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Abstract: Embodied agents are a powerful paradigm for current and future multimodal

interfaces, yet require high effort and expertise for their creation, assembly and

animation control. Therefore, open animation engines and high-level control languages

are required to make embodied agents accessible to researchers and developers. We

present EMBR, a new realtime character animation engine that offers a high degree of

animation control via the EMBRScript language. We argue that a new layer of control,

the animation layer, is necessary to keep the higher-level control layers

(behavioral/functional) consistent and slim, while allowing a unified and abstract access

to the animation engine, e.g. for the procedural animation of nonverbal behavior. We also

introduce new concepts for the high-level control of motion quality (spatial/temporal

extent, power, fluidity). Finally, we describe the architecture of the EMBR engine, its

integration into larger project contexts, and conclude with a concrete application.
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1. Introduction

Turning virtual humans into believable, and thus acceptable, communication partners re-

quires highly natural verbal and nonverbal behavior. This problem can be seen from two

sides: creating intelligent behavior (planning context-dependent messages) and producing

corresponding surface realizations (speech, gesture, facial expression etc.). The former is

usually considered an AI problem, the latter can be considered a computer graphics prob-

lem (for nonverbal output). While previous embodied agents systems created their own

solutions for transitioning from behavior planning to graphical realization (Hartmann

et al. 2005; Kopp and Wachsmuth 2004; Neff et al. 2008), recent research has identified

three fundamental layers of processing which facilitates the creation of generic software

components (Kopp et al. 2006; Vilhjalmsson et al. 2007): intent planner, behavior plan-

ner and surface realizer. This general architecture allows the implementation of various

embodied agents realizers that can be used by the research community through unified

interfaces.

In this article, we present a new realizer called EMBR† (Embodied Agents Behavior

Realizer) and its control language EMBRScript. An embodied agents realizer has par-

ticularly demanding requirements: it must run at interactive speed, animations must be

believable while complying with high-level goals and be synchronized with respect to

multiple modalities (speech, gesture, gaze, facial movements) as well as external events

(triggered by the surrounding virtual environment or by the interaction partners), it

must be robust and reactive enough to cope with unexpected user input with human-

like responses. The system should provide the researchers with a consistent behavior

specification language offering the best compromise between universality and simplic-

ity. Finally, all the components of such a system should be open and freely available,

from the assets creation tools to the rendering engine. In the terminology of the SAIBA

framework (Kopp et al. 2006; Vilhjalmsson et al. 2007), users work on the level of intent

† see also http://embots.dfki.de/EMBR
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planning and behavior planning and then dispatch high-level behavior descriptions in

the behavior markup language (BML) to the realizer which transforms it into an ani-

mation. Because the behavior description is abstract, many characteristics of the output

animation are left for the realizer to decide. There is little way to tune or modify the

animations planned by existing realizers (Thiebaux et al. 2008). To increase animation

control while keeping high-level behavior descriptions simple, we propose an intermediate

layer between: the animation layer. The animation layer gives access to animation pa-

rameters that are close to the actual motion generation mechanisms like spatio-temporal

constraints. It thus gives direct access to functionality of the realizer while abstracting

away from implementation details.

On the one hand, the animation layer provides users with a language capable of describ-

ing fine-grained output animations without requiring a deep understanding of computer

animation techniques. On the other hand, the concepts of this layer can be used as build-

ing blocks to formally describe behaviors on the next higher level (BML). We also show

how to integrate the control of motion quality (spatial extent, temporal extent, power

and fluidity) into our framework.

To sum up, the main contributions of this article are:

— Introducing a new, free behavior realizer for embodied agents

— Presenting a modular architecture for realtime character animation that combines

skeletal animation, morph targets, and shaders

— Introducing a new layer of specification called the animation layer, implemented by

the EMBRScript language, that is based on specifying partial key poses in absolute

time

— New formulations for realizing motion qualities (spatial/temporal extent, power, flu-

idity) on individual motions, based on the concept of nucleus which subsumes stroke

and independent hold of a gesture ‡.

