
4
5 public HelloAnalyser() throws JMSException {
6 super("HelloAnalyser");
7 receivers.add(new Receiver("semaine.data.hello.text"));
8 senders.add(emotionSender);
9 }

10
11 @Override protected void react(SEMAINEMessage m) throws JMSException {
12 int arousalValue = 0, valenceValue = 0;
13 String input = m.getText();
14 if (input.contains("very")) arousalValue = 1;
15 else if (input.contains("a bit")) arousalValue = -1;
16 if (input.contains("happy")) valenceValue = 1;
17 else if (input.contains("sad")) valenceValue = -1;
18 Document emotionML = createEmotionML(arousalValue, valenceValue);
19 emotionSender.sendXML(emotionML, meta.getTime());
20 }
21
22 private Document createEmotionML(int arousalValue, int valenceValue) {
23 Document emotionML = XMLTool.newDocument(EmotionML.ROOT_ELEMENT, EmotionML.namespaceURI);
24 Element emotion = XMLTool.appendChildElement(emotionML.getDocumentElement(),

EmotionML.E_EMOTION);
25 Element dimensions = XMLTool.appendChildElement(emotion, EmotionML.E_DIMENSIONS);
26 dimensions.setAttribute(EmotionML.A_SET, "arousalValence");
27 Element arousal = XMLTool.appendChildElement(dimensions, EmotionML.E_AROUSAL);
28 arousal.setAttribute(EmotionML.A_VALUE, String.valueOf(arousalValue));
29 Element valence = XMLTool.appendChildElement(dimensions, EmotionML.E_VALENCE);
30 valence.setAttribute(EmotionML.A_VALUE, String.valueOf(valenceValue));
31 return emotionML;
32 }
33 }

Figure 13: The HelloAnalyser component. It receives and analyses the text messages from HelloInput and generates and sends an
EmotionML document containing the analysis results.

1 public class EmoticonOutput extends Component {
2
3 public EmoticonOutput() throws JMSException {
4 super("EmoticonOutput", false, true /*is output*/);
5 receivers.add(new XMLReceiver("semaine.data.hello.emotion"));
6 }
7
8 @Override protected void react(SEMAINEMessage m) throws MessageFormatException {
9 SEMAINEXMLMessage xm = (SEMAINEXMLMessage) m;

10 Element dimensions = (Element) xm.getDocument().getElementsByTagNameNS(
EmotionML.namespaceURI, EmotionML.E_DIMENSIONS).item(0);

11 Element arousal = XMLTool.needChildElementByTagNameNS(dimensions, EmotionML.E_AROUSAL,
EmotionML.namespaceURI);

12 Element valence = XMLTool.needChildElementByTagNameNS(dimensions, EmotionML.E_VALENCE,
EmotionML.namespaceURI);

13
14 float a = Float.parseFloat(arousal.getAttribute(EmotionML.A_VALUE));
15 float v = Float.parseFloat(valence.getAttribute(EmotionML.A_VALUE));
16
17 String eyes = a > 0.3 ? "8"/*active*/ : a < -0.3 ? "*"/*passive*/ : ":"/*neutral*/;
18 String mouth = v > 0.3 ? ")"/*positive*/ : v < -0.3 ? "("/*negative*/ : "|"/*neutral*/;
19 System.out.println(eyes+"-"+mouth);
20 }
21 }

Figure 14: The EmoticonOutput component. It receives EmotionML markup and displays an emoticon according to Table 3.

semaine.components = \
|eu.semaine.components.meta.SystemManager| \
|eu.semaine.examples.hello.HelloInput| \
|eu.semaine.examples.hello.HelloAnalyser| \
|eu.semaine.examples.hello.EmoticonOutput|

semaine.systemmanager.gui = true

Figure 15: The configuration file example-hello.config defining the Hello application.

Advances in Human-Computer Interaction 15

HelloAnalyser

hello.text hello.emotion

Helloinput EmoticonOutpu

SEMAINE system monitor

Figure 16: Message flow graph of the Hello system.

