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Preface

We are delighted to present you with this volume containing the papers accepted for presentation at
the SRSL 2009, the 2nd Workshop on Semantic Representation of Spoken Language, held in Athens,
Greece, on March 30th 2009.

The aim of the SRSL 2009 workshop is to bring together researchers interested in the semantic
representation of spoken corpora, especially spontaneous speech. On one hand, the semantic gap between
contents conveyed by natural languages and their formal representations is a burning aspect in tasks such
as information extraction and corpus annotation. The current state-of-the-art supports solutions from
very different backgrounds and perspectives, but still remain important and complex issues to deal with,
such as the accurate segmentation of speech in semantic units. The discussion of those aspects are
one of the main reasons for this workshop. On the other hand, spoken language is a pending issue
in computational linguistics and artificial intelligence, both traditionally focused on written language,
although semantic processing of speech is necessary for the understanding of both natural and human-
machine interaction. Finally, the problems found when trying to linguistically structure spontaneous
speech are leading to works focused on its semantic representation. In-depth research on the semantic
representation of speech can provide us with a suitable basis for further analysis of related linguistic
levels, like prosody or pragmatics.

This event is a highly collaborative effort and we are grateful to all those who helped us construct the
program: the authors for submitting their research results; the reviewers for delivering their reviews
and discussing them whenever there was some disagreement; and the EACL 2009 organizers for their
support.

Wishing you a very enjoyable time at SRSL 2009!

Manuel Alcántara-Plá and Thierry Declerck
SRSL 2009 Program Chairs
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Abstract 
 
This article is concerned with Extreme Case 
Formulations (ECFs) (Edwards, 2000; 
Pomerantz, 1986) in spontaneous Cypriot 
Greek conversations.1 This study confirms 
the occurrence of ECFs in complaints as 
identified by Edwards (2000) Pomerantz 
(1986), but goes one step further to analyse 
the sequential and interaction work 
accomplished with ECFs in reporting 
“opposition-type stories” (Schegloff, 1984) 
and in complaining about a non-present 
party’s misbehaviour. Opposition-type 
stories report the oppositional conversation 
of the teller with a third non-present party 
(id.). Interestingly, in the conversational 
extracts examined in this study, the 
conversation reported is culminated with the 
opponent’s reported extreme claim (ECF) 
occupying the last turn. The occurrence of an 
ECF at that marked place, that is, at the 
punchline of the telling, is associated with 
issues of affiliation and stance since it is 
placed exactly before the recipient’s slot 
upon story completion, which is a regular 
place for the occurrence of evaluation 
(Schegloff, 1984). 

 
 
1 Introduction 
 

                                                 
1 Cyprus is an independent island republic in the 
Eastern Mediterranean. Data from the 2001 census of 
population showed that on 1st October 2001 the total 
population of the Cyprus Republic was 689,565 
composed of 89.7% Greek Cypriots, 0.2% Armenian, 
0.5% Maronites, 0.04% Cypriots of European origin 
called “Latins” and 0.05% Turkish Cypriots; 0.1% 
did not declare their ethnic religious group (Census of 
Population 2001); the remainder being foreigners 
from Europe and Asia. The Greek speech community 
in Cyprus is defined as diglossic. Diglossia in Cyprus 
refers to the simultaneous use of the dialect (Cypriot 
Greek dialect, CD) and the demotic Greek (Modern 
Greek, MG). 

 
 
 
 
 
This article reports some of the findings of a 
study of extreme case formulations (ECFs) 
(Edwards, 2000; Pomerantz, 1986) in 
spontaneous conversations exclusively 
conducted in Cypriot Greek.  
 
In a seminal article, Pomerantz (1986) drew 
attention to the conversational uses of extreme 
case formulations (ECFs). Edwards (2000: 347-
8) explains that ECFs are “descriptions or 
assessments that deploy extreme expressions 
such as every, all, none, best, least, as good as it 
gets, always, perfectly, brand new, and 
absolutely”. Pomerantz (1986: 219-220) 
summarizes the three main uses of ECFs, mainly 
used in complaints, in the following way: 
 

(1) to assert the strongest case in  
  anticipation of non-sympathetic     
      hearings, 
(2) to propose the cause of a phenomenon, 
(3) to speak for the rightness (wrongness) of  
     a practice. 

 
Pomerantz’s (1986) three uses of ECFs are 
basically oppositional and argumentative, 
occurring in environments where descriptions 
and assessments are being strengthened or 
resisted. As Edwards (2000) showed this applies 
to his counselling data (1995) too, where wife 
and husband produce and defend opposed 
versions of facts. In this data a lot of ECFs 
follow the same sequential pattern of “ECF-
challenge-softener”. Although Pomerantz (1986) 
did not pursue post-ECF talk, she noted the 
challenge after an ECF.  
 
However, as Edwards notes (2000: 360), ECFs 
can also occur in affiliative sequences as 
“upgrades and displays of affiliation being done, 
of agreement being full and so on” –as in 
Pomerantz’s (1984) demonstration of how 
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upgraded “second assessments” display 
agreement. ECFs make excellent upgrades (id.). 
Added to this role, ECFs might be treated by 
participants as “indexing the speaker’s stance or 
attitude”, what Edwards calls “investments” 
(op.cit.: 363-4). As Edwards explains (id.) 
denying or insisting on something in an extreme 
way can highlight the action of denying or 
insisting, as a kind of stance or attitude (cf. 
Edwards & Potter, 1992; Potter 1996). Finally, 
Edwards (2000: 365) draws attention to the 
“nonliteral or metaphoric uses of ECFs” used in 
actions of exaggerating, teasing, ironizing, 
emphasizing, joking etc. 
 
2 Data and Methodology 
 
The study of ECFs investigated in this work is 
based on recordings of informal, spontaneous, 
face-to-face conversations among close friends 
or relatives. These are exclusively conducted in 
Cypriot Greek. The conversations transcribed for 
the present study are part of a collection of 
recordings that took place between December 
1998 and April 2003. They comprise 
transcriptions of 35 hours of tape-recorded 
natural interactions produced by young native 
Cypriot Greek speakers during a variety of 
gatherings or occasions, e.g. dinner, gathering 
for coffee in friends’ houses etc. The extracts 
included in this article comprise transcriptions of 
approximately 3 hour. The recordings consist of 
same sex conversations among women.2 
 
The method that is adopted in the analysis of the 
data is Conversation Analysis (CA), which has 
its origins in the pioneering work in the sixties 
by the sociologist Harvey Sacks (1992a, 1992b).  
 
First and foremost, conversation analysis has 
focused its analytical attention on “recorded, 
naturally occurring talk-in-interaction” (Hutchby 
and Wooffitt, 1998: 14). These recordings of 
actual speech are transcribed using a system 
which is intended to capture in detail the 
characteristics “of the sequencing of turns, 
including gaps, pauses and overlaps; and the 

                                                 
2 ECFs were also identified in a set of data collected 
during 2007 in conversations among young men. The 
transcription revealed use of ECFs as upgraded 
assessments and in actions of joking and 
exaggerating. Interestingly, no use of ECF in 
complaints was found. 
 

element of speech delivery such as audible 
breath and laughter, stress, enunciation, 
intonation and pitch” (Hutchby and Drew, 1995: 
182).  
 
The transcription symbols used in this study are 
based on the transcription conventions 
developed by Jefferson for the analysis of 
conversational turns in English conversation (see 
Sacks, Schegloff and Jefferson, 1974) and are 
adopted in the form presented by Ochs, 
Schegloff and Thompson (1996) and Clift 
(1999). The relevant transcription symbols for 
this study are cited in appendix I. 
 
The phonetic inventory used for reading 
transcription is based on the International 
Phonetic Association [IPA] which is adjusted to 
the Greek language by Nespor (1999) and on the 
phonetic inventory of Cypriot Greek presented 
and described by Newton (1972).  
 
3 ECFs in Cypriot Greek 
  
My data of spontaneous Cypriot-Greek 
conversations confirms Edwards’s (2000) and 
Pomerantz’s claim (1986) of the use of ECFs in 
making complaints.   
 
In particular, this study reports a pattern of the 
sequential and interactional position of ECFs 
found in the reporting of “opposition-type 
stories” (Schegloff, 1984) and in complaining 
about a non-present party’s misbehaviour. In the 
conversations examined here, complaining is 
expressed with the narration of two-party 
opposition-type stories in which the teller is one 
of the two parties involved. In particular, 
opposition-type stories are reported using the 
BCBC format, B being the teller and C his/her 
opponent. Thus, that BCBC format tracks not 
only the alternation of the turns but also the 
alternation of positions. This formula turns out to 
have C’s position be the one occupying the last 
turn (Schegloff, 1984). By “reproducing the 
“original” utterance or utterances, speakers can 
provide access to the interaction being discussed, 
enabling the recipient to assess it for himself. 
Supplying this kind of evidence is important 
when…..a complaint is made about someone 
based on what they said” (Holt, 1996: 229).  
 
It seems that the basic feature attributed to 
opposition type stories is that they are more 
than any other form of storytelling “recipient 
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designed” (Sacks, 1971: 453). If this is so, it 
means that tellers design the storytelling with 
an orientation to the specific recipients in order 
to elicit their affiliative siding. In the fragments 
under study where the teller is one of the 
opposing parties, it is obviously important for 
the teller to transmit to her recipients the 
correctness or appropriateness of her position 
and the incorrectness or inappropriateness of 
her opponent’s position. In these extracts the 
teller invests special effort in constructing the 
contrast between herself and her opponent in 
two interrelated ways. Therefore, this is 
accomplished by narrating an opposition-type 
story based on the conversation she had with 
the opponent and by reporting the activities of 
the opponent parties which proposes the 
significance of the upcoming reported speech. 
Each story culminates in a report of the other’s 
speech. The motivation for the reporting of 
speech and activities is grounded in 
considerations of affiliation and stance. 
 
Actually in the conversations examined in this 
paper the oppositional story has its punchline in 
the reporting of an ECF attributed to the third 
non-present party. One thing the recipient can do 
is to side with one or the other, that is, 
teller/protagonist or his/her opponent. Usually 
recipients side with tellers because this is how 
tellers choose their story recipients (Schegloff, 
1984). In the cases here the reported ECF is 
responded to with a challenge taking the form of 
rhetorical question, extreme case formulation, 
idiomatic expression or ironic evaluation. Stories 
involve extended single turns at talk (Sacks, 
1968: 18). The storytelling sequence is 
composed “of three serially ordered and 
adjacently placed types of sequences”: “the 
preface, the telling, and the response sequences” 
(Sacks, 1974: My main interest is in the 
punchline and the recipient’s slot upon story 
completion. 
 
Due to the limit of space, I present only two 
representative examples of the use ECF in 
the punchline of opposition-type stories as 
shown in the extract 1 and 2 that follow. 
 
(1) 
 
(D = Dorina; T = Themis; M = Maria; C = 
Christiana; L = Litsa; N = Nitsa. All of the 
women participating in the conversation except 

Dorina are teachers working in the same 
school. Dorina is a psychologist qualified by 
the Ministry of Education to visit some 
specific primary schools and check the welfare 
of children. Now she is narrating the story of a 
child in one of the schools she visited.) 
 
                         
1. D emenan ipem mu enam moron, ioθetas 
2.       me? pu kseri to moro ti leksi tuti::? 
3. T indam ↑bu jine? 
4. D ioθetas me? lei mu, iδe stom Mama  
5.  kati ioθesies ce lipa::, 
6. T ioθetas me? ipe su? 
7. D ioθetas me? lali mu. 
8. Μ ma pco moro? 
9. D ena:: pu to eδernen i mamma tu δame::  

10.  ospu tʃ’ espurtisen do:: δerma::n. 
11. C ciri’ eleison. 
12. D eδernen do me ti guta::lan sto iδio  
13.  simio, 
14. C ↑a::! 
15. D me ti gutalan ti ksilini sto iδio simio  
16.  ospu tʃ ↑eskasen do δerman.       
17. C ciri’ eleison. 
18. L ja onoma tu θeu δilaδi (.) jenika etsi  
19.  aspu-= 
20. D =tilefono ti::s tʃe leo tis, cita:: [etsi, 
21. C            [na su po 
22.       kati? eγo δen anteχa etsi me etsi 

23.       aθropus tʃe tora eχasa tin psiχremiam  
24.       mu [(nomizo).            
25. D         [to moron effuskomeno δame, leo  
26.       tis, θa se kataɲɟilo stin astinomia::,  
27.      frontise mesa se mɲan evδomaδa na  
28.      jinis mana::, aʎos θa se kataɲɟilo stin  
29.      astinomia::, poso χrono, ise si? lei mu.  
30.      erotise me tʃe poson χronon im’ eγ(h)o,   
31.      ise mana? lei mu.  
32. → MO::non Otan θa ji::nis  mana θa  
33.      katalavis lei mu. 
34. C  a nne::? pe ti::ς. 
35. T δe re efcice tʃe pupan::no.  
36. L i manes eδδernun ta mora tus me tes  
37.       kutales. 
38. Ν an ine na jino san esena pe tis 
39.       kalittera::,  

 
          Translation 
 

1. D a child told me, won’t you adopt me?  
2.  how does a child know this wo::rd? 
3. T ↑what happened? 
4. D won’t you adopt me? he told me, he  
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5.       saw something of Mama’s3 show about  
           adoptions and stu::ff, 
6. T he told you won’t you adopt me?   
7. D won’t you adopt me? he says to me.  
8. Μ what child? 
9. D one:: that was being beaten by his  
10.       mother, here::, till the:: ski::n cracked. 
11. C Jesus Christ. 
12. D she hit him with a spoo::n on the same  
13.       spot, 
14. C ↑o::! 
15. D with a wooden spoon on the same spot  
16.       till the skin cr↑acked. 
17. C God have mercy. 
18. L for God’s sake, really (.) just like  
19.       th-= 
20. D =I called he::r up and said loo::k,[right, 
21. C                                                     [let  
22.      me tell you something, I couldn’t stand  
23.      this sort of people, I am even losing my  
24.      temper [now.  
25. D             [the child is swollen here, I tell  
26.  her, I’ll report you to the poli::ce. I  
27.      give you one week and you make sure  
28.      you be a mothe::r to him, otherwise I’ll  
29.      report you to the police, how old, she  
30.      says to me, are you? she asked me how  
31.       old I(h) was, are you a mother? she  
32.  → says. O::nly WHEn  you become a  
33.       mother will you understand she says.             
34. C    oh rea::lly? you should tell he::r. 
35. T she’s got a nerve to talk. 
36. L mothers don’t beat their children with  
37.       wooden spoons. 
38. Ν if I am to become like you, tell her,  
39.  then I’d bette::r, 

 
In extract 1 above the complaining proceeds as 
follows: the teller is reporting the complainable 
behavior of her opponent through reporting her 
transgressions (1: 9-10, 12-13, 15-16) and then 
continues with the reporting of the oppositional 
exchange (1: 20, 25-33) between her and her 
opponent which follows the BCBC format. 
The oppositional exchange culminates in a 
piece of formulaic-sounding wisdom proffered 
by the mother (1: 32-33: “only when you 
become a mother will you understand”) which 
is hearable as an “extra-ordinary” claim 
(Pomerantz, 1986) framed as such based on the 
use of the ECF “only” followed with the 
idiomatic expression “when you become a 
mother will you understand”. According to 

                                                 
3 Mamas is a Cypriot journalist. 

Torode, “an extreme case is designed to close 
an argument. As such it is vulnerable to 
attempts at refutation” (1996: 10). Thus, the 
placement of that extraordinary claim at the 
climax of the story should be seen in relation 
to motivations of eliciting affiliation. In other 
words the teller offers to the recipient an 
extreme claim in order to elicit a refutation of 
that claim. The reporting of the opponent’s 
words effected by intonation, as it is shown in 
the stress in voice and the louder tone, serves 
to detach the teller from commitment with 
these words. In 1: 34 the recipient challenges 
the mother’s exaggerative claim with a 
rhetorical question “oh rea::lly?”. In agreement 
with Schegloff’s claim, the suggested response 
gets heard as a slot in the oppositional 
conversation reported by the teller because it 
comes off “as a proposed piece” of the teller’s 
argument (1984: 46-47). The shift of footing 
(Goffman, 1979) from the mother’s reported 
extreme claim to the rhetorical question frames 
(Goffman, 1974) the evaluation as irony.  
 
The following extract also serves to illustrate 
the point shown with extract 1 about the 
occurrence of ECF at the climax of an 
oppositional story. 
 
(2) 
 
(C = Christiana; M = Maria; A = Angelina; P = 
Petra. Lina is a non-present pary whom the 
participants usually criticize. Lina, Christiana, 
and Panos (C’s ex-boyfriend) were in the same 
class as BA students. The following year Lina 
and Panos continued with masters’ degrees. 
Panos found a job. Lina has just finished her 
master’s and she is very proud of it. This 
annoys the girls very much. Now she is 
looking for a job.) 
 
1. C  Aku:: tʃ’ i LIna-- tʃe proχtes pu milusame 
2.      [ja ta epaɲɟelmata:: ti mu lali emena::? 
3. P   [ma ti allo (             ) 
4. C   e eγo, lei mu, an epcanna kamɲan  
5.       eftakoʃan pu p- mallon enna pcanni o  
6.      Panos lei mu::, mpts lei mu::   
7. Μ   bravo. 
8. C    enna mini tʃame pu ine? leo tis re, a  
9.        δδen ton efχaristi:: tʃe vri kati allon  
10.        enna fii:: leo ti::s. lei mu:: ma 
11.        sovaromilas? pcanni toso misθo tʃ’  
12.        enna fii? [leo tis jati na mini, 
13. P  [e ma’n dʒ’ en da lefta to 
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14.        pan. 
15. C    a δδen ton efχaristi i δuʎa pu kamni? = 
16. P    =ma oi mono ja tʃinon ja ullon toŋ 
17.       gosmon. 
18. C    nne a δδen ton efχaristi enna fi::i  tʃe  
19.       laLΙ:: mu:::: e lei mu emenan ammu  
20.       eδiusasin eftakoʃes lires  tʃe na mu  
21. →  lalusan fkalle kko::py Ulli mera, θa ta  
22.       fkalla::  
23.       (2) 
24. Α   e >to ma :ster pu eʃi e ja na fka::lli  
25. →  kko::pi Ulli me::ra<? 
26. Μ  .hhh χm χm χm χm. 
27. Α   ɲoθo polla kurazmeni. 
 
Translation 
 
1. C   Liste::n, also Lina-- the other day too  
2.   that we were talking [about jo::bs, you  
           know what she said to me::? 
3. P       [what else (         )    
4. Μ   exa::ctly. 
5. C    well, I, she tells me, if I was paid some  
6.        seven hundred pounds as- which is  
7.        probably what Panos gets she says to 
8.        me::, mpts she says will he stay put? I say  
9.        if it doesn’t plea::se him and he finds  
10.        something else, he will qui::t I said. she  
11.        says to me are you serious? he gets such  
12.        a salary and he’ll quit? [I say, why should  
          he stay on,  
13. P                                    [but money isn’t  
14.         everything. 
15. C what if he doesn’t like his job?= 
16. P =and this is not just for him, it goes for  
17.         everybody. 
18. C yes, if he doesn’t like it, he’ll quit and  
19.         she sAY::s to me::, well she says if  
20.         they gave me seven hundred  pounds  
21.  →   and told me make photocopies All  
22.        da::y, I wou::ld. 
23.         (2) 
24. Α well >what did she get a ma::ster’s for, 
25.  →  to ma::ke co::pies All day::?< 
26. Μ hm hm hm hm 
27. Α I feel so tired. 
 