‡ An independent hold is the hold phase of a stroke-less gesture which usually carries the “meaning” of
the gesture (Kita et al. 1998)
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In the following, we will first review related work, then describe the animation layer

and EMBRScript. We then explain EMBR’s modular architecture and conclude with a

concrete application and future work.

2. Related Work

In the terminology of the SAIBA framework, the nonverbal behavior generation problem

can be decomposed into behavior planning and realization. At the first split of the SAIBA

framework, the Behavior Markup Language (BML) describes human movement at the

level of abstract behavior (Kopp et al. 2006)(perform a pointing gesture, shrug, etc.)

The problem of behavior planning may be informed by the use of communicative func-

tion (De Carolis et al. 2004), linguistic analysis (Cassell et al. 2001), archetype depiction

(Ruttkay and Noot 2005), or be learned from real data (Stone et al. 2004; Neff et al.

2008). The problem of realization involves producing the final animation which can be

done either from a gesture representation language (Kopp and Wachsmuth 2004; Hart-

mann et al. 2005) or from a set of active motion segments in the realizer at runtime

(Thiebaux et al. 2008; Gillies et al. 2008).

Kopp et al. (Kopp and Wachsmuth 2004) created an embodied agent realizer that pro-

vides the user with a fine grained constraint-based gesture description language (MURML)

that lets the user precisely specify communicative gestures involving skeletal animation

and morph target animation. This system allows the user to define synchronization points

between channels, but automatically handles the timing of the rest of the animations

using motion functions extracted from the neurophysiological literature. Their control

language can be regarded to be on the same level of abstraction as BML, being, however,

much more complex with deeply nested XML structures. We argue that a number of

low-level concepts should be moved to what we call the animation layer.

The SmartBody open-source framework (Thiebaux et al. 2008) relates to our work as

a freely available system that lets a user build its own behavior realizer by specializing
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generic animation segments called motion controllers organized in a hierarchical manner.

Motion controllers have two functions: they generate the animation blocks and manage

motion generation (controllers) as well as blending policy, scheduling and time warping

(meta-controllers). As SmartBody uses BML (Kopp et al. 2006) as an input language, it

must tackle both the behavior selection and the animation selection problem. Although

extending the controllers to tailor animation generation is feasible, there is currently no

easy way to modify the behavior selection as “each BML request is mapped to skeleton-

driving motion controllers” (Thiebaux et al. 2008 p. 153). Moreover, even if Smartbody

lets users import their own art assets, the only supported assets creation tool is Maya

(commercial). As for rendering the authors claim to have full and partial intergration of

multiple engines, e.g. Unreal 2.5 (full), Gamebryo, Ogre3D and Half-Life 2. The BML

Realizer§ (BMLR) is an open source project that uses the SmartBody system as an

engine and Panda3D as a renderer. It therefore remedies the drawbacks of commercial

tools from the Smartbody system. Existing commercial products like NaturalMotion¶ or

Golaem behavior Pack‖ are focused on low level motion generation and do not provide

a language capable of specifying the motions in an abstract way.

A more recently development is the PIAVCA framework (Gillies et al. 2008) for con-

trolling responsive animation. PIAVCA provides a range of real time motion editing

filters that can be combined to achieve complex animation effects, as well as authoring

of control flows that make it possible to create both scripted and reactive responses to

events. However, it seems that PIAVCA is more focused on generating reactive behavior:

for instance, it doesn’t offer an animation specification language. Furthermore, although

it gives access to basic animation primitives like morph targets or joints, PIAVCA doesn’t

provide elaborate procedural animation routines like inverse kinematics but rather relies

extensively on motion capture.

§ http://cadia.ru.is/projects/bmlr
¶ http://www.naturalmotion.com/
‖ http://www.golaem.com/
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3. Animation Layer: EMBRScript

It has been proposed that an abstract behavior specification language like BML should

be used to communicate with the realizer. Such a language usually incorporates concepts

like relative timing (e.g. let motions A and B start at the same time) and lexicalized be-

haviors (e.g. perform head nod), sometimes allowing parameters (e.g. point to object X).