1 public class EmotionExtractor extends Component {
2 private XMLSender emotionSender =

new XMLSender("semaine.data.hello.emotion", "EmotionML", getName());
3
4 public EmotionExtractor() throws JMSException {
5 super("EmotionExtractor");
6 receivers.add(new EmmaReceiver("semaine.data.state.user.emma"));
7 senders.add(emotionSender);
8 }
9

10 @Override protected void react(SEMAINEMessage m) throws JMSException {
11 SEMAINEEmmaMessage emmaMessage = (SEMAINEEmmaMessage) m;
12 Element interpretation = emmaMessage.getTopLevelInterpretation();
13 List<Element> emotionElements = emmaMessage.getEmotionElements(interpretation);
14 if (emotionElements.size() > 0) {
15 Element emotion = emotionElements.get(0);
16 Document emotionML = XMLTool.newDocument(EmotionML.ROOT_ELEMENT, EmotionML.namespaceURI);
17 emotionML.adoptNode(emotion);
18 emotionML.getDocumentElement().appendChild(emotion);
19 emotionSender.sendXML(emotionML, meta.getTime());
20 }
21 }
22 }

Figure 17: The EmotionExtractor component takes EmotionML markup from an EMMA message and forwards it.

component (Figure 22) that generates comments using syn-
thetic speech, as a function of the current position of the
swimmer. It subscribes to the same Topic as the Swimmer-
Display (l. 7) and sends BML output (l. 2) to the Topic serv-
ing as input to the speech synthesis component of the
SEMAINE system 1.0 [47]. Speech output is produced when
the game starts (l. 18–20) and when the position meets
certain criteria (l. 13-14). Generation of speech output
consists in the creation of a simple BML document with a
<speech> tag enclosing the text to be spoken (l. 25–28) and
sending that document (l. 29).

The complete system consists of the Java components
SystemManager, PositionComputer, SwimmerDisplay, Com-
mentator, SpeechBMLRealiser, and SemaineAudioPlayer, as
well as the external C++ component openSMILE. The
resulting message flow graph is shown in Figure 23.

6. Evaluation

One important aspect in a middleware framework is message
routing time. We compared the MOM ActiveMQ, used in
the SEMAINE API, with an alternative system, Psyclone [59],
which is used in systems similar to ours (e.g., [60]). In order
to compute the mere message routing time ignoring network
latencies, we ran both ActiveMQ 5.1.0 and Psyclone 1.1.7
on a Windows Vista machine with a Core2Duo 2.5 GHz
processor and 4 GB RAM with no other load and connected
to each using a Java client sending and receiving messages in
sequence from the localhost machine. We sent text messages
of different lengths to each middleware in a loop, averaging
measures over 100 repetitions for each message length. We
used plain string messages with lengths between 10 and
1 000 000 characters. The message routing times are shown

16 Advances in Human-Computer Interaction

SEMAINE system monitor

EmotionExtractor

hello.emotion

EmoticonOutput

is.feature. . . er.emma

umFeatureExtra. . .

Figure 18: Message flow graph of the Emotion mirror system.

Swimmer game

Figure 19: Swimmer’s game user interface.

in Figure 24. Between 10 and 1000 characters, round trip
message routing times for ActiveMQ are approximately
constant at around 0.3 ms; the times rise to 0.5 ms for 10,000
characters, 2.9 ms for 100 000, and 55 ms for messages of
1 000 000 characters length. Psyclone is substantially slower,
with routing times approximately constant around 16 ms for
messages from 10 to 10 000 characters length, then rising to
41 ms at 100 000 characters length and 408 ms at 1 000 000
characters message length.

These results show that in this task ActiveMQ is approx-
imately 50 times faster than Psyclone for short messages and
around 10 times faster for long messages. While it may be
possible to find even faster systems, it seems that ActiveMQ
is reasonably fast for our purposes.

Other evaluation criteria are more difficult to measure.
While it is an aim of the SEMAINE API to be easy to use
for developers, time will have to tell whether the system is
being embraced by the community. A first piece of positive
evidence is the adoption of the SEMAINE API for a real-time
animation engine [61].

One aspect that should be added to the current
SEMAINE API when representation formats settle is the
validation of representation formats per Topic. Using XML
schema, it is possible to validate that any message sent via a
given Topic respects a formally defined syntax definition for
that Topic. At the time of developing and debugging a system,
this feature would help identify problems. At run time, the
validation could be switched off to avoid the additional
processing time required for XML validation.