In extract (2) the teller announces that the 
complaint is about something the other (Lina) 
said to her (2: 1-2) and starts reporting the 
other’s words (2: 5-7), but restarts by reporting 
the “opposition” type story from an earlier 
point (2: 7-12).  
 

This inserted oppositional story is hearable as 
background information essential for the 
recipients’ appreciation of the punchline. The 
punchline, that is, the opponent’s words that 
she started reporting in 2: 5-7, but were left 
unreported, are repeated and completed in 2: 
16-18. In this story the teller presents the 
oppositional conversation in a BCBC format 
where B is the teller and C the opponent, that 
is, Lina. The opponent is reported as making 
the questions and the teller as responding to 
them. The reported questions are presented as 
aggressive and challenging of the responses 
given by the teller (2: 9-10, “are you serious? 
he gets such a salary and he’ll quit?”). With the 
reported assessment of 2: 19-22, Lina is 
presented as expressing her overt disapproval 
of Panos’s claims which are also adapted by 
Christiana. This is achieved with her reported 
exaggerated claim that even if she was asked to 
do copying she would do it for the money. This 
becomes even more extreme because it is 
accompanied with an “extreme case 
formulation” (“all day”). This is a strong 
criticism of the teller and her friend’s beliefs. 
Christiana is complaining about her making 
such a strong criticism of their beliefs. The 
mimicked exaggeration in reproducing the 
opponent’s words effected with stretch and 
emphasis clearly detaches the teller from their 
inside meaning. 
 
 The reported claim is responded to with a 
rhetorical question by one of the recipients (2: 
24-25). This question is hearable as a slot in 
the oppositional conversation reported by the 
teller because it comes off as a piece of the 
complainant’s argument. With that she 
challenges the opponent’s claim by bringing it 
into question. The repetition of the extreme 
case formulation “all day” is employed to 
challenge the extreme claim of the opponent. 
This question is framed as an ironic challenge 
based on the impossibility of what is being 
asked “well >what did she get a master’s for, 
to make copies all day?<” reinforced with the 
“extreme case” “all day?”. This question 
serves as an ironic challenge on another level 
too, that of the shared knowledge that Lina is 
very proud of having a master’s degree so her 
claim is not true. Hence, with this question the 
recipient claims disbelief of the opponent’s 
assessment. In addition, this question serves as 
an “impossible description” (Torode, 1996). 
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As was mentioned above ECFs do not only 
occur in reporting and responding to 
opposition-type stories, but also in 
complaining about a non-present party’s 
misbehavior in general. Extract 3 that follows 
is a representative example of that case. 
 
(3) 
 
(C = Christiana; M = Maria; A = Angelina; P = 
Petra; E = Eleana. Before the following 
conversation Christiana was narrating the 
previous night in the club a young guy was 
flirting with her, but she was ignoring him. The 
conversation is about that guy and Andie, a 
non-present party) 
 
1. C      ((to E)) θima::SE::! [to  
2. Μ                      [hu  
3. C       sinδromo tis Andi::ς! 
4. M     ti sinδromon eʃi? 
5. C →  opcos mas mila pai tʃe pcanni ton tʃe  
6.           mila ↑tu::! 
7. Ε    o::, 
8. C    pu tʃin din-- en di θimase tʃin din imera  
9.           pu rt- tʃin da peθca ta:: [i fili tis i  
10.           Lemeʃani::? 
11.  Α                                         [mem mu to  
12.           ksanapi::s re Xristiana::. 
13. C    tiz LIZA::S? 
14. Ε    pu tan na mas proksenepsi::  
15.           telospanton. 
16. C    ne 
17. Ε    tʃinus. 
18. C→    tʃ’ o::pcos ercetun tʃe milam mas  
19.          ercetun  tʃ’ epcanen ton etsi i Andi:: tʃ’  
20.          epienne tʃ’ emilan ↑tu::! 
21. Ε   e? (.)  ekamen do tʃe pse::s? 
22. C   epie tʃ’ epcan ton tʃin dom mitsi  
23.          peθca::. 
24. Μ   e oi re, °ton aγnosto::°? 
25. C   nne::. 
26. G   enna firto:: 
27. C   etravisen don = 
28. Ε   =ma tora sovara::?= 
29. C   = tʃinos itan etsi:: to  χore- o χoros tu     
30.           etsi polla pros to polla proklitiko::s  
31.           susto::s [ksero ’γo::, 
32. Α                    [χm χm χm. 
33. C       tʃe χorefce [tʃinos  
34. Ε                   [inda, 
35. C    tʃ’ i Andi [[ δame mes ta  
36. Ε        [[pco θarros! 
37. C    poθca tu tʃe χorefkan kolliti etsi::. 
38. Μ    ↑ate re::? 

39. Α     ma sovaromila::s? 
40. P →   tʃ’ [u::lli mera vura tom bater pu piso:: 
41.           tʃini::? 
42. Α        [tʃ’ i Liza ti tis ipen?  
43. C    ↑tipoTE::. 
 
 
Translation 
 
1. C    ((to E)) ((do you)) reme::MBE::R!  
2.            [Andie’s syndrome::! 
3.            [hu     
4. M    what is her syndrome? 
5. C→    every time someone is talking to us     
6.            she starts talking to hi::m? 
7. Ε    n::, 
8. C    since th-- don’t you remember that  
9.           day that those guys [LIZA’s friends  
10.           from Limassol? 
11. Α                                  [don’t say that  
12.           agai::n re Christiana::. 
13. C    came? 
14. Ε    that she was going to introduce to us  
15.           actually. 
16. C    yes. 
17. Ε    those. 
18. C→    and e::very time someone was  
19.           talking to us Andie was coming and  
20.           pulling him one side like that and  
               was talking to ↑hi::m! 
21. Ε    so? (.) did she do that last ni::ght  
               too? 
22. C    she went and pulled that young guy  
23.           to one side, guy::s.  
24. Μ    oh no re, °the strange::r°? 
25. C    ye::s. 
26. G    I’ll faint. 
27. C    she pulled him closer= 
28. Ε    =now seriously::?= 
29. C    =he was so::rt the d- his dancing was  
30.           sort of very provocative shaking  
31.           [for example::, 
32. Α    [hm, hm, hm 
33. C    and he was [dancing  
34. Ε           [what, 
35. C   and Andie [[here within his,  
36. Ε         [[a nerve! 
37. C   legs and they were dancing stuck like  
              glue like tha::t.  
38. Μ   ↑oh really re::! 
39. Α   seriously::? 
40. P →  so [does she spend a::ll her time with  
41.          the priest? 
42. Α        [and what did Liza say to her? 
43. C   ↑nothI::Ng. 
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As was mentioned above in complaints it is 
important for the teller to establish his/her 
recipients’ affiliation. In my data, where the 
teller is complaining about another, this is 
usually achieved with extreme and hyperbolic 
descriptions of the other’s misbehaviour.  
 
Thus, in 3: 1-3 the teller introduces a 
complaint about a non-present party’s 
misbehaviour by soliciting a “reminiscence 
recognition” from E, the knowing recipient 
(cf. Lerner, 1992: 255) about the principal 
character’s (cf. Goodwin, 1984) behaviour. By 
characterizing Andie’s behaviour as a 
“syndrome”, the teller (3: 3) foreshows a 
negative telling/criticism of Andie and 
establishes her stance towards the upcoming 
telling. In addition, through the reminiscence 
recognition solicit she invites the knowing 
recipient to confirm what it assesses and 
express a similar stance. Since the addressed 
recipient withholds a response, the teller 
through an extreme description (3: 5-6) 
identified as such by the ECF “every time” 
employs a second solicit of reminiscence 
recognition (3: 5) addressed to E, the knowing 
recipient. E (3: 6) responds negatively to the 
solicit and this is in disagreement with the 
expectations of the solicit. The teller initiates a 
third solicit of reminiscence recognition (3: 8-
10) and finally receives recognition by the 
knowing recipient (3: 14-15). The ECF “every 
time” is repeated by the teller (3:18-20) in a 
last attempt to receive recognition. The 
addressed recipient with a “candidate 
understanding” (Wilkinson and Kitzinger, 
2006) in the form of a question (3: 21) reveals 
recognition of the connection between the 
information given in the preface and the topic 
of the upcoming telling, that is, what the story 
is about and asks about it directly, “so? (.)  did 
she do that last ni::ght too?”.  
 
The telling (3: 22-23) is designed as a surprise 
source as shown by the fact that it responds to 
a yes/no question (3: 21) with a detailed 
description of the third person’s misconduct 
and the placement of the address form 
“guy::s” in turn final position. The telling is 
responded to by the recipient (3: 24) with an 
assertion of “ritualized disbelief” (Heritage, 
1984: 339) which treats the prior utterance as 
news (Wilkinson and Kitzinger, 2006). The 
teller in each of her turns (22-23, 27, 29-31, 

33, 35, 37) adds another increment which 
forms part of the exaggerated description of 
the transgression of the principal character’s 
behaviour. The description of the other’s 
transgression has its climax in 3: 37. 
 
The recipients, that is, M (3: 38), A (3: 39) and 
P (3: 40-41) make an evaluation upon the 
story-completion one after the other. Thus M 
(3: 38) and A (3: 39) both display “assertions 
of ritualized disbelief”. 4 P (3: 40-41), produces 
a rhetorical question, identified as such 
because it does not expect a response since it 
brings into question a common knowledge. It 
is framed as ironic evaluation, based on the 
fact that is not sequentially linked to the 
previous talk. In addition, the extreme ECF 
“all her time” adds to the ironic hearing. The 
ironic evaluation conveyed is also recognized 
based on the shared knowledge that Andie is 
visiting a priest often and consults with him. 
Hence, with this assertion P (3: 40-41) offers 
another argument for Andie’s behaviour being 
reprehensible by ironically evaluating her 
incompatible actions. Her behaviour as 
described by the teller contradicts the fact that 
she is known to spend a great deal of time with 
the priest. 
  
4 Conclusion 

In this paper I investigated one aspect of the 
interactional and sequential work 
accomplished with ECFs in complaining 
through a description of a non-present party’s 
misbehavior and in reporting opposition-type 
stories. Specifically, the focus was on 
complaints about the behaviour of a third non-
present party which develops with the 
reporting of two-party “opposition type” 
exchanges in which the teller is one of the two 
parties involved (Schegloff, 1984). The 
contrasting positions are presented with the 
BCBC formula with the opponent’s position 
occupying the last turn. 
 
In exploring the sequential positioning of 
ECFs, I discovered that a regular place of their 

                                                 
4 These items “treat a prior utterance as news for 
recipient” (Heritage, 1984: 339), but according to 
Wilkinson and Kitzinger these kinds of assertions “do 
more than this: they convey the speaker’s amazed 
incredulity and may also thus constitute a kind of 
surprise response in their own right” (2006: 34). 
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occurrence in storytelling sequences is on the 
punchline of the story and more specifically on 
the culmination of the reporting of “opposition 
type” conversation.  
 
The occurrence of ECFs at the end of the 
telling sequence seems to be associated with 
issues of affiliation that are sought from the 
recipients since the “the story recipient’s slot 
after story completion” is a marked place for 
the occurrence of evaluations where the 
recipient is expected to side either with the 
teller or her opponent. (Schegloff, 1984: 44). 
Thus at this place the teller offers to the 
recipient something extreme to evaluate and 
challenge.  
 
In the extracts above recipients respond with 
evaluations expressed with rhetorical questions 
which consist of repetitions of “extreme case 
formulation(s)” (Pomerantz, 1986) and  
“impossible description(s)” (Torode, 1996) of 
a third person’s overbuilt claim or words. 
 
To sum up extracts (1 & 2) examined in this 
paper revealed the following pattern: 
 

1. Opposition-type stories BCBC                 
2. Punchline: Reporting C’s ECF 
3. Recipient’s slot: Challenging the ECF 

{by non-literal means: rhetorical 
questions, ironic evaluations, 
impossible descriptions, repetitions of 
C’s ECF) 

 
Extract 3 revealed the following pattern 
 Teller:       Description of the other’s  
               misbehavior with ECFs.       
      Recipient: Evaluation with ECF 
 
To conclude with this study proves that the 
occurrence of ECF at the puncline is used to 
elicit the affiliation of the recipients, who 
express agreement/affiliation with the teller by 
challenging the ECF proffered by her 
opponent. This proves Sacks’s (1972: 341) 
observation that in some sequences certain 
activities have regular places of occurrence to 
such an extent that their absence is noticeable. 
This observation leads “to a distinction 
between a “slot” and the “items” which fill it 
and to proposing that certain activities are 
accomplished by a combination between some 
item and some slot” (id.). 
 

 
Appendix I 

 
Transcription System 

 
[               Separate left square brackets, one above 
[               the other on two successive lines with  
                utterances by different speakers, 
               indicates a point of overlap onset, 
               whether at the start of an utterance or 
               later. 
=     Equal signs ordinarily come in pairs – one 

at the end of a line and another at the start 
of a next line. If the two lines connected  

 by the equal signs are by the same speaker, 
then there was a single, continuous 
utterance with no break or pause, which 
was broken up in order to by different 
speakers, then the second followed the 
first 

(2)    Numbers in parenthesis indicate silence. 
(.)    A dot in parentheses indicates a  
 micropause. 
.             The period indicates a falling or final, 
              intonation contour, not necessarily the end 
              of a sentence. 
?           A question mark indicates rising intonation, 
             not necessarily a question. 
,            A comma indicates continuing intonation, 
             not necessarily a clause boundary. 
::          Colons are used to indicate the prolongation 
              or stretching of the sound just preceding  
              them. The more colons the longer the  
              stretching. 
-             A hyphen after a word or part of a word 
              indicates a cut-off or self-interruption, 
              often done with a glottal or dental stop. 
word Underlining is used to indicate stress or  
 emphasis. 
WOrd Capital letters indicate louder than the rest  
               talk. 
↑   The up arrow indicate a segment starting  
 on sharper rise. 
>  <        The combination of “more than” and “less 
               than” symbols indicates that the talk 
               between  them is compressed or rushed. 
.hhh The dot followed by “h’s” indicates  
               inbreath 
(h)          The letter “h” in parentheses inside the 
               boundaries of a word indicates  laughter. 
 (word)  When all or a part of an utterance is in 
              parentheses, this indicates uncertainty on 
              the transcriber’s part, but represents a 
              likely possibility. 
 (   )       Empty parentheses indicate that something  
             is being said, but no hearing can be  
             achieved. 
→         An arrow marks significant turns. 
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Université Paris-Sorbonne – CELTA

Maison de la recherche (D.310)
28 rue Serpente, 75006 Paris, France

maponline@gmail.com

Abstract

This paper presents a theoretical approach
to the characterization of requests bound-
aries and structure in general spoken di-
alogue. Emphasis is laid on the fracture
between the illocutionary act of requesting
(for which the term ‘request’ is kept) and
the locutionary elements that carry it out
(its ‘instantiation’). This approach leads to
a representation of requests based on the
inclusion of a semantic level under a prag-
matic level via a structural level. These
distinctions are meant to benefit to the
semantic-pragmatic segmentation of dia-
logue and the study of request strategies.

1 Introduction

This paper focuses on the segmentation of requests
in spoken language from a semantic-pragmatic
perspective. Taxonomies exist for specific types of
requests,1 and general dialogue-acts taxonomies
like DAMSL cover various types of utterances ‘in-
fluencing the addressee’s future action’ (Core and
Allen, 1997; Stolcke et al., 2000). The aim is
not to replace them—the former are finer-grained
than what is proposed here, and the latter have
the advantage of treating requests in a framework
which includes other types of dialogue acts. The
purpose of this paper is rather to contribute to a
middle-ground, with distinctions general enough
to encompass all types of action requests (assum-
ing that a common process of ‘requesting’ under-
lies them), yet detailed and structured enough to
account for the construction of their meaning. The
goal is therefore not to provide a taxonomy iden-
tifying speech or dialogue acts in ‘shallow’ dis-

1For instance clarification requests or ‘CRs’ (Corsaro,
1977; Purver, Ginzburg and Healey, 2003; Purver, 2004;
Rodrı́guez and Schlangen, 2004, among others), check-
questions (Jurafsky and Martin, 2000, §19.3), etc.

course structure (Jurafsky et al., 1997), but a struc-
tured explanatory taxonomy of requesting means.

The scope is ‘requests for action’ taken in a
broad sense, as exemplified by (1-3).2

(1) Err / hmm / you know / it would probably be easiest if
I just squeezed back there and poked around myself /
would that be alright with you? // (BRO 0h32m56s)

(2) Mister Masry? // [–Yeah //] I was wondering can you
tell me who I talk to / about maybe getting an advance
on my paycheck // Just / for the week-end //
(BRO 0h14m33s)

(3) Now you listen // I don’t give a damn / which way you
go / just don’t follow me / you got that? //
(FUG 0h18m59s)

‘Request’ is understood broadly to include the
whole spectrum of invitations, entreaties, com-
mands, etc. ‘Action’ is understood broadly in the
sense that the scope includes requests for clarifi-
cation (e.g. ‘Who said it?’); for attention, as ‘Now
you listen’ in (3) or ‘Mr Masry?’ in (2); for con-
firmation, as ‘You got that?’ in (3); and of course
what corresponds to a narrow understanding of the
expression ‘action requests’, namely requests for
actions not concerned with dialogue management,
as the request to allow the speaker of (1) into the
file room of the county water board, the request to
direct the speaker of (2) to the right person, or the
request not to follow the speaker of (3). The scope
excludes ‘true’ questions (unmarked information

2The sequences quoted in this paper are extracted from a
corpus of contemporary North-American films. Though film
dialogues can by no means be called ‘spontaneous’ speech,
they share enough features with naturally occurring interac-
tions as to help us define the tools to study requests in spoken
language. The advantage of working with commercial films
is that such material covers the whole gamut of pragmatic in-
teractions and situations—though, admittedly, as represented
not ‘intercepted’ scenes. Sequences are indexed with three
block capitals to identify the film quoted (e.g. Erin Brock-
ovich, found at [BRO] in the References) and three numbers
specifying the hour, minute and second when the sequence
begins. The sound track is transcribed as the succession of
speech ‘increments’ separated by pauses, with simple slashes
[/] and double slashes [//] to distinguish between ‘tentative’
and ‘final’ pauses, following Pike (1945).
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requests in which no significant attempt to further
influence the addressee is traced).

The main question of this paper is: What def-
inition of a ‘request’ should we work with, if we
are to describe the outer boundaries and the inner
complexity of requests in a way that enables mod-
elization and quantification of request strategies?3

Section 2 starts from the difficulty of assign-
ing boundaries to spoken language ‘requests’ in
the framework of traditional speech act theory,
and stresses key principles for pragmatic research
based on spoken corpora. Section 3 proposes a
minimal set of distinctions necessary to account
for the inner organization of request instantiations.
Section 4 assesses the approach.