While we acknowledge the importance of this layer of abstraction we argue that another

layer is needed that allows finer control of animations without requiring a programmer’s

expertise. We call this layer the animation layer. It can be regarded as a thin wrapper

around the animation engine with the following most important characteristics:

— specify key poses in time

— use absolute time

— use absolute space

— avoid deeply nested specification structures

We incorporate the functionality of this layer in a language called EMBRScript (see

Fig. 1 for a sample script). EMBRScript’s main principle is that every animation is

described as a succession of key poses. A key pose describes the state of the character at a

specific point in time (TIME POINT), which can be held still for a period of time (HOLD). For

animation, EMBR performs interpolation between neighboring poses. The user can select

interpolation method and apply temporal modifiers. A pose can be specified using one of

four principal methods: skeleton configuration (e.g. reaching for a point in space, bending

forward), morph targets (e.g. smiling and blinking with one eye), shaders (e.g. blushing

or paling) or autonomous behaviors (e.g. breathing). Sections 3.1 to 3.3 describe each of

these methods in detail. Since the animation layer is located between behavior planning

(BML) and realizer (animation engine), one can implement a BML player by translating

BML to EMBRScript, as depicted in Fig. 1††. Note that the problem of translating BML

†† BML examples are deliberately chosen to be similar to the ones used in (Thiebaux et al. 2008).
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Fig. 1. EMBRScript sample (bottom box): The script describes realizations of the

behavior specified in the original BML script (top box).
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temporal and spatial constraints to specific EMBRScript forumlations is an open problem

that we are working on at the moment.

3.1. Skeleton configuration

Animating virtual humans using an underlying rigid skeleton is the most widely used

method in computer animation. In EMBRScript, a skeleton configuration can be de-

scribed in two different ways: (1) using forward kinematics (FK): all angles of all joints

are specified, usually pre-fabricated with the help of a 3D animation tool, (2) using inverse

kinematics (IK): a set of constraints (e.g. location of wrist joint, orientation of shoulder

joint) are passed to an IK solver to determine the pose in real time. In Fig. 1 the pose

description labeled p2 in EMBRScript defines a key pose using two kinematic constraints

on the right arm: a position constraint and a partial orientation, both defined in Carte-

sian coordinates. In EMBR, kinematic constraints modify parts of the skeleton called

BODY GROUPS which are defined in terms of skeleton joints. Pose description p3 referes to

a stored pose in the engine’s pose repository. The animation description Clip:headShake

refers to a pre-fabricated animation clip (which is treated as a sequence of poses) also

residing in the engine’s repository.

3.2. Morph targets and shaders

The face is a highly important communication channel for embodied agents: Emotions

can be displayed through frowning, smiling and other facial expressions, and changes

in skin tone (blushing, paling) can indicate nervousness, excitement or fear. In EMBR,

facial expressions are realized through morph target animation, blushing and paling are

achieved through fragment-shader based animation. In EMBRScript, the MORPH TARGET

label can be used to define a morph target pose and multiple morph targets can be

combined using weights. Like with skeletal animation, the in-between poses are computed

by interpolation. In Fig. 1, pose p1 in the EMBRScript sample defines a weight for a
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morph target key pose which corresponds to the basic facial expression of anger in MPEG-

4. For skin tone, one defines a SHADER TARGET together with an intensity, like the blushing

pose in p1.

3.3. Autonomous behaviors

Autonomous behaviors are basic human behaviors that are beyond conscious control. Ex-

amples are breathing, eye blinking, the vestibulo-ocular reflex, eye saccades and smooth

pursuit, balance control and weight shifting. Such behaviors can be realized with auto-

matic routines that are controlled with parameters like breathing frequency or blinking

probability. In addition to a set of predefined autonomous behaviors EMBR also lets

the users define and implement their own autonomous behaviors and associated control

parameters. The pose description labeled p1 in the EMBRScript sample in Fig. 1 shows

how a user can modify autonomous behavior parameters like breathing frequency and

amplitude.