7. Availability

The SEMAINE API and the SEMAINE system 1.0 are
available as open source [57, 58]. The API is covered by
the GNU Lesser General Public License (LGPL) [62], which
can be combined with both closed-source and open source
components. The components of the system 1.0 are partly
released under the LGPL, partly under the more restrictive
GNU General Public License (GPL) [63], which prohibits the
proliferation together with closed-source components.

Advances in Human-Computer Interaction 17

1 public class PositionComputer extends Component {
2 private Sender positionSender =

new Sender("semaine.data.swimmer.position", "TEXT", getName());
3 private float position = 50;
4
5 public PositionComputer() throws JMSException {
6 super("PositionComputer");
7 receivers.add(new EmmaReceiver("semaine.data.state.user.emma"));
8 senders.add(positionSender);
9 }

10
11 @Override protected void react(SEMAINEMessage m) throws MessageFormatException {
12 SEMAINEEmmaMessage emmaMessage = (SEMAINEEmmaMessage) m;
13 Element interpretation = emmaMessage.getTopLevelInterpretation();
14 List<Element> emotionElements = emmaMessage.getEmotionElements(interpretation);
15
16 for (Element emotion : emotionElements) {
17 Element dimensions = XMLTool.getChildElementByTagNameNS(emotion, EmotionML.E_DIMENSIONS,

EmotionML.namespaceURI);
18 if (dimensions != null) {
19 Element arousal = XMLTool.needChildElementByTagNameNS(dimensions, EmotionML.E_AROUSAL,

EmotionML.namespaceURI);
20 float arousalValue = Float.parseFloat(arousal.getAttribute(EmotionML.A_VALUE));
21 // Arousal influences the swimmer’s position:
22 position += 10*arousalValue;
23 }
24 }
25 }
26
27 @Override protected void act() throws JMSException {
28 // The river slowly pulls back the swimmer:
29 position -= 0.1;
30 positionSender.sendTextMessage(String.valueOf(position), meta.getTime());
31 }
32 }

Figure 20: The PositionComputer component.

1 public class SwimmerDisplay extends Component {
2
3 public SwimmerDisplay() throws JMSException {
4 super("SwimmerDisplay", false, true/*is output*/);
5 receivers.add(new Receiver("semaine.data.swimmer.position"));
6 setupGUI();
7 }
8
9 @Override protected void react(SEMAINEMessage m) throws JMSException {

10 float percent = Float.parseFloat(m.getText());
11 updateSwimmerPosition(percent);
12 String message = percent <= 0 ? "You lost!" : percent >= 100 ? "You won!!!" : null;
13 if (message != null) {

...
}

}
...

}

Figure 21: The SwimmerDisplay component (GUI code not shown).

The examples in Section 5 are available from the
SEMAINE sourceforge page [57] as an add-on to the
SEMAINE system 1.0.

8. Conclusion

This paper has presented the SEMAINE API as a framework
for enabling the creation of simple or complex emotion-
oriented systems with limited effort. The framework is
rooted in the understanding that the use of standard formats
is beneficial for interoperability and reuse of components.
The paper has illustrated how system integration and reuse
of components can work in practice.

More work is needed in order to make the SEMAINE
API fully suitable for a broad range of applications in the
area of emotion-aware systems. Notably, the support of
representation formats needs to be completed. Moreover,
several crucial representation formats are not yet fully spec-
ified, including EmotionML, BML and FML. Agreement on
these specifications can result from an ongoing consolidation
process in the community. If several research teams were to
bring their work into a common technological framework,
this would be likely to speed up the consolidation process,
because challenges to integration would become apparent
more quickly. An open source framework such as the
SEMAINE API may be suited for such an endeavour.