2 Towards a definition of ‘requests’

One aspect of language interactions which tends to
be oversimplified is the relationship between a ‘re-
quest’ and its instantiation.4 True, with ‘indirect
requests’, traditional pragmatics cast light on the
gap between the ‘illocutionary act’ of requesting
and the ‘locutionary act’ (or the ‘literal’ elements)
used to express it. To bridge this gap, it focused
on the contextual felicity-conditions of utterances,
or on the conversational implicatures, the maxims,
the inference rules or the cognitive faculties that
enable us to construe their meaning (Austin, 1962;
Searle, 1969; Searle, 1979; Grice, 1975; Perrault
and Allen, 1980; Lenci, 1994, etc.); but all too of-
ten, the very examples given as a starting point to
such analyses are far too simple, as the signifier of
the request is almost invariably composed of one
isolated, syntactically pure segment.5 Pragmatic
analyses of this kind encourage an idealized vi-
sion of language interactions, in which a request
(and more generally a speech act) coincides per-
fectly with one stand-alone, clear-cut and atempo-
ral piece of language.

More recent ‘cue-based’ (Jurafsky and Martin,
3This paper deals primarily with the theoretical founda-

tions of methodology and does not tackle the technical im-
plementation of the results.

4‘Instantiation’ might be preferred to ‘formulation’, as the
former term makes it clearer that the speech elements uttered
participate not so much in the communication as in the per-
forming of the request (along with other elements not dis-
cussed here such as intonation, gesture, social context, etc.).

5Stubbs (1983, p. 148) noted that ‘it is something of a
paradox that speech act theory emphasizes the uses of lan-
guage, and in fact applies to utterances not sentences, but has
depended largely on introspective judgments of isolated sen-
tences’. Geis (1995) pointed out that acts such as requesting
or inviting often develop over several interaction turns.

2000) probabilistic approaches, on the other hand,
give an increasingly accurate surface description
of empirical dialogues as successions of normal-
ized ‘moves’ or ‘dialogue acts’ (Carletta et al.,
1997; Stolcke et al., 2000); but the normalization
of sequences as distinct ‘utterances’ also encour-
ages an atomistic, ‘one segment, one act’ vision.6

Yet, as far as semantic-pragmatic representa-
tion is concerned, it is artificial and problematic to
imagine that a request corresponds to a ‘block’ of
signifier (§2.1) and to a ‘block’ of meaning (§2.2).

2.1 ‘Requests’—from signs to meaning
Spoken corpora show that requests are rarely com-
posed of one clause or one simple clause-complex
(though dialogue management requests might tend
to correspond to monosegmental clauses or frag-
ments). The majority of requests take the form
of several increments of various syntactic, seman-
tic and pragmatic types, often with repetitions of
increments, interruptions from the co-interactants
(and from the speakers themselves), embedded
phases of negotiation, etc. The safest way to ap-
proach the problem is therefore to consider that a
priori every request instantiation is likely to have a
discontinuous signifier and extensible boundaries.

Requesting: a real-time process
Even assigning the beginning and the end of a ‘re-
quest’ in a linear transcription can prove difficult,
as shown by some seemingly simple, supposedly
straightforward ‘imperative’ requests:

(4) Put a light in there // Put a light in there //
(FUG 0h32m59s)

(5) Put that gun down // Put that gun down // Now //
(FUG 0h36m40s)

The police officer who utters (4) points succes-
sively at two different locations in a tunnel in
which he is walking with his staff. It is there-
fore not a problem to say that the two clauses in
this sequence correspond to two different requests.
When some time later the police officer corners
a fugitive and shouts (5), this ‘bijective’ analysis
does not hold anymore: the officer does not want
two separate actions of ‘putting the gun down’.

To consider the segment ‘Put that gun down’ as
‘a request’ would force us to consider the second

6That these ‘utterances’ may contribute to conversational
or dialogue ‘games’ (Carletta et al., 1997; Levin et al., 1998,
for instance) tends, in practice, to reinforce their atomistic
character, despite the fundamental remark by Traum and
Hinkelman (1992) on the divisibility of ‘utterances’.
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segment, as well as ‘now’, as so many ‘requests’,
since each of the three segments, in the situation,
is pronounced in order to trigger an action. It
is preferable to say that the three increments in-
stantiate one same request. The reason is, that all
throughout the speech sequence, the police officer
has one result in mind only, and the fulfillment of
his request at any moment of the sequence would
in fact render the subsequent increments useless
and even incoherent (which is not the case in (4)).7

The situation of a ‘surjective’ relationship be-
tween the speech increments and the acts they per-
form occurs in cases like (5) because the instan-
tiation of action-requests rarely fits the ideal sce-
nario according to which one ‘block’ stimulus trig-
gers one clear reaction (or not), as summarized in
the left part of Figure 1. Spoken language being a
real-time process, interactants habitually take into
consideration the current state of the world, check-
ing whether their expectations have been met (and
probably in a scalar not a polar way), and decid-
ing whether more stimulation (seen as process) is
necessary. In other words, the perlocutionary (the
set of effects of the utterance) may influence the
locutionary in return, as long as the world differs
from what the speakers would like it to be; and as
long as the speakers do not recognize the prod-
uct of their intention in the world, they have to
choose between several options: repeat, rephrase,
modify the extent of, or abandon their requests.
To account for this, one must consider request-
instantiation not as an end-product but as a pro-
cess, not as ‘act’ but as action in progress. This is
summarized in the right part of Figure 1.

"time"

"request"
"reaction"

"time of
speech"

"time of
reference"

locutionary event(s)

perlocutionary
(and other) event(s)

Both ways: Interpretations, 
decisions, adjustments

Figure 1: Requesting, a real-time process

7Still, it is common for a speaker to add request-related
increments of specific types (e.g. stating motives) even af-
ter the addressee has started complying. This is because the
speaker’s goal is usually not just to have the addressee ful-
fill the request: preserving or attaining a specific kind of re-
lationship with one’s interactants (e.g. by sharing one’s rea-
sons with them) is an objective in itself, which partly explains
the ‘variability’ in request strategies (Bloomfield, 1933, §2.6)
and sometimes even justifies the withdrawal of a request.

The speech/act fracture
The problem of the instantiation of requests
reaches in fact deeper than the ‘mere’ real-time
calculation of an intention/effects (and /cost) ra-
tio on the part of the speaker. Speech being linear,
any request that uses spoken language for its in-
stantiation will extend over a certain span. Often,
the length of that span is primarily accounted for
by the internal complexity of the request instan-
tiation, even before it becomes relevant to assess
the perlocutionary. That a radical fracture must be
acknowledged between the speech elements used
and the act performed is exemplified by (6), ut-
tered in an emergency ward by a chief-doctor who
is examining a patient, to a fellow doctor who is
taking care of another patient a few meters away.

(6) Al / get over here / I need you // (FUG 1h06m42s)

It is tempting to analyze (6) as a request pre-
ceded by a specification of its target and followed
by an explanation of its motive. The problem with
this ‘narrow’ analysis is that it forces major de-
scriptive changes when possible variants are taken
into consideration, such as (6′) and (6′′) (assum-
ing that, in the situation, they could have produced
the same effect). It seems indeed difficult to de-
scribe the increment ‘I need you’ as a ‘request’ in
(6′) but as a mere explanation, ‘banalized’ by the
presence of the imperative increment, in (6); and
it seems equally difficult to hold that the vocative
increment ‘Al’ falls within the scope of the request
in (6′′) but outside of it in (6).

(6′) Al / I need you //

(6′′) Al //

The ‘narrow’ analysis presented above results
from a vision of request instantiations in EI-
THER/OR terms within a limited range of clear-cut
strategies (sometimes reduced to clause-types).
However, the comparison of common requests
such as (6) with their possible variants shows that
the very idea of pinpointing one increment (usu-
ally a sentence) as the support of the request is
taken at fault—so much so that the distinction be-
tween ‘direct’ and ‘indirect’ speech acts falls. Im-
perative clauses may retain a specificity compared
with other segments (see further on), but the facts
remain that (a) countless requests are instantiated
by several increments, (b) a great number of these
increments might suffice to instantiate the corre-
sponding request alone, (c) none of these incre-
ments can claim to be ‘the segment of speech that
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performs the act’, and therefore (d) all of the in-
crements, far from excluding one another from the
request instantiation, contribute to it.

From this perspective, the semantic-pragmatic
segmentation of requests in spoken language con-
sists in, first, identifying the increments involved
in ‘carrying out’ the request and, second, deter-
mining the contribution of each increment to the
whole. It seems doubtful, however, that the mean-
ing of a request should be the simple, composi-
tional addition of the meanings of its increments.
One reason is that the increments of a request
are often semantically and pragmatically hetero-
geneous (the three increments in (6) are by no
means equatable), and their modes of contribu-
tion are therefore several. If heterogeneity is not a
problem for the interactants, it is probably because
they rely on a broader and more flexible vision of
a request’s meaning than is often acknowledged.

2.2 Requesting—from intention to signs
Why do speakers formulate requests? In most
cases, the goal is not to actually witness an action.
The speaker of (4) is not interested in ‘seeing’ his
staff set up spotlights because he said so, nor is
the speaker of (6) interested in ‘seeing’ ‘Al’ come
over to her (if it were the case, motive increments
such as ‘I need you’ would be incoherent, except
maybe as ploys). The officer wants the tunnel to
be lit, and the doctor wants immediate help from a
colleague nearby. Each of these requests is there-
fore meant to bring about a specific situation. To
be sure, the ultimate object of most requests is a
desired state of the world—not an action; and the
possible actions of the co-interactant(s) often have
value not of themselves but primarily as a step to-
wards the advent of that state.8 A useful way to
represent the speaker’s mental context preceding
a request instantiation is therefore to distinguish
several ‘worlds’ roughly seen as static—the cur-
rent world and the possible worlds (including the
target world but also undesired worlds, maybe oth-
ers still)—separated by a dynamic ‘transition situ-
ation’ which includes the possible actions of the
co-interactants and the possibility for the speaker
to stimulate them into enacting them.

Stating the reason that makes the target-world
desirable (‘I need you’) or naming, with an imper-
ative, the action that can bring about this world

8The idea of ‘plan’ below is close to that found in Perrault
and Allen (1980, §3.3), but its treatment, from the perspective
of a linguistic ‘geo-strategy’, will be different.

(‘Come here’), are two ways, not mutually ex-
clusive, to reach the desired situation. Other in-
crements could be added without ‘exhausting’ the
meaning of the request, i.e. without instantiating
a new or different one. Thus, the meaning of a
request is often alluded to jointly by several ele-
ments which emphasize various parameters of the
worlds or of the transition situation considered,
along with elements referring to the process of re-
questing itself. Even when a speaker resorts to the
imperative in order to call for an action, it is habit-
ually clear to all that this action is to be enacted in
the name of something else. The functioning of a
request is therefore always metonymic (i.e. based
on a radical speech/act fracture) in the sense that
increments focus on one element or another and
yet instantiate the whole request.

Requests might therefore be best described not
as ‘attempts. . . by the speaker to get the hearer to
do something’ (Searle, 1979, p. 13) but rather as
attempts to involve the addressee into a plan de-
vised to reach a target world—a plan defined es-
pecially (but never exclusively) by the projected
action(s) of the addressee. In this perspective, the
increments not naming the projected action are not
seen as the conditions meant to help the addressee
decode that action (in traditional pragmatic ex-
amples, these elements strangely disappear in the
presence of the imperative); they are understood
here as part of the general strategy of sharing of a
plan that takes place when a request is instantiated
(a ‘sharing’ which can, of course, be minimal).

3 Towards a ‘constituency’ of request
instantiations

This section details how the reflections developed
in §2 can be rendered operational in order to
segment request instantiations. The aim here is
to sort out the semantic-pragmatic ‘constituency’
of request instantiations, i.e. the system whereby
higher (and often larger) units include lower (of-
ten smaller) ones. The task is therefore to find out
which ranks are relevant for the study of requests
and what primary distinctions should be acknowl-
edged between the units of these ranks.9

9The reflection below is presented in a progressive way
rather than as a complete nomenclature, both to show the em-
pirical necessity of the distinctions acknowledged, and as a
reminder that this model has not reached a definitive phase.
Parallels may be found between the Universe, Manners and
Phases described below and (respectively) the attentional, lin-
guistic and intentional structures of Grosz and Sidner (1986),
though with differences not discussed here.
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3.1 Semantic distinctions
Part of what defines a request instantiation is,
purely and simply, its ‘Universe’, understood as
what entities, concepts, qualities and relations are
verbalized (and regardless of the way they are).
One level of description (at least) should there-
fore be dedicated to distinctions between the types
of elements that appear in speech. Since the
‘Universe’ of speakers is not objective but rather
peopled and structured by what makes sense in
their world-views, some elements are given more
prominence than others among the ‘worlds’ and
the ‘transition situation’ assumed above.

In many request instantiations, the speaker
refers to what could be called the ‘head-action’
of the request, i.e. the action that should lead most
directly to the ‘target world’: ‘(Can you) tell me
who. . . ’ (2), ‘Put that gun down’ (5), etc. Reg-
ularly, however, actions are named which are not
the head-action of the request. What is verbalized
often corresponds either to a ‘sub-action’ of the
head-action hoped for, or to a ‘germane action’
which is not a necessary subpart of the head-action
but is, in the context, related to it and meant to trig-
ger it. ‘Call’ names a sub-action in (7), as it is a
necessary step within the head-action ‘tell’. ‘Look
at it’ names a germane action in (8): with this ut-
terance a fisherman asks a shark specialist to re-
consider his judgment that the shark under exam-
ination (caught by the fisherman) is too small to
qualify as the man-eater everyone is hunting for.
Though ‘Looking’ is not properly a sub-action of
‘changing one’s judgment’ (or of ‘reconsidering’
it), it is supposed, in this context, to lead to that.

(7) . . . You call Judge Rubin / you tell him I want a whole
bunch of phone-taps. . . // (FUG 0h29m37s)

(8) What / this is a big mouth / look at it // (JAW 0h33m09s)

Many other verb-referents can be found which
are not to be enacted by the addressee, such as
‘I was wondering’ in (2) or ‘You know’ in (1).
The former is a (mental) process attributed to the
first person (P1), the latter is a (mental) state at-
tributed to the second person (P2). An additional
difference is that ‘I was wondering’ is an assertion
(of the occurrence of a reflection process) whereas
‘You know’, in this utterance, hesitates between
the question and the assertion (as it often does).
This difference relates to a second level of descrip-
tion: actions (and other elements) can be verbal-
ized in different ‘manners’, for instance a direc-

tive or a descriptive manner. Following a tradi-
tional distinction, the former tells the addressee to
do the action (through imperatives, performatives
and maybe nominals, as in the army’s ‘Ateeen-
tion!’) whereas the latter talks of or about the
action (through various types of questions, asser-
tions, exclamations, hypotheses, etc.). In (1), ‘It
would probably be easiest. . . ’ is the (descriptive)
assertion of a judgment on ‘. . . if I just squeezed
back there and poked around myself’, in which
a sub-action and a higher-action (attributed to the
first person, and to be allowed, not enacted by the
second person) are verbalized as the (descriptive)
evocation of a possibility (see Tables 2 and 3).

Other elements than actions are found in the
verbalized ‘Universe’ of a request instantiation.
People and objects are often named, some more
than others. Addressees are crucial interactants as
they are often hoped to become the agents of the
projected head-actions, and they are therefore of-
ten named in separate increments (especially to at-
tract their attention, as in (2), or to modalize the re-
quest). In a similar way, the notion of head-object
can be useful to refer to those objects that occupy a
central position in the representation of the head-
action. Indeed, head-objects are so important on
the ‘mind map’ of the speaker that they are com-
monly named without the action itself (‘Scalpel’
in an operating room, ‘The door!’, etc.). Some-
times, these objects are accompanied by other el-
ements which help specify what is to be done, es-
pecially the location where the action is to take
place or end. When people, objects, locations or
other elements are verbalized outside the net of re-
lationships found in clauses, they are often pointed
at through speech, and the manner can be said to
be ‘indexical’. Table 1 illustrates the concepts of
‘head’ action, object and location (FUG 0h36m49s).

(9) Hands up Over your head Turn around

Univ. h-obj.R1 head-location(s)R1 h-actionR2

Manner idx. idx. indexical directive
REQUEST 1 REQUEST 2

Table 1: ‘Head’ actions, objects and locations

If the target-situation is desired (and if other sit-
uations, including the current one, are unwanted),
it is usually because a change would be benefi-
cial to someone or something (the speaker, the ad-
dressee, other people, institutions, moral princi-
ples, etc.). This explains why, quite often, values
concerning the request plan are asserted (e.g. ‘It
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would probably be easiest. . . ’) or discussed (e.g.
‘Would that be alright with you?’). Elements of
other types might be acknowledged in the Uni-
verse of the speaker, referring not to actions, par-
ticipants, circumstances or values but to specific
meaning-contents that can be given prominence
when isolated as an increment. Thus, ‘Just’, in (2),
does not refer to an entity but brings in the mean-
ing of ‘restriction’—here a restriction bearing on
the scope of the ultimate goal, in such a way that
the request itself is attenuated. Often, the restric-
tion bears directly on the head-action, as in (3).

3.2 Structural distinctions
One issue raised by the last remark is that of deal-
ing with units of different ranks, as boundaries do
not always coincide. ‘Just / for the week-end //’ is
related to a verb in a preceding increment (‘getting
an advance on my paycheck’) yet it appears after
a final pause, as an afterthought. An approach fa-
voring syntax might try to emphasize the relation-
ship with the verb or the clause. A pragmatic al-
ternative (or addition) can be proposed, underlin-
ing the fact that speakers (consciously or not) iso-
late some increments and join others. ‘Just’ carries
the meaning of ‘restriction’; giving it prominence
through prosody (by separating it both from what
precedes and follows it) might therefore be an ef-
fective way of increasing the chances of a request
to be fulfilled. Indeed, ‘Just / for the week-end
//’ is not verbalized so much for the informational,
referential specification it provides concerning the
preceding verb, as for the way it restricts the ‘cost’
of fulfilling the future request (of asking for an ad-
vance on the salary) and therefore the present one
(‘. . . tell me who I speak to. . . ’).10 The prosodic
boundaries both signal and enact a reorganization
of the roles and importance of verbalized elements
under pragmatic considerations—a reorganization
for which syntactic distinctions fail to account,
and which might be erased or downplayed when
increments are normalized into ‘utterances’.11

Still, ‘Just’ does not function alone. An accurate
semantic-pragmatic description should be able to
render the facts (a) that signs have meaning in iso-
lation, (b) that they enter in meaningful larger syn-

10As ‘Mr Masry’ is the director of the firm, he can be ex-
pected to have a say in salary matters, which might influence
his reaction to a request to name the office manager.

11In other words, this paper believes that functions are ful-
filled a bit below (with ‘phases’, see §3.3) and a bit above
(with ‘speech acts’, roughly Discourse Units as in Traum and
Hinkelman (1992), and see §2) the level of ‘utterances’.

tactic structures (on which traditional corpus seg-
mentation has focused) and (c) that prosodic cues
often cut through these structures or fuse several
of them,12 an operation of (re)organization which
is of semantic-pragmatic relevance.

Several types of meaningful units are therefore
available.13 They are treated here on three sep-
arate ranks (some of which might require sub-
division to cover the whole structural complex-
ity). The semantic ranks describing the verbalized
Universe and the verbalizing Manner will com-
monly deal with whole increments as well as ‘sub-
increments’ (e.g. ‘It would probably be easiest’ in
(1)). The pragmatic ranks (see §3.3), on the other
hand, will typically deal with whole increments, as
what the speaker does through speech seems to be
carried out by ‘phases’ which often fit into incre-
ment boundaries (or run over several increments).
The general correspondence of phase boundaries
with those of increments is strengthened by the ob-
servation that when several functions are fulfilled
within the limits of one increment, they are usu-
ally fulfilled in a syncretic, not a successive fash-
ion (though ‘phases’ may sometimes run on parts
of increments only). Focusing on ‘functions’ of
increments leads us to pragmatic distinctions.