3.4. Temporal variation and interpolation strategies

Human motion is rarely linear in time. Therefore, procedural animations derived from

interpolation between poses must be enhanced with respect to temporal dynamics. There-

fore, EMBR supports time warp profiles that can be applied on any animation element

and correspond to the curves depicted in Figure 2. Time warp profiles conveying ease in,

ease out and ease in and ease out can be specified in the EMBR language with the two

parameters of function family (TAN and EXP) and slope steepness (a real number). The

first gesture described in the EMBRScript sample of Fig. 1 illustrates a possible usage

of the TIME WARP element.
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Fig. 2. Time warp profiles can be used to model ease in, ease out and ease in and ease

out. EMBRScript offers two spline-based function families, TAN and EXP, where

parameter σ roughly models steepness at (0, 0). A profile may (intentionally) result in

overshoot like in (Hartmann et al. 2005).

3.5. Immediate, high-priority execution

An agent may have to respond to an interruptive event (like dodging an incoming shoe). In

order to specify behaviors which require immediate, high-priority execution, EMBRScript

provides a special TIME POINT label: asap. A behavior instance whose time stamp is asap

is performed as soon as possible, overriding existing elements.

4. EMBR Architecture

The EMBR engine reads an EMBRScript document and produces animations in realtime.

In practice, this means that EMBR must produce a skeleton pose for every time frame

that passes. This process is managed by a three-component pipeline consisting of the mo-

tion factory, the scheduler and the pose blender (Fig. 3). This processing is independent

of the concrete rendering engine (cf. Sec. 6 to see how rendering is managed).

To give an overview, EMBR first parses the EMBRScript document which results

in a sequence of commands and constraints. The motion factory gathers and rearranges

constraints according to their timestamp and type in order to create a set of time-stamped

motion segments. Motions segments are sent to the scheduler which sorts out at regular

intervals a set of motion segments whose timestamp matches the current time. Relevant

poses are sent to the pose blender. The pose blender merges all input poses resolving

possible conflicts and outputs a final pose.
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Fig. 3. The EMBR architecture

4.1. Motion Factory

The motion factory produces the building blocks of the animation called motion segments

from the key poses specified in EMBRScript. A motion segment represents an animation

for part of the skeleton‡‡ over a period of time . For instance, a motion segment may de-

scribe a waving motion of the right arm or the blushing of the face. Each motion segment

contains an instance of a specialized actuator which drives the animation. The actua-

tor’s type depends on the motion generation method and the relevant pose component

(recorded animation playback, skeleton interpolation, morph target weight and shader

input interpolation). Motion segments are controlled in terms of absolute time and the

timing can be warped (see Sec. 3.4) to model e.g. ease-in and ease-out.

4.2. Scheduler and Pose Blender

The scheduler manages incoming motion segments, makes sure that active segments affect

the computation of the final pose and removes obsolete segments. For each time frame

the scheduler collects all active segments and assigns a weight according to the following

algorithm:

— if segment is terminating (fade out), assign descreasing weight from 1 to 0 (overlapping

segments are interpolated according to their respective weights)

‡‡ More precisely: for part of the pose which includes morph targets and shaders.
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— else if segment contains a kinematic constraint, it is tagged with priority (will

override all other segments)

— else segment is assigned weight 1 (overlapping segments are interpolated according to

their respective weights)

The pose components from the motion segments are merged in the pose blender accord-

ing to their weights using linear interpolation (we plan to allow more blending policies

in the future). For kinematic constraints it is often critical that the resulting pose is not

changed (e.g. orientation and hand shape of a pointing gesture), therefore the pose is

tagged priority and overrides all others.

5. Expressivity Parameters

Even a single human being displays an almost infinite variety in motion, depending on

mood, emotion, style and many other factors. For character animation it is desirable

to achieve variety by applying a small set of high-level parameters to the same motion.

Prior work has come up with various parameters. (Hartmann et al. 2005), from now on

called HPM, introduced spatial extent, temporal extent, fluidity, power and repetition,

whereas EMOTE employed the effort dimension of Laban’s movement analysis system

(Chi et al. 2000). Both models use a similar set of parameters (see Table1).

expressivity HPM EMOTE

space used for gesturing Spatial Extent Shape, Effort (space)

timing, accelerations Temporal Extent Effort (time, weight)

trajectory, smoothness Fluidity Effort (flow, space)

weight, force Power Effort (weight ,flow)

Table 1. Traditional principles of animation and their realisation in EMOTE and
HPM

We decided to select four of the HPM parameters but re-formulated their implemen-

tation as described in this section. The parameters are (all vary between -1 and 1):
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— Temporal extent: How fast/slow a movement is.