18 Advances in Human-Computer Interaction

1 public class Commentator extends Component {
2 private BMLSender bmlSender = new BMLSender("semaine.data.synthesis.plan", getName());
3 private boolean started = false;
4
5 public Commentator() throws JMSException {
6 super("Commentator");
7 receivers.add(new Receiver("semaine.data.swimmer.position"));
8 senders.add(bmlSender);
9 }

10
11 @Override protected void react(SEMAINEMessage m) throws JMSException {
12 float percent = Float.valueOf(m.getText());
13 if (percent < 30 /*danger*/) say("Your swimmer needs help!");
14 else if (percent > 70 /*nearly there*/) say("Just a little more.");
15 }
16
17 @Override protected void act() throws JMSException {
18 if (!started) {
19 started = true;
20 say("The swimmer needs your support to reach the river bank. Cheer him up!");
21 }
22 }
23
24 private void say(String text) throws JMSException {
25 Document bml = XMLTool.newDocument(BML.ROOT_TAGNAME, BML.namespaceURI);
26 Element speech = XMLTool.appendChildElement(bml.getDocumentElement(), BML.E_SPEECH);
27 speech.setAttribute("language", "en-US");
28 speech.setTextContent(text);
29 bmlSender.sendXML(bml, meta.getTime());
30 }
31 }

Figure 22: The Commentator component, producing TTS requests.

swimmer.position Commentator synthesis.plan

PositionComputer swimmerDisplay speechBMLRea

ysis.feature. . . state.user.emma

TumFeatureExtra. . .

synthesis.lowlev. . . synthesis.pla

seminAudioPla. . .

SEMAINE system monitor

Figure 23: Message flow graph of the swimmer’s game system.

Acknowledgments

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme (FP7/2007–2013) under Grant agreement no.

211486 (SEMAINE). The work presented here has been
shaped by discussions about concepts and implementation
issues with many people, including Elisabetta Bevacqua,
Roddy Cowie, Florian Eyben, Hatice Gunes, Dirk Heylen,
Mark ter Maat, Sathish Pammi, Maja Pantic, Catherine

Advances in Human-Computer Interaction 19

0

20

40

60

80

100

M
ill

is
ec

on
ds

10 100 1000 10000 100000 1000000

String length

Psyclone
Active MQ

Figure 24: Round-trip message routing times as a function of
message length.

Pelachaud, Björn Schuller, Etienne de Sevin, Michel Valstar,
and Martin Wöllmer. Thanks to Jonathan Gratch who
pointed us to ActiveMQ in the first place. Thanks also to
Oliver Wenz for designing the graphics of the swimmer’s
game.

References

[1] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, “A survey
of affect recognition methods: audio, visual and spontaneous
expressions,” in Proceedings of the 9th International Conference
on Multimodal Interfaces (ICMI ’07), pp. 126–133, ACM,
Nagoya, Japan, 2007.

[2] M. Pantic and L. J. M. Rothkrantz, “Automatic analysis of facial
expressions: the state of the art,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 12, pp. 1424–
1445, 2000.

[3] S. V. Ioannou, A. T. Raouzaiou, V. A. Tzouvaras, T. P. Mailis, K.
C. Karpouzis, and S. D. Kollias, “Emotion recognition through
facial expression analysis based on a neurofuzzy network,”
Neural Networks, vol. 18, no. 4, pp. 423–435, 2005.

[4] A. Batliner, S. Steidl, B. Schuller, et al., “Combining efforts for
improving automatic classification of emotional user states,”
in Proceedings of the 1st International Language Technologies
Conference (IS-LTC ’06), Ljubljana, Slovenia, 2006.

[5] B. Schuller, D. Seppi, A. Batliner, A. Maier, and S. Steidl,
“Towards more reality in the recognition of emotional speech,”
in Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP ’07), vol. 4, pp. 941–
944, 2007.

[6] C. Peter and A. Herbon, “Emotion representation and
physiology assignments in digital systems,” Interacting with
Computers, vol. 18, no. 2, pp. 139–170, 2006.

[7] P. Gebhard, “ALMA—a layered model of affect,” in Proceedings
of the 4th International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS ’05), pp. 177–184, Utrecht,
The Netherlands, 2005.

[8] N. Tsapatsoulis, A. Raouzaiou, S. Kollias, R. Cowie, and E.
Douglas-Cowie, “Emotion recognition and synthesis based on
MPEG-4 FAPs,” in MPEG-4 Facial Animation—The Standard,
Implementations, Applications, I. S. Pandzic and R. Forch-
heimer, Eds., John Wiley & Sons, Hillsdale, NJ, USA, 2002.