3.3 Pragmatic distinctions
The increments uttered when instantiating a re-
quest are not just semantically and structurally het-
erogeneous (some assert judgments, others pin-
point objects or circumstances, etc.), they are also
pragmatically heterogeneous: different types of
‘phases’ fulfilling different functions can usually
be distinguished within a request instantiation.14

Taking each increment one after the other, we can
ask: what is the speaker trying to achieve with
this increment with regard to the general request
under way? do neighboring increments fulfill the
same function? are several functions fulfilled by
the same increment? if so, can the increment be
divided into sub-increments corresponding to dif-
ferent phases, or are all the functions fulfilled syn-

12In ‘Do not smoke in here thank you very much //’
(JAW 0h30m49s), fusion of an action-specifying phase with
a ‘second answer’ (which normally follows a positive ‘first’
answer such a ‘Ok’) expresses the refusal of an alternative.

13None of these units need be ‘grammatical’ in the tradi-
tional, syntactic sense, as many types of fragments are in fact
accepted in spoken language (Goldman-Eisler, 1968).

14The labels (e.g. angling<calling<urging) are meant to
be ‘intuitive’. Their pragmatic relevance vis-à-vis the formal
cues (word order, intonation, etc.) retained to describe speech
elements with them is, of course, only assumed for English.
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UNIVERSE (major/head/high/sub/germane/next/ultimate) (mental/physical)
ACTION/PROCESS/STATE (P{1-6}); TIME; PLACE; VALUE; ’RESTRICTION’;...

Notes: Modifiers before action, process or state specify their place on the mental world-map and their
type. Modifiers afterwards attribute them to person. At this stage, values are not attributed to person.

MANNER EGOPHORIC (sends back to speaker); INDEXICAL [INTERPELLATION/POINTING];
DESCRIPTIVE [ASSERTION/QUESTION/EVOCATION/RANGE/(...?) (of/on) ACT-
ION/STATE/POSSIBILITY/CIRCUMSTANCE/JUDGMENT/REFLECTION/FEELING/...];

DIRECTIVE[IMPERATIVE/PERFORMATIVE/NOMINAL];
OPERATIVE (performs an action by itself, e.g. ‘just’, ‘please’, etc.);(...?)
Notes: This level assesses the semantico-structural contribution; labels can be modified by ‘Ambiguity’,
which is sometimes part of the speaker’s strategy (see Table 3, (1)), and by ‘Negative’ (ibid., (3)).

PHASES SPECIFYING/RESTRICTING/QUESTIONING (of) MOTIVE/ACTION/GOAL/SCOPE;
ANGLING/CALLING/URGING (for) ATTENTION/FOCUS/EMPATHY/ACTION;
(soft) PHATIC/FOCALIZING/ATTENUATING/MODALIZING/INTENSIFYING/...
Notes: This level assesses the pragmatic contribution of increments. Label changes are to be expected.

DEPEN-
DENCY

ATTENTION REQUEST; CONFIRMATION REQUEST; METAPRAGMATIC REQUEST;(...?)
Notes: Request dependencies are described in Table 3 only when relevant.

Table 2: Preliminary ontology of levels of analysis and their labels (see Table 3 for application)

thetically by the whole increment? if the latter,
are the functions distinct (a case represented by
sign ‘&’ in Table 3) or is one derived from another
(in which case the position on a lower line with-
out ‘&’ represents derivation from functions on a
higher line)?

Phases, through their ‘vertical’ relations with
formal manners and their ‘horizontal’ inter-
relations, are useful to evaluate request strategies.
One important difference between the directive
and descriptive manners, for instance, is that in
addition to specifying an action, directive manners
conventionally convey an urge to enact it. Descrip-
tive manners, as for them, are regularly accompa-
nied by elements fulfilling other functions such as
stating the value of the action (1) or questioning its
possibility (2). Fine distinctions should also allow
to compare, for instance, increments subtly ‘an-
gling’ for attention (such as the throat clearing in
(1)) and others more clearly ‘calling’ for it (the
vocative in (2)), not to forget the cases where ob-
taining the addressee’s attention is presented as a
request in itself (‘Now you listen’ in (3)).

With this last remark, we are hitting upon an im-
portant pragmatic distinction: not all increments
in a request participate in its instantiation equally.
This is not just because different types of ‘phases’
must be acknowledged but also because, in some
cases, these phases actually contribute to the re-
quest via their participation to the instantiation
of a ‘satellite’, or ‘dependent’ request. True, re-
quests for attention and confirmation are com-
monly found as ‘independent’ requests (for in-

stance in a classroom), but they often serve the
purpose of ensuring the felicity of a ‘main’ re-
quest, as in (3). ‘Now you listen’ and ‘You got
that?’ are requests in their own right;15 neverthe-
less, these requests would have no raison d’être
without the main request not to follow the speaker.
A layer can therefore be added in the tables to
account for request ‘Dependency’; and the head-
action of the main request gains a new status, as
‘major’ action in the request plan.16

4 Limitations and prospects

The model presented here has not yet reached a
state of maturity where its reliability as an annota-
tion scheme can be tested. Fine-tuning of the dis-
tinctions, and clear decision-trees for each rank,
are among the next necessary steps. One theoret-
ical limitation is that this approach, in its current
form, does not cover the use of metaphoric lan-
guage and more generally the lexical contribution
of a number of elements (for instance, the non-
professional and vague verb ‘to poke around’ in
(1) is not chosen by chance instead of, say, ‘to
search for the legal records my firm needs’). As
important is the need to take prosody into fuller

15The co-speaker’s ‘Yeah’ following the latter is not only
an ANSWER but also an AGREEMENT/ACCEPT (or COMMIT),
in terms of the SWBD-DAMSL taxonomy (Jurafsky et al.,
1997; Stolcke et al., 2000). The general duality affecting
‘check questions’ was noted in Core and Allen (1997).

16Clarification is needed of the Phase/Dependency bound-
ary, i.e. of the criteria used to decide when ‘phases’ of a
request acquire the status of ‘dependent request’ (of which
some uses of ‘Come on’ and ‘Do it’ illustrate another type,
that of a ‘metapragmatic’ request to fulfill the main request).
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(1) Err hmm You know It would probably if I just squeezed back there Would that be
be easiest and poked around myself alright with you?

Universe - state (P2) value sub-act◦ + high-act◦ (P1) value
Manner egophoric descriptive descriptive descriptive descriptive

Ambig. Ass◦/Q◦ Assert◦ Judgment Evocat◦ Possibility Quest◦ Judgment
Phases att◦ angling empathy angling specifying motive & specifying goal assent angling

REQUEST (to let speaker go look for files herself)

(2) Mr Masry? I was wondering can you tell me who I talk to about maybe get- Just for the
(-Yeah) ting an advance week-end

on my paycheck
U addressee mental proc. (P1) state (P2) head-a◦ next a◦ (P1) ultimate a◦ (P1) ‘restr◦’ moment
M indexical descriptive descr. descr. descr. descriptive operative descr.

Interpellat◦ Assert◦ Reflect◦ Q◦ Poss. Evoc◦ P. Evoc◦ P. Evocat◦ Possib. Restrict◦ Evoc◦ Circ.
specifying goal=motive restricting scope

Ph soft focalizing & & head-act◦ specifying attenuating
att◦ calling soft modalizing & Calling modalizing

D ATTENT◦ R.
√

REQUEST
(to tell speaker how (and if) possible to get advance on her paycheck)

(3) Now you listen I don’t give a damn which way you go Just don’t follow me You got that?

Univ. time head-act◦R′ value (feeling) act◦ (P2) ‘restr◦’ major action sub-actionR′′

Man. idx. directive descriptive descriptive operative directive descriptive
Imp. Assertion Feeling Range Act◦s Restrict◦ Imp. (neg.) Quest◦ Act◦

Ph. & spec. act◦ Expressing concession : specifying act◦ spec. s-act◦

focus angl. & urging modalizing phase : & urging & questioning
Dep. ATTENTION R. REQUEST FOR ACTION CONFIRM◦ R.

(not to follow speaker)

Table 3: Description of examples (1), (2) and (3)

account and to include nonverbal cues. Another
issue is the fact that repair, backchannel and over-
lapping tend to be more common in spontaneous
speech than in films (work in preparation); these
phenomena (all of which can be of pragmatic sig-
nificance in the context of request-formulation), as
well as turn-taking, must be better integrated.

On the plus side, this approach has the advan-
tage of trying to bridge the gap, with strong empir-
ical emphasis, between ‘emic’ parameters such as
the speakers’ beliefs, desires and intentions, and
‘etic’ cues from the signifier (Pike, 1954; Blum-
Kulka, 1981; Reiss, 1985; Jurafsky, 2004). By
focusing on the contribution of increments to the
construction of meaning, and by running statis-
tics to reveal which types of increments are used
by speakers in which context and according to
which concatenation patterns, we should eventu-
ally be able to draw a picture of the ’strategies’—
conscious or routinized—used when requesting.

5 Conclusion

Traditional speech act theory rests primarily on the
structure of isolated sentences. However, at least
as far as requests are concerned, speakers tend to
express themselves with several increments, het-
erogeneous both in nature and function. ‘Cue-
based’ approaches designed to recognize atomic
acts can give accurate descriptions of the speech
surface; but the treatment of each unit as ‘act’
tends to blur the deeper interrelations. The ap-
proach presented here, based on the loose inclu-
sion of a lower semantic level under a higher prag-
matic level via a structural level, suggests that, as
far as the representation of spontaneous spoken
language is concerned, gains might be made by
broadening the scope of dialogue acts and ‘lower-
ing’ the aim from the identification of distinct acts
to that of the means of their instantiation.
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Abstract
In this paper, we describe the use of lexi-
cal and semantic features for topic classi-
fication in dictated medical reports. First,
we employ SVM classification to assign
whole reports to coarse work-type cate-
gories. Afterwards, text segments and
their topic are identified in the output
of automatic speech recognition. This
is done by assigning work-type-specific
topic labels to each word based on fea-
tures extracted from a sliding context win-
dow, again using SVM classification uti-
lizing semantic features. Classifier stack-
ing is then used for a posteriori error cor-
rection, yielding a further improvement in
classification accuracy.

1 Introduction

The use of automatic speech recognition (ASR) is
quite common in the medical domain, where for
every consultation or medical treatment a written
report has to be produced. Usually, these reports
are dictated and transcribed afterwards. The use of
ASR can, thereby, significantly reduce the typing
efforts, but, as can be seen in figure 1, quite some
work is left.

complaint dehydration weakness and diarrhea full
stop Mr. Will Shawn is a 81-year-old cold Asian
gentleman who came in with fever and Persian
diaper was sent to the emergency department by his
primary care physician due him being dehydrated
period . . . neck physical exam general alert and
oriented times three known acute distress vital
signs are stable . . . diagnosis is one chronic
diarrhea with hydration he also has hypokalemia
neck number thromboctopenia probably duty liver
cirrhosis . . . a plan was discussed with patient in
detail will transfer him to a nurse and facility
for further care . . . end of dictation

Figure 1: Raw output of speech recognition

When properly edited and formatted, the same
dictation appears significantly more comprehensi-
ble, as can be seen in figure 2.

CHIEF COMPLAINT
Dehydration, weakness and diarrhea.

HISTORY OF PRESENT ILLNESS
Mr. Wilson is a 81-year-old Caucasian gentleman
who came in here with fever and persistent
diarrhea. He was sent to the emergency department
by his primary care physician due to him being
dehydrated.
. . .

PHYSICAL EXAMINATION
GENERAL: He is alert and oriented times three,

not in acute distress.

VITAL SIGNS: Stable.
. . .

DIAGNOSIS
1. Chronic diarrhea with dehydration. He also

has hypokalemia.
2. Thromboctopenia, probably due to liver

cirrhosis.
. . .

PLAN AND DISCUSSION
The plan was discussed with the patient in detail.
Will transfer him to a nursing facility for
further care.
. . .

Figure 2: A typical medical report

Besides the usual problem with recognition er-
rors, section headers are often not dictated or hard
to recognize as such. One task that has to be per-
formed in order to arrive at the structured report
shown in figure 2 is therefore to identify topical
sections in the text and to classify them accord-
ingly.

In the following, we first describe the problem
setup, the steps needed for data preparation, and
the division of the classification task into subprob-
lems. We then describe the experiments performed
and their results.

In the outlook we hint at ways to integrate this
approach with another, multilevel, segmentation
framework.

2 Data Description and Problem Setup

Available corpus data consists of raw recognition
results and manually formatted and corrected re-
ports of medical dictations. 11462 reports were
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available in both forms, 51382 reports only as cor-
rected transcripts. When analysing the data, it
became clear that the structure of segment topics
varied strongly across different work-types. Thus
we decided to pursue a two-step approach: firstly
classify reports according to their work-type and,
secondly, train and apply work-type specific clas-
sification models for segment topic classification.

2.1 Classification framework

For all classification tasks discussed here, we em-
ployed support-vector machines (SVM, Vapnik
(1995)) as the statistical framework, though in dif-
ferent incarnations and setups. SVMs have proven
to be an effective means for text categorization
(Joachims, 1998) as they are capable to robustly
deal with high-dimensional, sparse feature spaces.
Depending on the task, we experimented with dif-
ferent feature weighting schemes and SVM kernel
functions as will be described in section 3.

2.2 Features used for classification

The usual approach in text categorization is to use
bag-of-word features, i.e. the words occuring in a
document are collected disregarding the order of
their appearance. In the domain of medical dic-
tation, however, often abbreviations or different
medical terms may be used to refer to the same se-
mantic concept. In addition, medical terms often
are multi-word expressions, e.g., “coronary heart
disease”. Therefore, a better approach for feature
mapping is needed to arrive at features at an ap-
propriate generalization level:

• Tokenization is performed using a large
finite-state lexicon including multi-word
medical concepts extracted from the UMLS
medical metathesaurus (Lindberg et al.,
1993). Thus, multi-word terms remain intact.
In addition, numeric quantities in special
(spoken or written) formats or together with a
dimension are mapped to semantic types (e.g.
“blood pressure” or “physical quantity”), also
using a finite-state transducer.

• The tokens are lemmatized and, if possi-
ble, replaced by the UMLS semantic con-
cept identifier(s) they map to. Thus,
“CHD”, “coronary disease” and “coronary
heart disease” all map to the same concept
“C0010068”.

• In addition, also the UMLS semantic type, if
available, is used as a feature, so, in the ex-
ample above, “B2.2.1.2.1” (Disease or Syn-
drome) is added.

• Since topics in a medical report roughly fol-
low an order, for the segment topic identifica-
tion task also the relative position of a word
in the report (ranging from -1 to +1) is used.

We also explored different weighting schemes:

• binary: only the presence of a feature is in-
dicated.

• term frequency: the number of occurences
of a feature in the segment to be classified is
used as weight.

• TFIDF: a measure popular from information
retrieval, where tfidfi,j of term ti in docu-
ment dj ∈ D is usually defined as

cti,j∑
i cti,j

. log
|D|

|{dj : ti ∈ dj}|

An example of how this feature extraction pro-
cess works is given below:

token(s) feature(s) comment
...
an stop word
78 year old QH OLD pattern-based type
female C0085287 UMLS concept

A2.9.2 UMLS semtype
intubated intubate lemmatized (no concept)
with stop word
lung cancer C0242379 UMLS concept

C0684249 UMLS concept
B2.2.1.2.1.2 UMLS semtype

...

2.3 Data Annotation
For the first classification task, i.e. work-type clas-
sification, no further annotation is necessary, ev-
ery report in our data corpus had a label indicating
the work-type. For the segment topic classification
task, however, every token of the report had to be
assigned a topic label.

2.3.1 Analysis of Corrected Transcripts
For the experiments described here, we con-
centrated on the “Consultations” work-type, for
which clear structuring recommendations, such
as E2184-02 (ASTM International, 2002), exist.
However, in practice the structure of medical re-
ports shows high variation and deviations from
the guidelines, making it harder to come up with
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an appropriate set of class labels. Therefore, us-
ing the aforementioned standard, we assigned the
headings that actually appeared in the data to the
closest type, introducing new types only when ab-
solutely necessary. Thus we arrived at 23 heading
classes. Every (possibly multi-word) token was
then labeled with the heading class of the last sec-
tion heading occurring before it in the text using a
simple parser.

2.3.2 Aligment and Label Transfer
When inspecting manually corrected reports (cf.
fig. 2), one can easily identify a heading and clas-
sify the topic of the text below it accordingly.
However, our goal is to develop a model for iden-
tifying and classifying segments in the dictation,
thus we have to map the annotation of corrected
reports onto the corresponding ASR output. The
basic idea here is to align the tokens of the cor-
rected report with the tokens in ASR output and to
copy the annotations (cf. figure 3). There are some
problems we have to take care of during align-
ment:

1. non-dictated items in the corrected test (e.g.
punctuation, headings)

2. dictated words that do not occur in the cor-
rected text (meta instructions, repetitions)

3. non-identical but corresponding items
(recognition errors, reformulations)

For this alignment task, a standard string-edit
distance based method is not sufficient. There-
fore, we augment it with a more sophisticated cost
function. It assigns tokens that are similar (ei-
ther from a semantic or from a phonetic point of
view) a low cost for substitution, whereas dissimi-
lar tokens receive a prohibitively expensive score.
Costs for deletion and insertion are assigned in-
versely. Semantic similarity is computed using
Wordnet (Fellbaum, 1998) and UMLS. For pho-
netic matching, the Metaphone algorithm (Philips,
1990) was used (for details see Huber et al. (2006)
and Jancsary et al. (2007)).

3 Experiments

3.1 Work-Type Categorization
In total we had 62844 written medical reports
with assigned work-type information from differ-
ent hospitals, 7 work-types are distinguished. We
randomly selected approximately a quarter of the

corrected report OP ASR output
. . . . . . . . . . . . . . .
ChiefCompl CHIEF del
ChiefCompl COMPLAINT sub complaint ChiefCompl
ChiefCompl Dehydration sub dehydration ChiefCompl
ChiefCompl , del
ChiefCompl weakness sub weakness ChiefCompl
ChiefCompl and sub and ChiefCompl
ChiefCompl diarrhea sub diarrhea ChiefCompl
ChiefCompl . sub fullstop ChiefCompl
HistoryOfP Mr. sub Mr. HistoryOfP
HistoryOfP Wilson sub Will HistoryOfP

ins Shawn HistoryOfP
HistoryOfP is sub is HistoryOfP
HistoryOfP a sub a HistoryOfP
HistoryOfP 81-year-old sub 81-year-old HistoryOfP
HistoryOfP Caucasian sub cold HistoryOfP
HistoryOfP ins Asian HistoryOfP
HistoryOfP gentleman sub gentleman HistoryOfP
HistoryOfP who sub who HistoryOfP
HistoryOfP came sub came HistoryOfP
HistoryOfP in del
HistoryOfP here sub here HistoryOfP
HistoryOfP with sub with HistoryOfP
HistoryOfP fever sub fever HistoryOfP
HistoryOfP and sub and HistoryOfP
HistoryOfP persistent sub Persian HistoryOfP
HistoryOfP diarrhea sub diaper HistoryOfP
HistoryOfP . del
. . . . . . . . . . . . . . .