— Spatial extent: Size of the amplitude of a motion.

— Fluidity: Smoothness and continuity of the movement.

— Power: Sense of force and engagement of the movement.

We introduce the concept of nucleus to make these parameters applicable to a low-

level language like EMBRScript. This is necessary for two reasons. First, we need to know

where the most expressive part of a gesture is located in a sequence of poses (McNeill

1992), because usually only this part is modified. Second, in EMBRScript a single gesture

could be defined across multiple sequences (e.g., one for each arm), or a sequence could

contain multiple gestures. The nucleus construct is therefore used to mark the expressive

part and to bind together the potentially many parts of a single nucleus.

Since we apply the expressivity parameters to a nucleus and not, as HPM do, to a

whole character, we can modulate the expressiveness of an agent over time, for instance,

to convey different emotions or context-dependent changes of conduct (e.g. due to status

differences). Fig. 4shows how a nucleus is defined and parametrized, and then referenced

from particular pose(s) belonging to that nucleus.

Fig. 4. The Nucleus embeds a set of expressivity parameters, it is bound to a K POSE

by ID

5.1. Parameter implementation

Our formulation of expressiveness is based on the modification of three different aspects

of the animation
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— the shape of the key poses

— the interpolation parameters between key poses

— the timing between key poses

We control the fluidity of an animation by modifying the interpolation style. For this,

we implemented Kochanek spline interpolation (Kochanek et al. 1984) in quaternion

space (details can be found in the appendix).

5.1.1. Temporal Extent The temporal extent parameter ptemp specifies how slow or fast

a motion appears by varying the duration of the several gesture parts from key pose to

key pose. A negative value reduces the duration, a positive value increases the amount of

time needed to reach the target point. This time offset is obtained using a (logarithmic)

function of the original duration d: delay = log(d)∗ptemp ∗1.5; The logarithm avoids too

big delays or too drastic cuts. The 1.5 scaling value guaranties that Ptemp values are kept

within an intuitive range ([−1, 1]). The temporal extent can cause a pause after finishing

the modified gesture since the overall duration of the motion is shortened for negative

values or may lead to an overlap with the subsequent gesture for positive values. Also

note that particular synchronization points with other modalities (most notably speech)

that are located after the nucleus can become out-of-sync.

5.1.2. Spatial Extent Various methods have been proposed to systematically enlarge/shrink

an existing gesture. The challenge is to preserve the overall shape of the gesture after

the modification. For instance, if a gesture is simply scaled with regard to a fixed point

without respecting the trajectory of the gesture the overall shape may be distorted (e.g. a

circle to an ellipsoid). One may instead adjust single segments between key points which

may cause problems at start and end points and may also distort the geometry.

Therefore, we decided to use a ”gesture-centric” method: we compute the bounding

box of the original key points ki of both hands (for bihanded gestures). According to

the value of the spatial extent parameter pspatial this box is scaled together with the
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Fig. 5. Applying deformation over a precomputed bounding box is well fitted to gestures

depicting 3D trajectories.

contained key coordinates around its centre c: k′i = ki + ((ki− c)∗Scalemorph ∗pspatial as

depicted in Fig. 5. Again, the scalar Scalemorph guaranties that Pspatial values are kept

within an intuitive range and depends on the agent’s morphology. This method proved

most useful for a number of different gestures, wheres the other approaches always failed

for a specific geometric or symmetric gestures.

5.1.3. Power The power parameter ppow varies the energy of the gesture, a forceful mo-

tion for positive values emphasizes the stroke. It adds a preparation key pose to gener-

ate a preparatory motion in the opposite direction of the motion and with a length of

0.1 ∗ ppow∗the length of the original motion. A 300ms hold at this position is added and

the remaining motion is sped up by factor 1.0 + (ppow ∗ 0.2). The tension parameter for

interpolation is set equal to ppow leading to straight segments for high power and curves

for low power. The bias parameter is used to create over- or undershoot at the end of

strokes by setting it also equal to ppow for all motion segments as depicted in Fig. 6.