[9] E. Bevacqua, M. Mancini, R. Niewiadomski, and C. Pelachaud,
“An expressive ECA showing complex emotions,” in Proceed-
ings of the AISB Annual Convention, pp. 208–216, Newcastle,
UK, 2007.

[10] F. Burkhardt and W. F. Sendlmeier, “Verification of acoustical
correlates of emotional speech using formant synthesis,” in
Proceedings of the ISCA Workshop on Speech and Emotion, pp.
151–156, Newcastle, UK, 2000.

[11] M. Schröder, “Approaches to emotional expressivity in syn-
thetic speech,” in The Emotion in the Human Voice, K. Izdebski,
Ed., Plural, San Diego, Calif, USA, 2008.

[12] G. Castellano, R. Bresin, A. Camurri, and G. Volpe, “Expres-
sive control of music and visual media by full-body move-
ment,” in Proceedings of the 7th International Conference on
New Interfaces for Musical Expression, pp. 390–391, ACM, New
York, NY, USA, 2007.

[13] ISO—International Organization for Standardization, “ISO
261: ISO general purpose metric screw threads—general plan,”
1998, http://www.iso.org/iso/iso catalogue/catalogue ics/cat-
alogue detail ics.htm?csnumber=4165.

[14] ISO—International Organization for Standardization, “ISO/
IEC 26300:2006: Information technology—Open Document
Format for Office Applications (OpenDocument) v1.0,” 2006,
http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue
detail.htm?csnumber=43485.

[15] D. Raggett, A. Le Hors, and I. Jacobs, HTML 4.01 Specification,
1999, http://www.w3.org/TR/html401/.

[16] K. van Deemter, B. Krenn, P. Piwek, M. Klesen, M. Schröder,
and S. Baumann, “Fully generated scripted dialogue for
embodied agents,” Artificial Intelligence, vol. 172, no. 10, pp.
1219–1244, 2008.

[17] P. Piwek, B. Krenn, M. Schröder, M. Grice, S. Baumann,
and H. Pirker, “RRL: a rich representation language for the
description of agent behaviour in NECA,” in Proceedings of the
AAMAS Workshop Conversational Agents, Bologna, Italy, 2002.

[18] B. Kempe, N. Pfleger, and M. Löckelt, “Generating verbal and
nonverbal utterances for virtual characters,” in Proceedings of
the 3rd International Conference on Virtual Storytelling (ICVS
’05), vol. 3805 of Lecture Notes in Computer Science, pp. 73–76,
2005.

[19] M. Löckelt and N. Pfleger, “Multi-party interaction with self-
contained virtual characters,” in Proceedings of the 9th Work-
shop on the Semantics and Pragmatics of Dialogue (DIALOR
’05), pp. 139–142, Nancy, France, 2005.

[20] R. Aylett, A. Paiva, J. Dias, L. Hall, and S. Woods, “Affective
agents for education against bullying,” in Affective Information
Processing, J. Tao and T. Tan, Eds., pp. 75–90, Springer,
London, UK, 2009.

[21] A. Ortony, G. L. Clore, and A. Collins, The Cognitive Structure
of Emotion, Cambridge University Press, Cambridge, UK,
1988.

[22] P. Gebhard, M. Schröder, M. Charfuelan, et al., “IDEAS4-
Games: building expressive virtual characters for computer
games,” in Proceedings of the 8th International Conference on
Intelligent Virtual Agents (IVA ’08), vol. 5208 of Lecture Notes in
Computer Science, pp. 426–440, Springer, Tokyo, Japan, 2008.

20 Advances in Human-Computer Interaction

[23] Mystic Game Development, “EMotion FX,” http://www
.mysticgd.com/site2007/.

[24] Luxand, Inc., “Luxand—Detect Human Faces and Recognize
Facial Features with Luxand FaceSDK,” http://www.luxand
.com/facesdk/.

[25] N. Dimakis, J. K. Soldatos, L. Polymenakos, P. Fleury, J. Curı́n,
and J. Kleindienst, “Integrated development of context-aware
applications in smart spaces,” IEEE Pervasive Computing, vol.
7, no. 4, pp. 71–79, 2008.