Figure 3: Mapping labels via alignment

reports as the training set, the rest was used for
testing. The distribution of the data can be seen in
table 1.

Trainingset Testset Work-Type
649 4.1 1966 4.2 CA Cardiology

7965 51.0 24151 51.1 CL ClinicalReports
1867 11.9 5590 11.8 CN Consultations
1120 7.2 3319 7.0 DS DischargeSummaries

335 2.1 878 1.8 ER EmergencyMedicine
2185 14.0 6789 14.4 HP HistoryAndPhysicals
1496 9.6 4534 9.6 OR OperativeReports

15617 47227 Total

Table 1: Distribution of Work-types

As features for categorization, we used a bag-
of-words approach, but instead of the surface form
of every token of a report, we used its semantic
features as described in section 2.2. As a catego-
rization engine, we used LIBSVM (Chang&Lin,
2001) with an RBF kernel. The features where
weighted with TFIDF. In order to compensate for
different document length, each feature vector was
normalized to unit length. After some param-
eter tuning iterations, the SVM model performs
really well with a microaveraged F11 value of
0.9437. This indicates high overall accuracy, and
the macroaveraged F1 value of 0.9341 shows, that
also lower frequency categories are predicted quite
reliably. The detailed results are shown in table 2.

Thus the first step in the cascaded model, i.e.
the selection of the work-type specific segment

1F1 = 2×precision×recall
precision+recall
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predicted rec. prec. F1
true CA CL CN DS ER HP OR
CA 1966 1882 53 5 6 0 9 11 0.9573 0.9787 0.9679
CL 24151 25 23675 217 13 18 155 48 0.9803 0.9529 0.9664
CN 5590 1 447 4695 7 17 413 10 0.8399 0.8814 0.8601
DS 3319 1 37 8 3241 2 27 3 0.9765 0.9818 0.9792
ER 878 0 90 7 10 754 13 4 0.8588 0.9425 0.8987
HP 6789 4 512 393 22 7 5838 13 0.8599 0.9040 0.8814
OR 4534 10 31 2 2 2 3 4484 0.9890 0.9805 0.9847

microaveraged 0.9437
macroaveraged 0.9341

Table 2: Work-Type categorization results

topic model, yields reliable performance.

3.2 Segment Topic Classification

In contrast to work-type categorization, where
whole reports need to be categorized, the identifi-
cation of segment topics requires a different setup.
Since not only the topic labels are to be deter-
mined, but also segment boundaries are unknown
in the classification task, each token constitutes
an example under this setting. Segments are then
contiguous text regions with the same topic label.
It is clearly not enough to consider only features
of the token to be classified, thus we include also
contextual and positional features.

3.2.1 Feature and Kernel Selection
In particular, we employ a sliding window ap-
proach, i.e. for each data set not only the token to
be classified, but also the 10 preceding and the 10
following tokens are considered (at the beginning
or towards the end of a report, context is reduced
appropriately). This window defines the text frag-
ment to be used for classifying the center token,
and features are collected from this window again
as described in section 2.2. Additionaly, the rela-
tive position (ranging from -1 to +1) of the center
token is used as a feature.

The rationale behind this setup is that

1. usually topics in medical reports follow an or-
dering, thus relative position may help.

2. holding features also from adjacent segments
might also be helpful since topic succession
also follows typical patterns.

3. a sufficiently sized context might also smooth
label assignment and prevent label oscilla-

tion, since the classification features for ad-
jacent words overlap to a great deal.

A second choice to be made was the selection
of the kernel best suited for this particular classifi-
cation problem. In order to get an impression, we
made a preliminary mini-experiment with just 5
reports each for training (4341 datasets) and test-
ing (3382 datasets), the results of which are re-
ported in table 3.

Accuracy
Feature Weight linear RBF
TFIDF 0.4977 0.3131
TFIDF normalized 0.5544 0.6199
Binary 0.6417 0.6562

Table 3: Preliminary Kernel Comparison

While these results are of course not significant,
two things could be learned from the preliminary
experiment:

1. linear kernels may have similar or even better
performance,

2. training times with LIBSVM with a large
number of examples may soon get infeasible
(we were not able to repeat this experiment
with 50 reports due to excessive runtime).

Since LibSVM solves linear and nonlinear
SVMs in the same way, LibSVM is not particu-
larly efficient for linear SVMs. Therefore we de-
cided to switch to Liblinear (Fan et al., 2008), a
linear classifier optimized for handling data with
millions of instances and features2.

2Indeed, training a model from 669 reports (463994 ex-
amples) could be done in less then 5 minutes!
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predicted class label (#)
# True Label Total F1 . . . 3 4 . . . 14 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Diagnosis 40871 0.603 . . . 24391 2864 . . . 8691 . . .
4 DiagAndPlan 21762 0.365 . . . 5479 6477 . . . 7950 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
14 Plan 31729 0.598 . . . 5714 3419 . . . 21034 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4: Confusion matrix (part of)

3.2.2 Segment Topic Classification Results
Experiments were performed on a randomly se-
lected subset of reports from the “Consultations”
work-type (1338) that were available both in cor-
rected form and in raw ASR output form. An-
notations were constructed for the corrected tran-
scripts, as described in section 2.3, transfer of la-
bels to the ASR output was performed as shown in
section 2.3.2.

Both data sets were split into training and test
sets of equal size (669 reports each), experiments
with different feature weighting schemes have
been performed on both corrected data and ASR
output. The overall results are shown in table 5.

corrected reports ASR output
micro- macro- micro- macro-

Feature weights avg.F1 avg.F1 avg.F1 avg.F1
TFIDF 0.7553 0.5178 0.7136 0.4440
TFIDF norm. 0.7632 0.3470 0.7268 0.3131
Binary 0.7693 0.4636 0.7413 0.3953

Table 5: Segment topic classification results

Consistently, macroaveraged F1 values are
much lower than their microaveraged counterparts
indicating that low-frequency topic labels are pre-
dicted with less accuracy.

Also, segment classification works better with
corrected reports than with raw ASR output. The
reason for that behaviour is

1. ASR data are more noisy due to recognition
errors, and

2. while in corrected reports appropriate section
headers are available (not as header, but the
words) this is not necessarily the case in ASR
output (also the wording of dictated headers
and written headers may be different).

A general note on the used topic labels must
also be made: Due to the nature of our data it
was inevitable to use topic labels that overlap in

some cases. The most prominent example here is
“Diagnosis”, “Plan”, and “Diagnosis and Plan”.
The third label clearly subsumes the other two, but
in the data available the physicians often decided
to dictate diagnoses and the respective treatment
in an alternating way, associating each diagnosis
with the appropriate plan. This made it necessary
to include all three labels, with obvious effects that
could easily seen when inspecting the confusion
matrix, a part of which is shown in table 4.

When looking at the misclassifications in these
3 categories it can easily be seen, that they are pre-
dominantly due to overlapping categories.

Another source of problems in the data is the
skewed distribution of segment types in the re-
ports. Sections labelled with one of the four la-
bel categories that weren’t predicted at all (Chief-
Complaints, Course, Procedure, and Time, cf. ta-
ble 6) occur in less than 2% of the reports or are
infrequent and extremely short. This fact had, of
course, undesirable effects on the macroavered F1
scores. Additional difficulties that are similar to
the overlap problem discussed above are strong
thematic similarities between some section types
(e.g., Findings and Diagnosis, or ReasonForEn-
counter and HistoryOfPresentIllness) that result in
a very similar vocabulary used.

Given these difficulties due to the data, the re-
sults are encouraging. There is, however, still
plenty of room left for improvement.

3.3 Improving Topic Classification

Liblinear does not only provide class label pre-
dictions, it is also possible to obtain class proba-
bilities. The usual way then to predict the label
is to choose the one with the highest probability.
When analysing the errors made by the segment
topic classification task described above, it turned
out that often the correct label was ranked second
or third (cf. table 6). Thus, the idea of just taking
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correct prediction in
Label count best best 2 best 3
Allergies 3456 29.72 71.64 85.21
ChiefComplai 697
Course 30
Diagnosis 43565 64.69 83.29 91.37
DiagAndPlan 19409 35.24 70.45 86.81
DiagnosticSt 35554 82.47 91.34 93.05
Findings 791 0.38 1.26
Habits 2735 7.31 32.69 41.76
HistoryOfPre 122735 92.26 97.55 98.20
Medication 14553 85.87 93.38 95.22
Neurologic 5226 54.08 86.93 89.19
PastHistory 43775 71.13 86.26 88.82
PastSurgical 5752 49.32 78.88 84.47
PhysicalExam 86031 93.56 97.01 97.57
Plan 36476 62.57 84.63 94.65
Practitioner 1262 55.07 76.78 82.73
Procedures 109
ReasonForEnc 15819 25.42 42.35 43.47
ReviewOfSyst 29316 79.81 89.90 91.87
Time 58
Total 467349 76.93 88.65 92.00

Table 6: Ranked predictions

the highest ranked class label could be possibly
improved by a more informed choice.

While the segment topic classifier already takes
contextual features into account, it has still no in-
formation on the classification results of the neigh-
boring text segments. However, there are con-
straints on the length of text segments, thus, e.g.
a text segment of length 1 with a different topic la-
bel than the surrounding text is highly implausible.
Furthermore, there are also regularities in the suc-
cession of topic labels, which can be captured by
the monostratal local classification only indirectly
– if at all.

A look at figure 4 exemplifies how a bet-
ter informed choice of the label could result in
higher prediction accuracy. The segment labelled
“PastHistory” correctly ends 4 tokens earlier than
predicted, and, additionally, this label erroneously
is predicted again for the phrase “progressive
weight loss”. The correct label, however, has still
a rather high probability in the predicted label
distribution. By means of stacking an additional
classier onto the first one we hope to be able to
correct some of the locally made errors a posteri-
ori.

The setup for the error correction classifier
we experimented with was as follows (it was
performed only for the segment topic classi-
fier trained on ASR output with binary feature
weights):

1. The training set of the classifier was clas-

Label probabilities (%)
True Label Predicted ... 10 11 12 ... 17 18
. . .

= PastHistory [11] age PastHistory 0 95 0 0 0
= PastHistory [11] 63 PastHistory 0 95 0 0 0
= PastHistory [11] and PastHistory 0 95 0 0 1
= PastHistory [11] his PastHistory 0 95 0 0 1
= PastHistory [11] father PastHistory 0 88 0 0 9
= PastHistory [11] died PastHistory 0 90 0 0 8
= PastHistory [11] from PastHistory 0 84 0 0 14
= PastHistory [11] myocardial infa PastHistory 0 81 0 0 17
= PastHistory [11] at PastHistory 0 77 0 0 20
= PastHistory [11] age PastHistory 0 78 0 1 19
= PastHistory [11] 57 PastHistory 0 78 0 1 19
= PastHistory [11] period PastHistory 0 78 0 1 19
- ReviewOfSyst[18] review PastHistory 0 76 0 1 20
- ReviewOfSyst[18] of PastHistory 0 76 0 1 21
- ReviewOfSyst[18] systems PastHistory 0 78 0 0 19
- ReviewOfSyst[18] he PastHistory 1 57 0 1 37
= ReviewOfSyst[18] has ReviewOfSyst 1 32 0 1 58
= ReviewOfSyst[18] had ReviewOfSyst 1 32 0 1 58
- ReviewOfSyst[18] progressive PastHistory 1 49 0 1 42
- ReviewOfSyst[18] weight loss PastHistory 1 60 0 1 32
= ReviewOfSyst[18] period ReviewOfSyst 1 31 0 0 62
= ReviewOfSyst[18] his ReviewOfSyst 1 13 0 1 81
= ReviewOfSyst[18] appetite ReviewOfSyst 1 13 0 1 81

. . .

Figure 4: predicted label probabilites

sified, and the predicted label probabilities
were collected as features.

2. Again, a sliding window (with different
sizes) was used for feature construction. Fea-
tures were set up for each label at each win-
dow position and the respective predicted la-
bel probability was used as its value.

3. A linear classifier was trained on these fea-
tures of the training set

4. This classifier was applied to the results of
classifying the test set with the original seg-
ment topic classifier.

Three different window sizes were used on the
corrected reports, only one window was applied
on ASR output (cf. table 7). As can be seen, each

corrected reports ASR output
micro- macro- micro- macro-

context window avg.F1 avg.F1 avg.F1 avg.F1
No correction 0.7693 0.4636 0.7413 0.3953
[−3, +3] 0.7782 0.4773 - -
[−6, +0] 0.7798 0.4754 - -
[−3, +4] 0.7788 0.4769 0.7520 0.4055

Table 7: A posteriori correction results

context variant improved on both microaveraged
and macroaveraged F1 in a range of 0,9 to 1.4 per-
cent points. Thus, stacked error correction indeed
is possible and able to improve classification re-
sults.
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4 Conclusion and Outlook

We have presented a 3 step approach to seg-
ment topic identification in dictations of medi-
cal reports. In the first step, a categorization of
work-type is performed on the whole report us-
ing SVM classification employing semantic fea-
tures. The categorization model yields good per-
formance (over 94% accuracy) and is a prerequi-
site for subsequent application of work-type spe-
cific segment classification models.

For segment topic detection, every word was as-
signed a class label based on contextual features
in a sliding window approach. Here also semantic
features were used as a means for feature gener-
alisation. In various experiments, linear models
using binary feature weights had the best perfor-
mance. A posteriori error correction via classifier
stacking additionally improved the results.

When comparing our results to the results of
Jancsary et al. (2008), who pursue a multi-level
segmentation aproach using conditional random
fields optimizing over the whole report, the locally
obtained SVM results cannot compete fully. On
label chain 2, which is equivalent to segment top-
ics as investigated here, Jancsary et al. (2008) re-
port an estimated accuracy of 81.45 ± 2.14 % on
ASR output (after some postprocessing), whereas
our results, even with a posteriori error correction,
are at least 4 percent points behind. This is prob-
ably due to the fact that the multi-level annotation
employed in Jancsary et al. (2008) contains addi-
tional information useful for the learning task, and
constraints between the levels improve segmenta-
tion behavior at the segment boundaries. Never-
theless, our approach has the merit of employing a
framework that can be trained in a fraction of the
time needed for CRF training, and classification
works locally.

An investigation on how to combine these two
complementary approaches is planned for the fu-
ture. The idea here is to use the probability distri-
butions on labels returned by our approach as (ad-
ditional) features in the CRF model. It might be
possible to leave out some other features currently
employed in return, thereby reducing model com-
plexity. The benefit we hope to get by doing so are
shorter training time for CRF training, and, since,
contrary to CRFs, SVMs are a large margin classi-
fication method, hopefully the CRF model can be
improved by the present approach.
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Abstract 

Being confronted with spontaneous 
speech, our current annotation scheme 
requires alterations that would reflect the 
abundant use of non-sentential fragments 
with clausal meaning tightly connected to 
their context, which do not systematically 
occur in written texts. The purpose of this 
paper is to list the common patterns of 
non-sentential fragments and their con-
texts and to find a smooth resolution of 
their semantic annotation.  

1 Introduction 

Spontaneous speech, even assuming a perfect 
ASR, is hard to parse because of the enormous 
occurrence of disfluencies and syntactic devia-
tions. Some disfluencies can be regarded as 
speaker’s errors, which are being corrected or 
remain uncorrected during the speaker’s turn. 
Such disfluencies are e.g.: 

• stammering (We w-went there 
to-together)    

• restart with or without an interregnum 
(John no sorry Jane was 
there, too) 

• repetitions (So you like you 
like drinking) 

• hesitation sounds, long silence, fillers, 
filler phrases, etc. (EH so ... you 
kinda like you know HMM 
drinking)  

In NLP, such disfluencies can be removed be-
fore any syntactic or semantic processing since 

they cause confusion without adding any seman-
tic information. In machine-learning tasks, dis-
fluency is sought to be automatically removed by 
learning from disfluency-marked corpora or cor-
pora of text edits (Hajič et al., 2008; Fitzgerald 
and Jelinek, 2008) to smooth the input text into 
written-language standard before parsing. 

On the other hand, there is another sort of dis-
fluencies, which do not disturb the course of the 
dialog, namely contextual ellipsis: even though 
most people remember being taught at school to 
answer questions with a complete sentence, not 
even educated speakers performing a sophisti-
cated dialog always do so, and yet they do not 
sound incorrect. Clearly, an extensive use of el-
lipsis is an inherent feature of verbal interaction 
between speakers, which is usually smoothly 
perceived by the listener and thus all right in its 
place.  

Such “fragmentary utterances that do not have 
the form of a full sentence according to most tra-
ditional grammars, but that nevertheless convey 
a complete clausal meaning” are called non-
sentential utterances (NSUs)1. A consistent 
reconstruction of their clausal meaning is inevi-
table for any semantic representation of dialogs. 
The present paper describes a tentative semantic 
representation of NSUs in the Functional Gen-
erative Description (FGD) framework (Sgall et 
al., 1986). 

                                                 
1 The term NSU as well as its definition comes from 

Fernández et al., 2007. 
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2 NSUs in PhotoPal Dialogs 

2.1 NSU taxonomy 

Fernández et al. (2007) introduce a taxonomy of 
NSUs based on the dialog transcripts from BNC 
(Burnard, 2000). They stress that NSUs are not 
limited to question-answer pairs but can appear 
as responses to any preceding utterance. Our ob-
servations confirm this. NSUs are highly am-
biguous without context. Consider the following 
example:  

A: I left it on the table. 
B: On the table. 
 I confirm/I understand 
what you say: you left it on 
the table. 

A: Where did you leave it? 
B: On the table. 
 I answer your question: I 
left it on the table. 

A: I think I put it er... 
B: On the table. 
 I know in advance what 
you want to say or what you 
would want to say if you 
knew that. 

A: Should I put it back on 
the shelf? 
B: On the table. 
 No, don’t put it back on 
the shelf, but put it on the 
table instead.  

If reconstructed into a complete sentence, the  
NSU would get different shapes in the respective 
contexts (see the paraphrases in italics). 

The NSU taxonomy proposed by Fernández et 
al. (2007) divides the NSUs into 15 classes: 

• Clarification Ellipsis (Two people 
[did you say were there]?) 

• Check Question ([...]Okay?) 

• Reprise Sluice (What[did you say 
]?) 

• Direct Sluice (What?/Who?/When?) 

• Short Answer [to wh-question] (My 
Aunty Peggy.) 

• Plain Affirmative Answer / Rejection 
(Yes. / No.) 

• Repeated Affirmative Answer (Very 
loud, yes.) 

• Helpful Rejection (No, Billy.) 

• Plain Acknowledgement (Mhm.) 

• Repeated Acknowledgement (part of the 
preceding segment repeated) 

• Propositional and Factual Modifiers 
(Probably not. / Oh, 
great!) 

• Bare Modifier Phrase (adjuncts modify-
ing a contextual utterance) 

• Conjunct (fragments introduced by con-
junctions) 

• Filler (fragments filling a gap left by a 
previous unfinished utterance) 

2.2 PhotoPal Dialog Corpora 

Our goal is semantically annotated spoken con-
versations between two speakers over a family 
album. One English corpus (NAP) and one 
Czech corpus have been built within the Com-
panions project (www.companions-project.org) 
as gold-standard data for a machine-learning 
based dialog system (“PhotoPal”) that should be 
able to handle a natural-like conversation with a 
human user, helping to sort the user’s photo-
graphs and encouraging the user to reminisce. 
The PhotoPal is supposed to keep track of the 
mentioned entities as well as to make some in-
ferences. 