5.1.4. Fluidity This parameter pfluid affects continuity and holds of gestures. A high

fluidity setting shortens or removes pauses by subtracting up to 300 ∗ vfluid ms from

existing pauses and guarantees the continuity of the interpolation by setting continuity

to zero if fluidity if greater or equal zero. A negative value causes the target joint to rest
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Fig. 6. A positive value for power adds a preparation phase before the stroke and some

overshoot towards its end.

at every key position for 300 ∗ vfluid ms and adds corners in the interpolation process by

setting continuity to −pfluid.

To conclude, we introduced formulations for our four quality parameters based on

the concept of the nucleus. Although this needs to be validated by a user study, our

impression is that our gesture-centric approach to expressivity parameter realization

makes the resulting motion look more natural.

6. Integrating EMBR Into Larger Projects

An open character animation engine is only useful if it can easily be integrated into a

larger project context and if it is possible to extend it, specifically by allowing other

different characters to be animated. For EMBR, one of our goals was to provide a frame-

work whose components are freely available. Therefore, we rely on the free 3D modelling

tool Blender for assets creation and on the free Panda3D engine for 3D rendering. This

section describes the complete pipeline from assets creation to runtime system. To sum

up our goals:

— components for assets creation and rendering are freely available

— modifying existing characters is straightforward



Realtime Animation of Interactive Agents 17

Fig. 7. The EMBR framework: Assets creation and runtime system.

— creating a new agent from scratch is possible

— use of alternative assets creation tools or renderers is possible

The EMBR framework is depicted in Fig. 7: It can be characterized by an assets

creation phase (top half of figure), a runtime phase (bottom half), and data modules

connecting the two (boxes in the middle).

6.1. Assets creation

When creating a new character, two mandatory steps are involved: creating 3D assets

in a 3D modelling tool (Blender) and specifying the EMBR character configuration file.

Optionally, shader programs can be designed. In the 3D modelling tool, one first cre-

ates static resources: the character’s mesh, skeleton, mesh-skeleton rigging, and textures.

For facial animation, one usually creates a set of morph targets. Finally, one creates a

repertoire of skeletal animations. Finally, the user may create a set of programmable

shaders, e.g. for changing skin tone at runtime (blushing/paling) or for improved ren-
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dering. Shader programming is highly dependant on the rendering engine. For instance,

only the Cg shading language is currently supported by Panda3D. Developers can expose

parameters from the shader program and control them through EMBRScript. Shader in-

put parameters must be declared in the EMBR character configuration file. Once the

character is ready, export scripts package the data from Blender for later usage by the

EMBR engine and the Panda3D renderer.

6.2. Character Configuration File

Since in the modeling stage the user is free to choose joint names and skeleton topology,

the EMBR character configuration file must be created to inform EMBR about the

character’s inherent features. The character configuration file is in charge of specifying

the different properties and capabilities of the agent so that they can be exposed and

accessed through the EMBRScript language. Currently, the character specification file

support the following elements for one agent:

— a set of available pre-recorded animation clips (Sec. 3.1),

— a set of available morph targets (Sec. 3.2),

— a tree element describing the joint hierarchy,

— joint properties: name, boundaries and kinematic gain,

— joint groups: defined by a set of joint references,

— kinematic structures (set of joint references) and their associated algorithms (Sec. 3.1),

— autonomous behavior: defined by their animation(s) and triggering mechanism: peri-

odic, randomized or event based (Sec. 3.3).

The character specification file not only lets a user describe the properties and capa-

bilities of a new agent; it also provides a basic language capable of describing complex

multimodal behaviors by combining basic animations using three basic relational predi-

cates: reverse, sequential and parallel.
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For instance, the animation triggered by the breathing behavior is a compound of a

skeletal animation and a morph target based animation, played forward then backwards,

as described in Fig. 8.

Fig. 8. The breathing animation is a compound of a skeletal animation and a morph

target based animation, played forward then backwards.