[26] US National Institute of Standards and Technology (NIST),
“NIST Data Flow System II,” 2008, http://www.nist.gov/
smartspace/sf presentation.html.

[27] N. Hawes, J. L. Wyatt, A. Sloman, et al., “Architecture and
representations,” in Cognitive Systems, H. I. Christensen, A.
Sloman, G. Kruijff, and J. Wyatt, Eds., pp. 53–95, 2009.

[28] M. Henning, Choosing Middleware: Why Performance and
Scalability do (and do not) Matter, ZeroC, 2009, http://
www.zeroc.com/articles/IcePerformanceWhitePaper.pdf.

[29] “Semaine Project,” http://www.semaine-project.eu/.

[30] M. Schröder, R. Cowie, D. Heylen, M. Pantic, C. Pelachaud,
and B. Schuller, “Towards responsive sensitive artificial lis-
teners,” in Proceedings of the 4th International Workshop on
Human-Computer Conversation, Bellagio, Italy, 2008.

[31] G. Banavar, T. Chandra, R. Strom, and D. Sturman, “A case
for message oriented middleware,” in Proceedings of the 13th
International Symposium on Distributed Computing (DISC
’99), p. 846, 1999.

[32] “Apache ActiveMQ,” http://activemq.apache.org/.

[33] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, Java
Message Service (JMS) Specification Version 1.1, Sun Microsys-
tems, 2002, http://java.sun.com/products/jms/docs.html.

[34] “The Apache Xerces Project—xerces.apache.org,” http://xerces
.apache.org/.

[35] A. Le Hors, P. Le Hégaret, L. Wood, et al., Document
Object Model (DOM) Level 3 Core Specification, 2004,
http://www.w3.org/TR/DOM-Level-3-Core/.

[36] “Behavior Markup Language (BML) Wiki,” 2008, http://wiki
.mindmakers.org/projects:BML:main.

[37] M. Johnston, P. Baggia, D. C. Burnett, et al., “EMMA: Exten-
sible MultiModal Annotation markup language,” February
2009, http://www.w3.org/TR/emma/.

[38] D. C. Burnett, M. R. Walker, and A. Hunt, “Speech
Synthesis Markup Language (SSML) Version 1.0,” 2004,
http://www.w3.org/TR/speech-synthesis/.

[39] M. Schröder, P. Baggia, F. Burkhardt, et al., Elements of
an EmotionML 1.0, World Wide Web Consortium, 2008,
http://www.w3.org/2005/Incubator/emotion/XGR-emotion-
ml-20081120/.

[40] S. Kopp, B. Krenn, S. Marsella, et al., “Towards a common
framework for multimodal generation: the behavior markup
language,” in Proceedings of the 6th International Conference on
Intelligent Virtual Agents (IVA ’06), vol. 4133 of Lecture Notes
in Computer Science, pp. 205–217, 2006.

[41] D. Heylen, S. Kopp, S. Marsella, C. Pelachaud, and H.
Vilhjálmsson, “Why conversational agents do what they do
functional representations for generating conversational agent
behavior,” in Proceedings of the Workshop on Functional
Markup Language at the 7th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’08),
Estoril, Portugal, 2008.

[42] D. Becket and B. McBride, RDF/XML Syntax Specification
(Revised), 2004, http://www.w3.org/TR/rdf-syntax-grammar/.

[43] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and F.
Yergeau, Extensible Markup Language (XML) 1.0 (Fifth Edi-
tion), 2008, http://www.w3.org/TR/xml/.

[44] M. Mancini and C. Pelachaud, “The FML-APML language,” in
Proceedings of the Workshop on Functional Markup Language
at the 7th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS ’08), Estoril, Portugal, 2008.

[45] B. De Carolis, C. Pelachaud, I. Poggi, and M. Steedman,
“APML, a markup language for believable behavior genera-
tion,” in Life-Like Characters, H. Prendinger and M. Ishizuka,
Eds., pp. 65–86, Springer, New York, NY, USA, 2004.

[46] M. Schröder, M. Charfuelan, S. Pammi, and O. Türk, “The
MARY TTS entry in the Blizzard challenge 2008,” in Proceed-
ings of the Blizzard Challenge, Brisbane, Australia, 2008.