The NAP corpus (Bradley et al., 2008) com-
prises about 200k tokens of literal manual tran-
scriptions of audio recordings, which are inter-
linked with a multiple disfluency annotation 
(Cinková et al., 2008). The Czech PhotoPal cor-
pus is still growing (Hajič et al., 2009), compris-
ing about 200k tokens at the moment (including 
double annotation).  

 To ease the understanding, all authentic cor-
pus examples will be taken from the English 
NAP corpus.  However, most examples in this 
paper are taken from Fernández et al. (2007) and 
modified when needed to illustrate a contrast. 

3 Semantic representation of NAP 
NSUs  

3.1 Functional Generative Description  

The Functional Generative Description (FGD) is 
a stratified formal language description based on 
the structuralist tradition, developed since the 
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1960’s. The unique contribution of FGD is the 
so-called tectogrammatical representation (TR). 
It is being implemented in a family of semanti-
cally annotated treebanks. 

3.2 Tectogrammatical Representation 

Being conceived as an underlying syntactic rep-
resentation, the TR captures the linguistic mean-
ing of the sentence, which is its basic description 
unit. In the TR annotation, each sentence is rep-
resented as a projective dependency tree with 
nodes and edges. The attribute values include 
references to the analytical (surface-syntax) 
layer. Only content words are represented by 
nodes. Function words are represented as attrib-
ute values. Each node has a semantic label 
(“functor”), which renders the semantic relation 
of the given node to its parent node. The TR an-
notation captures the following aspects of text: 

• syntactic and semantic dependencies 

• argument structure (data interlinked with 
a lexicon) 

• information structure (topic-focus articu-
lation) 

• grammatical and contextual coreference 

• ellipsis restoration. 

Fig. 1 shows a sentence with restored ellipsis. 
The elided predicate in the second conjunct was 
copied from the first conjunct predicate (copied 
and generated nodes have square shape). 
 

  
Fig.1 Mary prepared the lunch, and John [prepared] the 
dinner.  

3.3 Ellipsis Restoration and Contextual 
Coreference 

Assumingly, any tectogrammatical representa-
tion of NSUs is about the most appropriate reso-
lution of contextual ellipsis and coreference. 
TR distinguishes two types of ellipsis: 

• contextual ellipsis, i.e. ellipsis occurring 
when the lexical content of the omitted 
element is clear from the context and 
easily recoverable. The speaker omitted 
this element, since he considered its 
repetition unnecessary. 

• grammatical ellipsis, i.e. such ellipsis 
that occurs when the elided element can-
not appear on the surface for grammati-
cal reasons but is cognitively present in 
the meaning of the utterance (e.g. the 
unexpressed subject of controlled infini-
tives). 

Every occurrence of a given verb must corre-
spond to the appropriate lexicon frame. Any 
obligatory arguments missing must be filled in as 
node substitutes even if the node could be copied 
from the context. The substitutes have special 
lemmas according to their function.  

Fig. 2 illustrates a contextual ellipsis of a de-
pendent node. The tree represents the answer: He 
has [wrapped the book] to the ques-
tion: Has the shop assistant 
wrapped the book? In fact, the tree ren-
ders the sentence He has. To complete the ar-
gument structure frame of the verb wrap, the 
node book with the Patient semantic label is 
inserted into the frame in form of a node with the 
t-lemma substitute for personal pronoun 
(#PersPron, square node) exactly in the 
same way as the expressed he. The node-
constituting lexical verb wrap is copied from the 
previous sentence as a square node while has 
becomes its attribute value, since it is an auxil-
iary verb. The subject He is only converted into 
the #PersPron substitute (with appropriate 
values inside).  
 

 
Fig. 2 He has [wrapped the book].  
 
In the complete TR annotation, a contextual-
coreference arrow would lead from the 
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#PersPron nodes to their antecedent nodes in 
the previous sentence (to assistant and 
book, respectively). 

3.4 Basic Principles of  NSU Representation 
in TR 

The effort to reconstruct the clausal meaning of 
non-sentential utterances was motivated by the 
following basic assumptions: 

• The text contains utterance-response 
pairs. 

• NSU is the response to an utterance U2. 

• The utterance U has a finite-verb predi-
cate UPred with or without modifiers 
(arguments and adjuncts) UMods, which 
can be assigned functors. 

• Even UPred can be an elided predicate. 

• All NSUs (except interjections but incl. 
plain yes and no) contain an implicit 
(elided) predicate NSUPred. NSUPred is 
either identical with UPred, or it is an 
unknown verb, but we can imagine how 
it relates NSU and U. 

• NSU can be attached to a finite clause. 

• NSU inherits UPred along with all 
UMods. 

• When there is a semantic conflict, 
NSUMods overrule the inherited implicit 
UMods in NSU (repetition is also re-
garded as conflict). 

• NSUMod overrules UMod in the highest 
position possible in the subtree. 

3.5 TR Representation Elements for NSU 

This annotation introduced a new category into 
the annotation scheme. We called the category 
response_type and designed it in the same way as 
the coreference annotation. It is visualized as 
arrows of various colors pointing from NSUMod 
to UMod. Each type is indicated by a different 
color.  

The utterance-response pair consists of two 
parts: the antecedent utterance U and the re-
sponse NSU. The finite verb predicate UPred is 
typically the effective root of U, which has the 
functor PRED, but not necessarily. On the other 
hand, the elided predicate of NSU, called NSU-
                                                 
2 NSU is regarded as a response even if U is a statement and 
NSU a question. 

Pred, is the effective root of NSU and has the 
functor PRED. Fig. 3 describes U in more detail. 

 

 
Fig 3. Utterance-response pair. 
 

Whenever the clausal meaning of NSU can be 
reconstructed by using the copy of UPred as 
predicate, the t-lemma substitute for NSUPred is 
#VerbPron, which is normally also used for 
the pro-form do (dummy-do). NSUPred is al-
ways linked to UPred by a contextual-
coreference arrow. When the clausal meaning of 
NSU cannot be directly reconstructed by using 
the copy of UPred as the predicate, NSUPred is 
rendered as the coreference-less t-lemma substi-
tute #EmpVerb, which is normally used for 
cases of grammatical ellipsis of the predicate. 
#EmpVerb has no obligatory arguments and 
inherits no modifiers from anywhere. An NSU-
Pred that has coreference inherits all modifiers 
from UPred, but these are not explicitly copied to 
NSUPred. NSUPred’s own arguments are re-
garded as added to the inherited modifiers. 
Hence the NSU “Peggy.” does not have to be 
explicitly reconstructed as “That is 
Peggy.” (the left figure in Fig.4), but just with 
the coreferential predicate (the right figure). 

 

 
  Fig. 4 Response NSU: Full explanative reconstruction 
(left) and the actual annotation resolution (right).
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Obviously, NSUMods can be in a semantic 
conflict with the inherited UMods. These cases 
are marked by several types of arrows leading 
from the given NSUMod to the conflicting 
UMod in the antecedent utterance U. We distin-
guish four types of semantic conflict between 
NSUMod and UMod: 

• overruling 

• rephrasing 

• wh-path 

• other 

3.6  Overruling 

Overruling is the most typical semantic conflict 
where an NSUMod gives exactly the same type 
of information, but relating to a different entity 
in the real world. If NSU is to be expressed as a 
clause that uses the predicate of U, the conflict-
ing UMod is erased (or prevented from inherit-
ing) by the explicitly present NSUMod. E.g. in 
the following utterance-response pair:  

U: I’m in a little place 
called Hellenthorpe. 
NSU: Ellenthorpe.  
NSU-paraphrase: You are in a 
little place called Hellen-
thorpe Ellenthorpe. 

 Even the explicit repetition is regarded as over-
ruling: 

U: There were just two peo-
ple in the class. 
NSU: Two people?.  
NSU-paraphrase: Were there 
just two people two people 
in the class? 

In the tree representation, the crossed text would 
be visible only in the tree of U, and an overrul-
ing-reference arrow would point at them from 
the relevant NSUMod. This conception prevents 
doubling the same modifier in NSU. 

3.7 Rephrasing 

When an NSUMod is rephrasing an UMod, then 
UMod and NSUMod refer to the same entity in 
the real world, or one refers to the entire entity 
whereas the other one refers only to its part, etc., 
using a different wording. The NSUMod-UMod 
relation marked as rephrasing is meant to be-

come the starting material for bridging anaphora 
research. Example:  

U: There were just two peo-
ple in the class. 
NSU: Just two students? 
NSU-paraphrase: Were there 
just two people two students 
in the class? 

It is also applied when the context is unambigu-
ous for the speakers but ambiguous for the anno-
tator, who lacks their background knowledge of 
the given situation. In the following example the 
annotator may not know whether this part 
or just the end of this part should come up, 
because he does not see the speakers pointing at 
the crane, but it is rather evident that it is not a 
completely different part of the crane but some-
thing at the end of it: 

U1: You lift the crane, so 
this part comes up. 
NSU1/U2: The end? 
NSU1/U2-paraphrase1: Do you 
mean the end comes up? 
NSU1/U2-paraphrase2: Do you 
mean the end of this part 
comes up? 
NSU2/U3: Just this. 
NSU3: Okay. 

The category “Other” (see below) is though 
strongly preferred in ambiguous cases. 

 

3.8 Wh-path3 

The wh-path relation is the relation between the 
modifier that is focused by a wh-word in an U 
that is a direct or indirect question and a NSU-
Mod that makes a good answer.  

Overruling as well as rephrasing assume that 
the conflicting modifiers have the same functor.  
The wh-path category is different from the others 
in that it allows setting in conflict a UMod with 
an NSUMod with different semantic labels 
(functors). Our tentative annotation suggests that 
regular patterns will occur; e.g. with the question 
about direction/location. When asking where, 
speakers often get replies that would actually 
match questions with whom (functor ACMP) 
or with which intention (functor INTT, 

                                                 
3 The term was found in Hajičová (1995) and reused 
by placing it in context with other response types. 
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e.g., go shopping), and yet they are per-
ceived as good answers.  

The relation between an utterance U which is 
a statement and an NSU which is a sluice is not 
wh-path but overruling. Cf.: 

U: Where would you like to 
go tomorrow? 
NSU: Downtown with Mary, to 
do some shopping. (wh-path) 

U: I would like to go down-
town with Mary tomorrow. 
NSU: Where? (overruling) 

Sluices are not regarded as ambiguous in the 
sense whether referring to the same entity as the 
corresponding wh-word or not. They are not eli-
gible for the relation “other” (see next section). 

3.9 Other 

“Other” is meant for inherently ambiguous cases 
of conflicting UMod and NSUMod where it is 
impossible to decide whether NSUMod is re-
phrasing or overruling UMod. Textual ambiguity 
arises when NSU is a question that does not find 
a proper answer in the context: 

U1: He’s got the best room. 
NSU1/U2: Room 128? 
NSU1/U2-paraphrase: Has he 
got the best room Room 128? 
U3: I don’t know which num-
ber. 

3.10 TR-Conditioned Criteria for NSU types 

The original idea of the tectogrammatical repre-
sentation of NSU was to adopt the taxonomy 
proposed by Fernández et al. (2007). However, 
the rules of TR made some classes collapse as 
they yielded identical tectogrammatical tree 
structures. The main criteria for tectogrammati-
cal representation of NSU were the following: 

Is the NSU a phrase or just an interjection? (Cf. 
Fig. 5 and 6) 

• If it is a content word or a phrase, it 
should be reconstructed into a clause by 
adding a predicate. 

• If it is an interjection except yes and no 
(and their colloquial variants), no predi-
cate is added. 

• If it is yes/no (and variants), a predi-
cate should be added.  

• If the interjection acts as a backchannel, 
yes and no make no exception. 

 
Fig. 5 Interjection 
 

 
Fig. 6 Is this John? No, Billy [This is not John, this is Billy.] 
 
 

Can we copy UPred to make NSU a clause?

• If we can, NSUPred has the t-lemma 
substitute #VerbPron and a corefer-
ential arrow points from NSUPred to 
UPred.  

• If we cannot, NSUPred has the t-lemma 
#EmpVerb with no coreferential arrow. 
No response type arrows point from 
NSUMods to UMods. In specific cases 
the coreference to UPred leads from 
elsewhere (Fig.7). 
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Fig. 7 Check question/Evaluative response related to text: 
U: I am allowed to record you.  
NSU (same speaker): Okay? 
NSU-paraphrase: Is it (that I’m allowed 
to record you) okay?  
or 
U: I am allowed to record you. 
NSU (turn switch): Okay.  
NSU-paraphrase: It <is> okay that you 
are allowed to record me.  
 

3.11 More Examples of U-NSU relation reso-
lution 

Fernández et al. (2007) distinguish two types of 
sluice: the direct and the reprise sluice. In TR, 
each has a different semantic representation. The 
direct sluice has the coreferential predicate while 
the reprise sluice, which can be paraphrased as 
What did you mean by saying 
this?,  has the empty-verb predicate and the 
wh-word gets the functor EFF, which is normally 
assigned to what is being said in the argument 
structure pattern of verbs of saying (Fig. 8). 

 

 
Fig. 8 Reprise sluice 
 
Fig. 9 shows a sentence with wh-path linking 
modifiers with different functors. 

 
Fig. 9 Wh-path linking Mods with different functors 
 
U: Where would you like to go tomorrow? 
NSU: Shopping with Mary. 
NSU-paraphrase: Tomorrow I would like to 
go shopping with Mary. 
 
Choice questions (Fig.10) represent an interest-
ing example in which one NSUMod can enter 
different relations to different UMods. The 
NSUMod beer overrules the coordinated UMod 
Coke or Pepsi, and at the same time it is 
connected with the wh-question Which do 
you like to drink? by wh-path. 

 

  
Fig. 10 Choice question.  
 
U: Which do you like to drink: Coke or 
Pepsi? 
NSU: Beer. 
NSU-paraphrase: I like to drink beer. 

 
Seeing the many rephrasing cases in the data, 

which are supposed to be subject to further 
anaphora annotation (bridging etc.), we had to 
ask the question whether the boundary between 
response_type and coreference can be reliably 
determined. We found good evidence in the 
made-up but not unlikely example below (Fig. 
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11). In this context, him will be coreferential 
with Paul and her will be coreferential with 
Mary. On the other hand, him will overrule 
Mary and her will overrule Paul (only the 
relations of him are marked in the figure). 

 

 
Fig. 11 Coreference vs. response type 

3.12 Current and Future Work 

The proposed enhancement of the annotation 
scheme has been tested on a corpus of approx. 
200 NSUs with context manually extracted from 
the NAP transcripts as well as on example sen-
tences from Fernández et al. (2007) and many 
sentences obtained by their modification per-
formed in order to get potentially difficult coun-
terexamples. As this is still a preparatory work, 
neither the inter-annotator agreement nor any 
other evaluation could be done so far. 

In the next future, parts of the spoken corpora 
should get tectogrammatical parsing. The manual 
annotation is supposed to adopt this new feature 
of the annotation scheme, and we will try to in-
corporate it into our statistically trained auto-
matic parsing tools.  
   

Conclusion 

The confrontation of our current annotation 
scheme with spoken dialog data has raised issues 
of ellipsis restoration and textual coreference in 
non-sentential utterances. We have found com-
mon relations between non-sentential utterances 
and their contexts, and we have integrated them 
into our semantic annotation scheme without 
violating its general principles. A tentative man-
ual annotation of these relations in a small corpus 
suggests that such annotation is feasible. Further 
investigation on larger data along with machine-
learning experiments is intended. 
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Abstract

We are interested in extracting semantic
structures from spoken utterances gener-
ated within conversational systems. Cur-
rent Spoken Language Understanding sys-
tems rely either on hand-written seman-
tic grammars or on flat attribute-value se-
quence labeling. While the former ap-
proach is known to be limited in coverage
and robustness, the latter lacks detailed re-
lations amongst attribute-value pairs. In
this paper, we describe and analyze the hu-
man annotation process of rich semantic
structures in order to train semantic statis-
tical parsers. We have annotated spoken
conversations from both a human-machine
and a human-human spoken dialog cor-
pus. Given a sentence of the transcribed
corpora, domain concepts and other lin-
guistic features are annotated, ranging
from e.g. part-of-speech tagging and con-
stituent chunking, to more advanced anno-
tations, such as syntactic, dialog act and
predicate argument structure. In particu-
lar, the two latter annotation layers appear
to be promising for the design of complex
dialog systems. Statistics and mutual in-
formation estimates amongst such features
are reported and compared across corpora.

1 Introduction

Spoken language understanding (SLU) addresses
the problem of extracting and annotating the
meaning structure from spoken utterances in the
context of human dialogs (De Mori et al., 2008).
In spoken dialog systems (SDS) most used models
of SLU are based on the identification of slots (en-

∗This work was partially funded by the European Com-
mission projects LUNA (contract 33549) and ADAMACH
(contract 022593).

tities) within one or more frames (frame-slot se-
mantics) that is defined by the application. While
this model is simple and clearly insufficient to
cope with interpretation and reasoning, it has sup-
ported the first generation of spoken dialog sys-
tems. Such dialog systems are thus limited by the
ability to parse semantic features such as predi-
cates and to perform logical computation in the
context of a specific dialog act (Bechet et al.,
2004). This limitation is reflected in the type of
human-machine interactions which are mostly di-
rected at querying the user for specific slots (e.g.
“What is the departure city?”) or implementing
simple dialog acts (e.g. confirmation). We believe
that an important step in overcoming such limita-
tion relies on the study of models of human-human
dialogs at different levels of representation: lexi-
cal, syntactic, semantic and discourse.

In this paper, we present our results in address-
ing the above issues in the context of the LUNA
research project for next-generation spoken dialog
interfaces (De Mori et al., 2008). We propose
models for different levels of annotation of the
LUNA spoken dialog corpus, including attribute-
value, predicate argument structures and dialog
acts. We describe the tools and the adaptation of
off-the-shelf resources to carry out annotation of
the predicate argument structures (PAS) of spoken
utterances. We present a quantitative analysis of
such semantic structures for both human-machine
and human-human conversations.

To the best of our knowledge this is the first
(human-machine and human-human) SDS corpus
denoting a multilayer approach to the annotation
of lexical, semantic and dialog features, which al-
lows us to investigate statistical relations between
the layers such as shallow semantic and discourse
features used by humans or machines. In the fol-
lowing sections we describe the corpus, as well as
a quantitative analysis and statistical correlations
between annotation layers.
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2 Annotation model

Our corpus is planned to contain 1000 equally
partitioned Human-Human (HH) and Human-
Machine (HM) dialogs. These are recorded by
the customer care and technical support center of
an Italian company. While HH dialogs refer to
real conversations of users engaged in a problem
solving task in the domain of software/hardware
troubleshooting, HM dialogs are acquired with a
Wizard of Oz approach (WOZ). The human agent
(wizard) reacts to user’s spontaneous spoken re-
quests following one of ten possible dialog scenar-
ios inspired by the services provided by the com-
pany.