The character configuration file follows an XML specification whose DTD is available

online§§.

6.3. Runtime

At runtime, EMBR is initialized with the EMBR character data (Fig. 7). First, it dynam-

ically populates the animation factory with motion segment producers corresponding to

the character’s attributes and capabilities defined in the character configuration file. Sec-

ond, it configures the EMBRScript parser. EMBR uses the Panda3D rendering engine

for interactive display of the character. Panda3D provides a Python scripting interface

which we use for synchronizing EMBR with Panda3D and for controlling the runtime

system. During the lifespan of a character inside an EMBR session, two instances of the

characters exist: one stored in EMBR representing the poses that result from processing

§§ http://embots.dfki.de/EMBR/characterConfiguration.dtd
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EMBRScript, another one stored in Panda3D representing the display-optimized version

of the character. Our Python synchronizer ensures that the Panda3D character is al-

ways in the same the state as the EMBR character. Because gestures are defined using

high level constraints and because these gestures are resolved at the last moment using

real time motion generation methods, our system in particularly suited for interactive

animation. However, users wanting to stick with preprocessed motion (handcrafted) or

captured can also import and use their own asset.

7. Application in Procedural Gesture Synthesis

To demonstrate the capabilities of EMBR we outline its application in a gesture synthesis

system (Kipp et al. 2007; Neff et al. 2008). The system produces coverbal gestures for a

given piece of text using statistical profiles of human speakers. The profiles are obtained

from a corpus of annotated TV material (Kipp et al. 2006). The gesture annotations can

be considered a low-dimensional representation of the high-dimensional original motion,

if the latter is seen as a frame-wise specification of all joint angles. In gesture synthesis the

low-dimensional representation facilitates planning of new motions. However, at the final

stage such low-dimensional representations have to be translated back to a full motion.

In this section, we describe one example of such a translation: from gesture annotation

to EMBRScript commands.

The annotation of gesture is performed by the hierarchical three-layered decomposition

of movement (Kendon 2004; McNeill 1992) where a gestural excursion is transcribed in

terms of phases, phrases and units. Our coding scheme adds positional information at

beginning and end of strokes and independent holds. The transcription can be seen as

a sequence of expressive phases¶¶ s =< p0, . . . , pn−1 > where each phase is an n-tuple

p = (h, ts, te, ps, pe) specifying handedness (LH, RH, 2H), start/end time, start/end

¶¶ An expressive phase is either a stroke or an independent hold; every gesture phrase must by definition

contain one and only one expressive phase (Kita et al. 1998).
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pose. This description can be used to recreate the original motion which is useful for

synthesizing new gestures or for validating how faithfully the coding scheme describes

the form of the gesture.

For the translation to EMBRScript we separate the pose vector s into two channels

for LH and RH, obtaining two pose vectors sLH and sRH . Each vector is then packaged

into a single GESTURE tag (cf. Fig. 1). For each pose start/end information, a respective

key pose is defined using positional constraints. Note that even two-handed (2H) gestures

are decomposed into the described LH and RH channels. This is necessary to model the

various possibilities that arise when 2H gestures are mixed with single handed gestures in

one g-unit. For instance, consider a sequence of < 2H, RH, 2H > gestures. There are now

three possibilities for what the left hand does between the two 2H gestures: retracting

to rest pose, held in mid-air or slowly transition to the beginning of the third gesture.

Packaging each gesture in a single gesture tag makes modeling these options awkward.

Using two channels for RH, LH allows to insert arbitrary intermediate poses for a single

hand. While this solution makes the resulting EMBRScript harder to read it seems to be

a fair trade-off between expressivity and readability.

Using this straightforward method we can quickly ”recreate” gestures that resemble the

gesture of a human speaker using a few video annotations. We implemented a plugin to

the ANVIL annotation tool (Kipp 2001) that translates the annotation to EMBRScript

and sends it to EMBR for immediate comparison between original video and EMBR

animation. Therefore, this translation can be used to refine both coding schemes and

the translation procedure. A coding scheme thus validated is then an ideal candidate for

gesture representation in procedural animation systems.