[47] M. Schröder, M. ter Maat, C. Pelachaud, et al.,
SEMAINE deliverable D1b: 1st integrated system, 2008,
http://semaine.sourceforge.net/SEMAINE-1.0/D1b%20First
%20integrated%20system.pdf.

[48] D. M. Wolpert and J. R. Flanagan, “Motor prediction,” Current
Biology, vol. 11, no. 18, pp. R729–R732, 2001.

[49] F. Eyben, M. Wöllmer, and B. Schuller, “OpenEAR—
introducing the Munich open-source emotion and affect
recognition toolkit,” in Proceedings of the Affective Computing
and Intelligent Interaction, IEEE, Amsterdam, The Nether-
lands, 2009.

[50] M. Wöllmer, F. Eyben, S. Reiter, et al., “Abandoning emotion
classes—towards continuous emotion recognition with mod-
elling of long-range dependencies,” in Proceedings of the 9th
Annual Conference of the International Speech Communication
Association (Interspeech ’08), Brisbane, Australia, 2008.

[51] E. Douglas-Cowie, R. Cowie, I. Sneddon, et al., “The
HUMAINE database: addressing the collection and annota-
tion of naturalistic and induced emotional data,” in Proceed-
ings of the 2nd International Conference on Affective Computing
and Intelligent Interaction (ACII ’07), vol. 4738 of Lecture
Notes in Computer Science, pp. 488–500, Lisbon, Portugal,
September 2007.

[52] D. B. Paul and J. M. Baker, “The design for the wall street
journal-based CSR corpus,” in Proceedings of the Workshop on
Speech and Natural Language, pp. 357–362, Association for
Computational Linguistics, Harriman, NY, USA, 1992.

[53] J. Carletta, “Unleashing the killer corpus: experiences in cre-
ating the multi-everything AMI Meeting Corpus,” Language
Resources and Evaluation, vol. 41, no. 2, pp. 181–190, 2007.

[54] B. Schuller, R. Müeller, B. Höernler, A. Höethker, H. Konosu,
and G. Rigoll, “Audiovisual recognition of spontaneous inter-
est within conversations,” in Proceedings of the 9th Interna-
tional Conference on Multimodal Interfaces, pp. 30–37, ACM,
Nagoya, Japan, 2007.

[55] E. Douglas-Cowie, R. Cowie, C. Cox, N. Amir, and D. Heylen,
“The sensitive artificial listener: an induction technique for
generating emotionally coloured conversation,” in Proceedings
of the 6th International Conference on Language Resources and
Evaluation (LREC ’08), pp. 1–4, Marrakech, Morocco, May
2008.

[56] J. Ostermann, “Face animation in MPEG-4,” in MPEG-4 Facial
Animation: The Standard, Implementation and Applications, I.
S. Pandzic and R. Forchheimer, Eds., pp. 17–55, John Wiley &
Sons, London, UK, 2002.

Advances in Human-Computer Interaction 21

[57] “SEMAINE sourceforge page,” http://sourceforge.net/proje-
cts/semaine/.

[58] “SEMAINE-1.0 wiki documentation,” http://semaine.open-
dfki.de/wiki/SEMAINE-1.0.

[59] CMLabs, “Psyclone,” 2007, http://www.mindmakers.org/pro-
jects/Psyclone.

[60] R. Niewiadomski, E. Bevacqua, M. Mancini, and C. Pelachaud,
“Greta: an interactive expressive ECA system,” in Proceedings
of the 8th International Conference on Autonomous Agents and
Multiagent Systems, vol. 2, pp. 1399–1400, 2009.

[61] A. Heloir and M. Kipp, “EMBR—a realtime animation engine
for interactive embodied agents,” in Proceedings of the 9th
International Conference on Intelligent Virtual Agents (IVA ’09),
pp. 393–404, Springer, Amsterdam, The Netherlands, 2009.

[62] “GNU Lesser General Public License, version 3,” http://www
.gnu.org/licenses/lgpl.html.

[63] “GNU General Public License, version 3,” http://www.gnu
.org/licenses/gpl-3.0.html.