The above data is organized in transcrip-
tions and annotations of speech based on a new
multi-level protocol studied specifically within the
project, i.e. the annotation levels of words, turns1,
attribute-value pairs, dialog acts, predicate argu-
ment structures. The annotation at word level
is made with part-of-speech and morphosyntac-
tic information following the recommendations of
EAGLES corpora annotation (Leech and Wilson,
2006). The attribute-value annotation uses a pre-
defined domain ontology to specify concepts and
their relations. Dialog acts are used to annotate in-
tention in an utterance and can be useful to find
relations between different utterances as the next
section will show. For predicate structure annota-
tion, we followed the FrameNet model (Baker et
al., 1998) (see Section 2.2).

2.1 Dialog Act annotation

Dialog act annotation is the task of identifying
the function or goal of a given utterance (Sinclair
and Coulthard, 1975): thus, it provides a comple-
mentary information to the identification of do-
main concepts in the utterance, and a domain-
independent dialog act scheme can be applied.
For our corpus, we used a dialog act taxonomy
which follows initiatives such as DAMSL (Core
and Allen, 1997), TRAINS (Traum, 1996) and
DIT++ (Bunt, 2005). Although the level of granu-
larity and coverage varies across such taxonomies,
a careful analysis leads to identifying three main
groups of dialog acts:

1. Core acts, which represent the fundamen-
tal actions performed in the dialog, e.g. re-

1A turn is defined as the interval when a speaker is active,
between two pauses in his/her speech flow.

questing and providing information, or exe-
cuting a task. These include initiatives (often
called forward-looking acts) and responses
(backward-looking acts);

2. Conventional/Discourse management acts,
which maintain dialog cohesion and delimit
specific phases, such as opening, continua-
tion, closing, and apologizing;

3. Feedback/Grounding acts,used to elicit and
provide feedback in order to establish or re-
store a common ground in the conversation.

Our taxonomy, following the same three-fold
partition, is summarized in Table 1.

Table 1: Dialog act taxonomy

Core dialog acts
Info-request Speaker wants information from ad-

dressee
Action-request Speaker wants addressee to perform

an action
Yes-answer Affirmative answer
No-answer Negative answer
Answer Other kinds of answer
Offer Speaker offers or commits to perform

an action
ReportOnAction Speaker notifies an action is being/has

been performed
Inform Speaker provides addressee with in-

formation not explicitly required (via
an Info-request)

Conventional dialog acts
Greet Conversation opening
Quit Conversation closing
Apology Apology
Thank Thanking (and down-playing)

Feedback/turn management dialog acts
Clarif-request Speaker asks addressee for confirma-

tion/repetition of previous utterance
for clarification.

Ack Speaker expresses agreement with
previous utterance, or provides feed-
back to signal understanding of what
the addressee said

Filler Utterance whose main goal is to man-
age conversational time (i.e. dpeaker
taking time while keeping the turn)

Non-interpretable/non-classifiable dialog acts
Other Default tag for non-interpretable and

non-classifiable utterances

It can be noted that we have decided to retain
only the most frequent dialog act types from the
schemes that inspired our work. Rather than as-
piring to the full discriminative power of possible
conversational situations, we have opted for a sim-
ple taxonomy that would cover the vast majority
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of utterances and at the same time would be able
to generalize them. Its small number of classes is
meant to allow a supervised classification method
to achieve reasonable performance with limited
data. The taxonomy is currently used by the sta-
tistical Dialogue Manager in the ADAMACH EU
project (Varges et al., 2008); the limited number
of classes allows to reduce the number of hypoth-
esized current dialogue acts, thus reducing the di-
alogue state space.

Dialog act annotation was performed manually
by a linguist on speech transcriptions previously
segmented into turns as mentioned above. The an-
notation unit for dialog acts, is the utterance; how-
ever, utterances are complex semantic entities that
do not necessarily correspond to turns. Hence, a
segmentation of the dialog transcription into ut-
terances was performed by the annotator before
dialog act labeling. Both utterance segmentation
and dialog act labeling were performed through
the MMAX tool (Müller and Strube, 2003).

The annotator proceeded according to the fol-
lowing guidelines:

1. by default, a turn is also an utterance;

2. if more than one tag is applicable to an ut-
terance, choose the tag corresponding to its
main function;

3. in case of doubt among several tags, give pri-
ority to tags in core dialog acts group;

4. when needed, split the turn into several utter-
ances or merge several turns into one utter-
ance.

Utterance segmentation provides the basis not
only for dialog act labeling but also for the other
semantic annotations. See Fig. 1 for a dialog sam-
ple where each line represents an utterance anno-
tated according to the three levels.

2.2 Predicate Argument annotation
We carried out predicate argument structure an-
notation applying the FrameNet paradigm as de-
scribed in (Baker et al., 1998). This model
comprises a set of prototypical situations called
frames, the frame-evoking words or expressions
called lexical units and the roles or participants in-
volved in these situations, called frame elements.
The latter are typically the syntactic dependents of
the lexical units. All lexical units belonging to
the same frame have similar semantics and show

                                              PERSON-NAME 

Info: Buongiorno, sono   Paola.  
  

          GREETING    B._NAMED Name 
Good morning, this is Paola. 

 
Info-req: Come la posso aiutare? 
                      

                    Benefitted_party   ASSISTANCE 

How may I help you? 

 
                                                       CONCEPT         HARDWARE-COMPONENT 

Info: Buongiorno. Ho un problema con la stampante.  
 
          GREETING            PR._DESCRIPTION     Affected_device 

Good morning. I have a problem with the printer. 

 
           PART-OF-DAY   NEGAT. ACTION                ACTION 

Info: Da stamattina non   riesco più a  stampare 

                                       
                                    Problem 

Since this morning I can’t print. 

 
Info-req:   Mi  può  dire   nome e cognome per favore? 
 

              Addressee      TELLING               Message 

Can you tell me your name and surname, please? 

 
                                       PERSON-NAME  PERSON-SURNAME 

Answer: Mi chiamo  Alessandro  Manzoni. 
 

               Entity B._NAMED                   Name 

My name is Alessandro Manzoni. 

Figure 1: Annotated dialog extract. Each utterance
is preceded by dialog act annotation. Attribute-
value annotation appears above the text, PAS an-
notation below the text.

the same valence. A particular feature of the
FrameNet project both for English and for other
languages is its corpus-based nature, i.e. every el-
ement described in the resource has to be instanti-
ated in a corpus. To annotate our SDS corpus, we
adopted where possible the already existing frame
and frame element descriptions defined for the En-
glish FrameNet project, and introduced new def-
initions only in case of missing elements in the
original model.

Figure 1 shows a dialog sample with PAS an-
notation reported below the utterance. All lexi-
cal units are underlined and the frame is written in
capitals, while the other labels refer to frame el-
ements. In particular, ASSISTANCE is evoked by
the lexical unit aiutare and has one attested frame
element (Benefitted party), GREETING has no
frame element, and PROBLEM DESCRIPTION
and TELLING have two frame elements each.

Figure 2 gives a comprehensive view of the an-
notation process, from audio file transcription to
the annotation of three semantic layers. Whereas
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Figure 2: The annotation process

Audio file 

Turn segmentation & 

Transcription 

Utterance segmentation 

POS tagging Domain attribute 

annotation 

PAS annotation 

Dialog Act 

annotation 

Syntactic parsing 

attribute-value and DA annotation are carried
out on the segmented dialogs at utterance level,
PAS annotation requires POS-tagging and syntac-
tic parsing (via Bikel’s parser trained for Italian
(Corazza et al., 2007)). Finally, a shallow manual
correction is carried out to make sure that the tree
nodes that may carry semantic information have
correct constituent boundaries. For the annotation
of frame information, we used the Salto tool (Bur-
chardt et al., 2006), that stores the dialog file in
TIGER-XML format and allows to easily intro-
duce word tags and frame flags. Frame informa-
tion is recorded on top of parse trees, with target
information pointing to terminal words and frame
elements pointing to tree nodes.

3 Quantitative comparison of the
Annotation

We evaluated the outcome of dialog act and
PAS annotation levels on both the human-human
(henceforth HH) and human-machine (HM) cor-
pora by not only analyzing frequencies and occur-
rences in the separate levels, but also their interac-
tion, as discussed in the following sections.

3.1 Dialog Act annotation

Analyzing the annotation of 50 HM and 50 HH
dialogs at the dialog act level, we note that an
HH dialog is composed in average by 48.9±17.4
(standard deviation) dialog acts, whereas a HM
dialog is composed of 18.9±4.4. The difference
between average lengths shows how HH sponta-
neous speech can be redundant, while HM dialogs
are more limited to an exchange of essential infor-
mation. The standard deviation of a conversation

in terms of dialog acts is considerably higher in
the HH corpus than in the HM one. This can be ex-
plained by the fact that the WOZ follows a unique,
previously defined task-solving strategy that does
not allow for digressions. Utterance segmentation
was also performed differently on the two corpora.
In HH we performed 167 turn mergings and 225
turn splittings; in HM dialogs, only turn splittings
(158) but no turn mergings were performed.

Tables 2 and 3 report the dialog acts occurring
in the HM and HH corpora, respectively, ranked
by their frequencies.

Table 2: Dialog acts ranked by frequency in the
human-machine (HM) corpus

human-machine (HM)
DA count rel. freq.
Info-request 249 26.3%
Answer 171 18.1%
Inform 163 17.2%
Yes-answer 70 7.4%
Quit 60 6.3%
Thank 56 5.9%
Greet 50 5.3%
Offer 49 5.2%
Clarification-request 26 2.7%
Action-request 25 2.6%
Ack 12 1.3%
Filler 6 0.6%
No-answer 5 0.5%
Other, ReportOnAction 2 0.2%
Apology 1 0.1%
TOTAL 947

From a comparative analysis, we note that:

1. info-request is by far the most common dia-
log act in HM, whereas in HH ack and info
share the top ranking position;

2. the most frequently occurring dialog act in
HH, i.e. ack, is only ranked 11th in HM;

3. the relative frequency of clarification-request
(4,7%) is considerably higher in HH than in
HM.

We also analyzed the ranking of the most fre-
quent dialog act bigrams in the two corpora. We
can summarize our comparative analysis, reported
in Table 4, to the following: in both corpora,
most bigram types contain info and info-request,
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Table 3: Dialog acts ranked by frequency in the
human-human (HH) corpus

human-human (HH)
DA count rel. freq.
Ack 582 23.8%
Inform 562 23.0%
Info-request 303 12.4%
Answer 192 7.8%
Clarification-request 116 4.7%
Offer 114 4.7%
Yes-answer 112 4.6%
Quit 101 4.1%
ReportOnAction 91 3.7%
Other 70 2.9%
Action-request 69 2.8%
Filler 61 2.5%
Thank 33 1.3%
No-answer 26 1.1%
Greet, Apology 7 0.3%
TOTAL 2446

as expected in a troubleshooting system. How-
ever, the bigram info-request answer, which we
expected to form the core of a task-solving dia-
log, is only ranked 5th in the HH corpus, while 5
out of the top 10 bigram types contain ack. We
believe that this is because HH dialogs primarily
contain spontaneous information-providing turns
(e.g. several info info by the same speaker) and
acknowledgements for the purpose of backchan-
nel. Instead, HM dialogs, structured as sequences
of info-request answers pairs, are more minimal
and brittle, showing how users tend to avoid re-
dundancy when addressing a machine.

Table 4: The 10 most frequent dialog act bigrams

human-machine (HM) human-human (HH)
info-req answer ack info
answer info-req info ack
info info-req info info
info-req y-answer ack ack
sentence beginning greet info-req answer
greet info info info-req
info quit info-req y-answer
offer info ack info-req
thank info answer ack
y-answer thank quit sentence end

3.2 Predicate Argument annotation

We annotated 50 HM and 50 HH dialogs with
frame information. Differently from the English
FrameNet database, we didn’t annotate one frame
per sentence. On the contrary, we identified all
lexical units corresponding to “semantically rele-
vant” verbs, nouns and adjectives with a syntac-
tic subcategorization pattern, eventually skipping
the utterances with empty semantics (e.g. dis-
fluencies). In particular, we annotated all lexical
units that imply an action, introduce the speaker’s
opinion or describe the office environment. We
introduced 20 new frames out of the 174 iden-
tified in the corpus because the original defini-
tion of frames related to hardware/software, data-
handling and customer assistance was sometimes
too coarse-grained. Few new frame elements were
introduced as well, mostly expressing syntactic re-
alizations that are typical of spoken Italian.

Table 5 shows some statistics about the cor-
pus dimension and the results of our annotation.
The human-human dialogs contain less frame in-
stances in average than the human-machine group,
meaning that speech disfluencies, not present in
turns uttered by the WOZ, negatively affect the se-
mantic density of a turn. For the same reason, the
percentage of turns in HH dialogs that were manu-
ally corrected in the pre-processing step (see Sec-
tion 2.2) is lower than for HM turns, since HH di-
alogs have more turns that are semantically empty
and that were skipped in the correction phase. Be-
sides, HH dialogs show a higher frame variabil-
ity than HM, which can be explained by the fact
that spontaneous conversation may concern mi-
nor topics, whereas HM dialogs follow a previ-
ously defined structure, designed to solve soft-
ware/hardware problems.

Tables 6 and 7 report the 10 most frequent
frames occurring in the human-machine resp.
human-human dialogs. The relative frame fre-
quency in HH dialogs is more sparse than in HM
dialogs, meaning that the task-solving strategy fol-
lowed by the WOZ limits the number of digres-
sions, whereas the semantics of HH dialogs is
richer and more variable.

As mentioned above, we had to introduce and
define new frames which were not present in the
original FrameNet database for English in order to
capture all relevant situations described in the di-
alogs. A number of these frames appear in both
tables, suggesting that the latter are indeed rel-
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Table 5: Dialog turn and frame statistics for the
human-machine (HM) resp. human-human (HH)
corpus

HM HH
Total number of turns 662 1,997
Mean dialog length (turns) 13.2 39.9
Mean turn length (tokens) 11.4 10.8
Corrected turns (%) 50 39
Total number of annotations 923 1951
Mean number of frame annota-
tions per dialog

18.5 39.0

Mean number of frame elements
per frame annotation

1.6 1.7

evant to model the general semantics of the di-
alogs we are approaching. The most frequent
frame group comprises frames relating to infor-
mation exchange that is typical of the help-desk
activity, including Telling, Greeting, Contacting,
Statement, Recording, Communication. Another
relevant group encompasses frames related to the
operational state of a device, for example Be-
ing operational, Change operational state, Oper-
ational testing, Being in operation.

The two groups also show high variability of
lexical units. Telling, Change operational state
and Greeting have the richest lexical unit set,
with 11 verbs/nouns/adjectives each. Arriving
and Awareness are expressed by 10 different lexi-
cal units, while Statement, Being operational, Re-
moving and Undergo change of operational state
have 9 different lexical units each. The informal
nature of the spoken dialogs influences the com-
position of the lexical unit sets. In fact, they are
rich in verbs and multiwords used only in collo-
quial contexts, for which there are generally few
attestations in the English FrameNet database.

Similarly to the dialog act statistics, we also
analyzed the most frequent frame bigrams and
trigrams in HM and HH dialogs. Results are
reported in Tables 8 and 9. Both HH bigrams
and trigrams show a more sparse distribution and
lower relative frequency than HM ones, implying
that HH dialogs follow a more flexible structure
with a richer set of topics, thus the sequence of
themes is less predictable. In particular, 79%
of HH bigrams and 97% of HH trigrams occur
only once (vs. 68% HM bigrams and 82% HM
trigrams). On the contrary, HM dialogs deal with

Table 6: The 10 most frequent frames in the HM
corpus (* =newly introduced)

HM corpus
Frame count freq-%
Greeting* 146 15.8
Telling 134 14.5
Recording 83 8.9
Being named 74 8.0
Contacting 52 5.6
Usefulness 50 5.4
Being operational 28 3.0
Problem description* 24 2.6
Inspecting 24 2.6
Perception experience 21 2.3

Table 7: The 10 most frequent frames in the HH
corpus (* =newly introduced)

HH corpus
Frame count freq-%
Telling 143 7.3
Greeting* 124 6.3
Awareness 74 3.8
Contacting 63 3.2
Giving 62 3.2
Navigation* 61 3.1
Change operational state 51 2.6
Perception experience 46 2.3
Insert data* 46 2.3
Come to sight* 38 1.9

a fix sequence of topics driven by the turns uttered
by the WOZ. For instance, the most frequent
HM bigram and trigram both correspond to the
opening utterance of the WOZ:
Help desk buongiornoGREETING, sonoBEING NAMED

Paola, in cosa posso esserti utileUSEFULNESS?
(Good morning, help-desk service, Paola speaking, how can

I help you?)

3.3 Mutual information between PAS and
dialog acts

A unique feature of our corpus is the availabil-
ity of both a semantic and a dialog act annota-
tion level: it is intuitive to seek relationships in
the purpose of improving the recognition and un-
derstanding of each level by using features from
the other. We considered a subset of 20 HH and
50 HM dialogs and computed an initial analysis
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Table 8: The 5 most frequent frame bigrams

human-machine (HM) freq-%
Greeting Being named 17.1
Being named Usefulness 15.3
Telling Recording 12.9
Recording Contacting 10.9
Contacting Greeting 10.6
human-human (HH) freq-%
Greeting Greeting 4.7
Navigation Navigation 1.2
Telling Telling 1.0
Change op. state Change op. state 0.9
Telling Problem description 0.8

Table 9: The 5 most frequent frame trigrams

human-machine (HM) freq-%
Greeting Being named Usefulness 9.5
Recording Contacting Greeting 5.7
Being named Usefulness Greeting 3.7
Telling Recording Contacting 3.5
Telling Recording Recording 2.2
human-human (HH) freq-%
Greeting Greeting Greeting 1.6
Greeting Being named Greeting 0.5
Contacting Greeting Greeting 0.3
Navigation Navigation Navigation 0.2
Working on Greeting Greeting 0.2

of the co-occurrences of dialog acts and PAS. We
noted that each PAS tended to co-occur only with a
limited subset of the available dialog act tags, and
moreover in most cases the co-occurrence hap-
pened with only one dialog act. For a more thor-
ough analysis, we computed the weighted condi-
tional entropy between PAS and dialog acts, which
yields a direct estimate of the mutual information
between the two levels of annotation2.

2Let H(yj |xi) be the weighted conditional entropy of ob-
servation yj of variable Y given observation xi of variable
X:

H(yj |xi) = −p(xi; yj)log
p(xi; yj)

p(xi)
,

where p(xi; yj) is the probability of co-occurrence of xi and
yj , and p(xi) and p(yj) are the marginal probabilities of oc-
currence of xi resp. yj in the corpus. There is an obvious re-
lation with the weighted mutual information between xi and
yj , defined following e.g. (Bechet et al., 2004) as:

wMI(xi; yj) = p(xi; yj)log
p(xi; yj)

p(xi)p(yj)
.