8. Conclusion

We presented a new realtime character animation engine called EMBR (Embodied Agents

Behavior Realizer), describing architecture, the EMBRScript control language and how
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to integrate EMBR into larger projects. EMBR allows fine control over skeletal anima-

tions, morph target animations, shader effects like blushing and paling and autonomous

behaviors like breathing. The EMBRScript control language can be seen as a thin wrap-

per around the animation engine that we call the animation layer, an new layer between

the behavior layer, represented by BML, and the realizer. While the behavior layer has

behavior classes (a pointing gesture, a head nod) for specifying form, and allows for time

constraints to specify time, the animation layer uses channels, spatial constraints and ab-

solute time to control the resulting animation. The latter is therefore much closer to the

animation engine while abstracting away from implementation details. We showed how

to use EMBR in conjunction with gesture coding to visually validate the coding scheme.

Thus encoded gestures can then be used to populate procedural gesture synthesis sys-

tems. Although EMBRScript may sound like a scripting language, we see it as a general

specification layer that abstracts away from concrete animation engine implementations.

EMBRScript may therefore develop into a standardization discussion on how to control

character animation in general. EMBR is now freely available to the research commu-

nity‖‖. Finally, for overall integration purposes we want to develop a consistent way of

describing the features and capabilities of embodied, extending existing standards like

h-anim.

Acknowledgements

This research has been carried out within the framework of the Excellence Cluster Mul-

timodal Computing and Interaction (MMCI), sponsored by the German Research Foun-

dation (DFG). Authors would like to thank Pascal Pohl for his valuable contribution

to the expressivity model and for his help during the writing process. EMBR’s shaders

management has been greatly enhanced by Stefan John.

‖‖ get EMBR at http://embots.dfki.de/EMBR



Realtime Animation of Interactive Agents 23

Appendix

Adding tension, bias and continuity parameters to quaternion interpolation

Linear interpolation does not create convincing paths for limb motion and orienta-

tion, whereas cubic interpolation leads to more natural curves. To be able to influence

these paths with our expressivity parameters we transfer the parameters introduced in

(Kochanek et al. 1984), tension, continuity and bias, to the squad interpolation algorithm

by Shoemake (Shoemake 1987)

Squad(qi, qi+1, a, b, h) = Slerp(Slerp(qi, qi+1, t), Slerp(b, a, t), 2t(1 − t)) (1)

In contrast to the normal squad algorithm, incoming and outgoing tangents are dif-

ferent. We influence the computation of this tangents in dependence of the parameters

tension t, bias b and continuity c, all in [−1.0, 1.0] :

T 0
i =

(1 − t) · (1 − c) · (1 − b)
2

· log(q−1
i qi+1) +

(1 − t) · (1 + c) · (1 + b)
2

· log(q−1
i−1qi)

T 1
i =

(1 − t) · (1 + c) · (1 − b)
2

· log(q−1
i qi+1) +

(1 − t) · (1 − c) · (1 + b)
2

· log(q−1
i−1qi)

(2)

With the modified tangents we compute the additional quaternions a and b for the

squad interpolation:

a = qi · exp
(
−T 0

i − log(q−1
i qi+1)

4

)
b = qi+1 · exp

(
−

log(q−1
i−1qi) − T 1

i

4

) (3)

Below is a brief description of how the different parameters (tension, bias and continuity)

influence the interpolated curve. A graphical representation is also depicted in Fig.9

— tension defines how sharply the curve bends between the key points. For 1.0 it reduces
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Fig. 9. Influense of the tension parameter −1, 0, 1 on the quaternionic interpolation

spline visualized on the simplified SO(3) hypersphere.

the length of the corresponding tangent vector to zero leading to linear interpolation

and for -1.0 it doubles its length, resulting in more unstressed curves.

— continuity controls the angle between the incoming and outgoing tangents at key

points. For 0.0 spline tangent continuity at the key points is preserved, for -1.0 and

1.0 the curve has acute corners to the in- or outside of the path.

— bias specifies the direction of the path at key points, for -1.0 it is completely deter-

mined by the incoming, for 1.0 by the outgoing tangent.
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