(a) human-machine dialogs (filtering co-occurrences below 3)

(b) human-human dialogs (filtering co-occurrences below 5)

Figure 3: Weighted conditional entropy between
PAS and dialog acts in the HM (a) and HH corpus
(b). To lower entropies correspond higher values
of mutual information (darker color in the scale)

Our results are illustrated in Figure 3. In the
HM corpus (Fig. 3(a)), we noted some interesting
associations between dialog acts and PAS. First,
info-req has the maximal MI with PAS like Be-
ing in operation and Being attached, as requests
are typically used by the operator to get informa-
tion about the status of device. Several PAS de-
note a high MI with the info dialog act, includ-
ing Activity resume, Information, Being named,
Contacting, and Resolve problem. Contacting
refers to the description of the situation and of the
speaker’s point of view (usually the caller). Be-
ing named is primarily employed when the caller
introduces himself, while Activity resume usually
refers to the operator’s description of the sched-

Indeed, the higher is H(yj |xi), the lower is wMI(xi; yj).
We approximate all probabilities using frequency of occur-
rence.
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uled interventions.
As for the remaining acts, clarif has the high-

est MI with Perception experience and Statement,
used to warn the addressee about understanding
problems and asking him to repeat/rephrase an ut-
terance, respectively. The two strategies can be
combined in the same utterance, as in the utter-
ance: Non ho sentito bene: per favore ripeti cer-
cando di parlare più forte. (I haven’t quite heard
that, please repeat trying to speak up.).

The answer tag is highly informative with Suc-
cessful action, Change operational state, Becom-
ing nonfunctional, Being detached, Read data.
These PAS refer to the exchange of infor-
mation (Read data) or to actions performed
by the user after a suggestion of the system
(Change operational state). Action requests (act-
req) seem to be correlated to Replacing as it usu-
ally occurs when the operator requests the caller
to carry out an action to solve a problem, typically
to replace a component with another. Another fre-
quent request may refer to some device that the
operator has to test.

In the HH corpus (Fig. 3(b)), most of the PAS
are highly mutually informative with info: in-
deed, as shown in Table 3, this is the most fre-
quently occurring act in HH except for ack, which
rarely contain verbs that can be annotated by a
frame. As for the remaining acts, there is an easily
explainable high MI between quit and Greeting;
moreover, info-req denote its highest MI with
Giving, as in requests to give information, while
rep-action denotes a strong co-occurrence with
Inchoative attaching: indeed, interlocutors often
report on the action of connecting a device.

These results corroborate our initial observation
that for most PAS, the mutual information tends
to be very high in correspondence of one dialog
act type: this suggests the beneficial effect of in-
cluding shallow semantic information as features
for dialog act classification. The converse is less
clear as the same dialog act can relate to a span
of words covered by multiple PAS and generally,
several PAS co-occur with the same dialog act.

4 Conclusions

In this paper we have proposed an approach to
the annotation of spoken dialogs using seman-
tic and discourse features. Such effort is crucial
to investigate the complex dependencies between
the layers of semantic processing. We have de-

signed the annotation model to incorporate fea-
tures and models developed both in the speech
and language research community and bridging
the gap between the two communities. Our multi-
layer annotation corpus allows the investigation
of cross-layer dependencies and across human-
machine and human-human dialogs as well as
training of semantic models which accounts for
predicate interpretation.
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Abstract

Most dialog systems explicitly confirm
user-provided task-relevant concepts.
User responses to these system confirma-
tions (e.g. corrections, topic changes) may
be misrecognized because they contain
unrequested task-related concepts. In this
paper, we propose aconcept-specific lan-
guage model adaptation strategywhere
the language model (LM) is adapted to
the concept type(s) actually present in
the user’s post-confirmation utterance.
We evaluate concept type classification
and LM adaptation for post-confirmation
utterances in theLet’s Go! dialog system.
We achieve 93% accuracy on concept type
classification using acoustic, lexical and
dialog history features. We also show that
the use of concept type classification for
LM adaptation can lead to improvements
in speech recognition performance.

1 Introduction

In most dialog systems, the system explicitly con-
firms user-provided task-relevantconcepts. The
user’s response to a confirmation prompt such as
“leaving from Waterfront?” may consist of a sim-
ple confirmation(e.g. “yes”), a simplerejection
(e.g. “no”), acorrection(e.g. “no, Oakland”) or a
topic change(e.g. “no, leave at 7” or “yes, and go
to Oakland”). Each type of utterance has implica-
tions for further processing. In particular, correc-
tions and topic changes are likely to contain un-
requested task-relevant concepts that are not well
represented in the recognizer’s post-confirmation
language model (LM)1. This means that they are

1The word error rate on post-confirmationLet’s Go! utter-
ances containing a concept is 10% higher than on utterances

likely to be misrecognized, frustrating the user and
leading to cascading errors. Correct determina-
tion of the content of post-confirmation utterances
can lead to improved speech recognition, fewer
and shorter sequences of speech recognition er-
rors, and improved dialog system performance.

In this paper, we look at user responses to sys-
tem confirmation prompts CMU’s deployedLet’s
Go! dialog system. We adopt a two-pass recogni-
tion architecture (Young, 1994). In the first pass,
the input utterance is processed using a general-
purpose LM (e.g. specific to the domain, or spe-
cific to the dialog state). Recognition may fail
on concept words such as “Oakland” or “61C” ,
but is likely to succeed on closed-class words (e.g.
”yes”, ”no”, ”and”, ”but”, ”leaving”). If the ut-
terance follows a system confirmation prompt, we
then use acoustic, lexical and dialog history fea-
tures to determine the task-relatedconcept type(s)
likely to be present in the utterance. In the second
recognition pass, any utterance containing a con-
cept type is re-processed using a concept-specific
LM. We show that: (1) it is possible to achieve
high accuracy in determining presence or absence
of particular concept types in a post-confirmation
utterance; and (2) 2-pass speech recognition with
concept type classification and language model
adaptation can lead to improved speech recogni-
tion performance for post-confirmation utterances.

The rest of this paper is structured as follows: In
Section 2 we discuss related work. In Section 3 we
describe our data. In Section 4 we present our con-
cept type classification experiment. In Section 5
we present our LM adaptation experiment. In Sec-
tion 6 we conclude and discuss future work.

without a concept.
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2 Related Work

When a dialog system requests a confirmation,
the user’s subsequent corrections and topic change
utterances are particularly likely to be misrecog-
nized. Considerable research has now been done
on the automatic detection of spoken corrections.
Linguistic cues to corrections include the num-
ber of words in the post-confirmation utterance
and the use of marked word order (Krahmer et
al., 2001). Prosodic cues include F0 max, RMS
max, RMS mean, duration, speech tempo, and
percentage of silent frames(Litman et al., 2006;
Hirschberg et al., 2004; Levow, 1998). Discourse
cues include the removal, repetition, addition or
modification of a concept, the system’s dialog act
type, and information about error rates in the dia-
log so far (Krahmer et al., 2001; et al., 2002; Lit-
man et al., 2006; Walker et al., 2000). In our ex-
periments, we use most of these features as well as
additional lexical features.

We can use knowledge of the type or content
of a user utterance to modify system behavior.
For example, in this paper we use the concept
type(s) in the user’s utterance to adapt the recog-
nizer’s LM. It is now common practice to adapt
the recognizer to the type, context or style of in-
put speech (Bellegarda, 2004). LM adaptation
has been used to improve automatic speech recog-
nition performance in automated meeting tran-
scription (Tur and Stolcke, 2007), speech-driven
question answering (Stenchikova et al., 2008),
broadcast news recognition (Gildea and Hofmann,
1999), and spoken dialog systems (Tur, 2005).
LMs in dialog systems can be adapted to the di-
alog state (e.g. (Riccardi and Gorin, 2000; Esteve
et al., 2001)), the topic (Iyer and Ostendorf, 1999;
Gildea and Hofmann, 1999), or the speaker (Tur,
2007).

3 Data

In this experiment we use annotated dialog tran-
scripts and speech from theLet’s Go! sys-
tem, a telephone-based spoken dialog system that
provides information about bus routes in Pitts-
burgh (Raux et al., 2005). The data we used comes
from the first two months ofLet’s Go! system
operation in 2005 (2411 dialogs), and one month
in 2006 (1430 dialogs). This data has been tran-
scribed, and annotated by hand for concept types.

In order to provide the user with route in-
formation, Let’s Go! must elicit a departure

1 Sys Welcome to the CMU Let’s Go bus informa-
tion system. What can I do for you?

2 User I need to go from Oakland:p
ASR I need to go .from. can’t

3 Sys Where do you wanna leave from?
4 User to Waterfront:p

ASR told. .me. Waterfront
5 Sys Leaving from WATERFRONT . Did I get

that right?
6 User OAKLAND:p

ASR OAKLAND
7 Sys Leaving from OAKLAND . Did I get that

right?

Figure 1: Dialog extract fromLet’s Go!data. User
utterances are annotated with concept types (e.g.
:p for place)

location, a destination, a departure time, and
optionally a bus route number. Each concept
value provided by the user is explicitly con-
firmed by the system (see Figure 1). In the
annotated transcripts, the followingconceptsare
labeled: neighborhood, place, time,
hour, minute, time-of-day, and bus.
For our experiments we collapsed these concepts
into threeconcept types: time, placeandbus.

Let’s Go! has five dialog states corresponding
to the type of user utterance it expects:first-query,
next-query, yes-no, place and time. Its speech
recognizer uses dialog state-specific n-gram LMs
trained on user utterances from the 2005 data.
We focus on user utterances in response to sys-
tem confirmation prompts (theyes-nostate). Ta-
ble 1 shows statistics aboutyes-nostate utterances
in Let’s Go!. Table 2 shows a confusion matrix
for confirmation prompt concept type and post-
confirmation utterance concept type. This table
indicates the potential for misrecognition of post-
confirmation utterances. For example, in the 2006
dataset after a system confirmation prompt for a
bus, abusconcept is used in only 64% of concept-
containing user utterances.

In our experiments, we used the 2006 data to
train concept type classifiers and for testing. We
used the 2005 data to build LMs for our speech
recognition experiment.

4 Concept Classification

4.1 Method

Our goal is to classify each post-confirmation user
utterance by the concept type(s) it contains (place,
time, busor none) for later language-model adap-
tation (see Section 5). From the post-confirmation
user utterances in the 2006 dataset described in
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Event 2005 2006
num % num %

Total dialogs 2411 1430
Total yes-no confirms 9098 100 9028 100
Yes-no confirms with
a concept

2194 24 1635 18.1

Dialog State
Total confirm place
utts

5548 61 5347 59.2

Total confirm bus utts 1763 19.4 1589 17.6
Total confirm time
utts

1787 19.6 2011 22.3

Concept Type Features
Yes-no utts with place 1416 15.6 1007 11.2
Yes-no utts with time 296 3.2 305 3.4
Yes-no utts with bus 584 6.4 323 3.6

Lexical Features
Yes-no utts with ‘yes’ 4395 48.3 3693 40.9
Yes-no utts with ‘no’ 2076 22.8 1564 17.3
Yes-no utts with ‘I’ 203 2.2 129 1.4
Yes-no utts with
‘from’

114 1.3 185 2.1

Yes-no utts with ‘to’ 204 2.2 237 2.6
Acoustic Features

feature mean stdev mean stdev
Duration (seconds) 1.341 1.097 1.365 1.242
RMS mean .037 .033 .055 .049
F0 mean 183.0 60.86 185.7 58.63
F0 max 289.8 148.5 296.9 146.5

Table 1: Statistics on post-confirmation utterances

place bus time
2005 dataset

confirm place 0.86 0.13 0.01
confirm bus 0.18 0.81 0.01
confirm time 0.07 0.01 0.92

2006 dataset
confirm place 0.87 0.10 0.03
confirm bus 0.34 0.64 0.02
confirm time 0.15 0.13 0.71

Table 2: Confirmation state vs. user concept type

Section 3, we extracted the features described in
Section 4.2 below. To identify the correct concept
type(s) for each utterance, we used the human an-
notations provided with the data.

We performed a series of 10-fold cross-
validation experiments to examine the impact of
different types of feature on concept type classifi-
cation. We trained three binary classifiers for each
experiment, one for each concept type, i.e. we sep-
arately classified each post-confirmation utterance
asplace +or place -, time +or time -, andbus +or
bus -. We used Weka’s implementation of the J48
decision tree classifier (Witten and Frank, 2005)2.

For each experiment, we report precision (pre+)
and recall (rec+) for determiningpresenceof each
concept type, and overall classification accuracy

2J48 gave the highest classification accuracy compared to
other machine learning algorithms we tried on this data.

for each concept type (place, busand time)3. We
also report overallpre+, rec+, f-measure (f+), and
classification accuracy across the three concept
types. Finally, we report the percentage ofswitch+
errors andswitcherrors.Switch+errors are utter-
ances containingbusclassified astime/place, time
asbus/place, andplaceasbus/time; these are the
errors most likely to cause decreases in speech
recognition accuracy after language model adap-
tation. Switcherrors include utterances with no
concept classified asplace, busor time.

Only utterances classified as containing one of
the three concept types are subject to second-
pass recognition using a concept-specific language
model. Therefore, these are the only utterances on
which speech recognition performance may im-
prove. This means that we want to maximizerec+
(proportion of utterances containing a concept that
are classified correctly). On the other hand, utter-
ances that are incorrectly classified as containing a
particular concept type will be subject to second-
pass recognition using a poorly-chosen language
model. This may cause speech recognition per-
formance to suffer. This means that we want to
minimizeswitch+errors.

4.2 Features

We used the features summarized in Table 3. All
of these features are available at run-time and so
may be used in a live system. Below we give ad-
ditional information about the RAW and LEX fea-
tures; the other feature sets are self-explanatory.

4.2.1 Acoustic and Dialog History Features

The acoustic/prosodic and dialog history features
are adapted from those identified in previous work
on detecting speech recognition errors (particu-
larly (Litman et al., 2006)). We anticipated that
these features would help us distinguish correc-
tions and rejections from confirmations.

4.2.2 Lexical Features

We used lexical features from the user’s current ut-
terance. Words in the output of first-pass ASR are
highly indicative both of concept presence or ab-
sence, and of the presence of particular concept
types; for example,going to suggests the pres-
ence of aplace. We selected the most salient lexi-

3We do not report precision or recall for determiningab-
senceof each concept type. In our data set 82.2% of the ut-
terances do not contain any concepts (see Table 1). Conse-
quently, precision and recall for determining absence of each
concept type are above .9 in each of the experiments.
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Feature type Feature source Features
System confirmation type
(DIA)

system log System’s confirmation prompt concept type (confirm time,
confirm place, or confirmbus)

Acoustic (RAW) raw speech F0 max; RMS max; RMS mean; Duration; Difference be-
tween F0 max in first half and in second half

Lexical (LEX) transcripts/ASR output Presence of specific lexical items; Number of tokens in utter-
ance; [transcribed speech only] String edit distance between
current and previous user utterances

Dialog history (DH1, DH3) 1-3 previous utterances System’s dialog states of previous utterances(place, bus,
time, confirmtime, confirmplace, or confirmbus); [tran-
scribed speech only] Concept(s) that occurred in user’s ut-
terances (YES/NO for each of the conceptsplace, bus, time)

ASR confidence score (ASR) ASR output Speech recognizer confidence score
Concept type match (CTM) transcripts/ASR output Presence of concept-specific lexical items

Table 3: Features for concept type classifiers

cal features (unigrams and bigrams) for each con-
cept type by computing themutual informationbe-
tween potential features and concept types (Man-
ning et al., 2008). For each lexical featuret and
each concept type classc ∈ { place +, place -,
time +, time -, bus +, bus -}, we computedI:

I =
Ntc

N
∗ log2

N ∗ Ntc

Nt. ∗ N.c

+
N0c

N
∗ log2

N ∗ N0c

N0. ∗ N.c

+

Nt0

N
∗ log2

N ∗ Nt0

Nt. ∗ N.0

+
N00

N
∗ log2

N ∗ N00

N0. ∗ N.0

whereNtc= number of utterances wheret co-
occurs withc, N0c= number of utterances withc
but withoutt, Nt0= number of utterances wheret
occurs withoutc, N00= number of utterances with
neither t nor c, Nt.= total number of utterances
containingt, N.c= total number of utterances con-
tainingc, and N = total number of utterances.

To identify the most relevant lexical features,
we extracted from the data all the transcribed user
utterances. We removed all words that realize con-
cepts (e.g. “61C”, “Squirrel Hill”), as these are
likely to be misrecognized in a post-confirmation
utterance. We then extracted all word unigrams
and bigrams. We computed the mutual informa-
tion between each potential lexical feature and
concept type. We then selected the 30 features
with the highest mutual information which oc-
curred at least 20 times in the training data4.

For transcribed speech only, we also compute
the string edit distance between the current and
previous user utterances. This gives some indica-
tion of whether the current utterance is a correc-
tion or topic change (vs. a confirmation). How-

4We aimed to select equal number of features for each
class with information measure in the top 25%. 30 was an
empirically derived threshold for the number of lexical fea-
tures to satisfy the desired condition.

ever, for recognized speech recognition errors re-
duce the effectiveness of this feature (and of the
concept features in the dialog history feature set).

4.3 Baseline

A simple baseline for this task,No-Concept, al-
ways predictsnone in post-confirmation utter-
ances. This baseline achieves overall classifica-
tion accuracy of 82% butrec+ of 0. At the other
extreme, theConfirmation State baseline assigns
to each utterance the dialog system’s confirmation
prompt type (using the DIA feature). This base-
line achievesrec+ of .79, but overall classification
accuracy of only 14%. In all of the models used in
our experiments, we include the current confirma-
tion prompt type (DIA) feature.

4.4 Experiment Results

In this section we report the results of experiments
on concept type classification in which we exam-
ine the impact of the feature sets presented in Ta-
ble 3. We report performance separately for recog-
nized speech, which is available at runtime (Table
5); and for transcribed speech, which gives us an
idea of best possible performance (Table 4).

4.4.1 Features from the Current Utterance

We first look at lexical (LEX) and prosodic (RAW)
features from the current utterance. For both rec-
ognized and transcribed speech, the LEX model
achieves significantly higherrec+ and overall ac-
curacy than the RAW model (p < .001). For
recognized speech, however, the LEX model has
significantly moreswitch+ errors than the RAW
model (p < .001). This is not surprising since the
majority of errors made by the RAW model are
labeling an utterance with a concept asnone. Ut-
terances misclassified in this way are not subject to
second-pass recognition and do not increase WER.
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Features Place Time Bus Overall
pre+ rec+ acc pre+ rec+ acc pre+ rec+ acc pre+ rec+ f+ acc switch+ switch

No Concept 0 0 .86 0 0 0.81 0 0 .92 0 0 0 0.82 0 0
Confirmation State 0.87 0.85 0.86 0.64 0.54 0.58 0.71 0.87 0.78 0.14 0.79 0.24 0.14 17 72.3

RAW 0.65 0.53 0.92 0.25 0.01 0.96 0.38 0.07 0.96 0.67 0.34 0.45 0.85 6.43 4.03
LEX 0.81 0.88 0.96 0.77 0.48 0.98 0.83 0.59 0.98 0.87 0.72 0.79 0.93 7.32 3.22
LEX RAW 0.83 0.84 0.96 0.75 0.54 0.98 0.76 0.59 0.98 0.88 0.70 0.78 0.93 7.39 3.00

DH1 LEX 0.85 0.91 0.97 0.72 0.63 0.98 0.89 0.83 0.99 0.88 0.81 0.84 0.95 5.48 2.85
DH3 LEX 0.85 0.87 0.97 0.72 0.59 0.98 0.92 0.82 0.99 0.89 0.78 0.83 0.94 5.22 2.62

Table 4: Concept type classification results: transcribed speech (all models include feature DIA). Best
overall values in each group are highlighted in bold.

Features Place Time Bus Overall
pre+ rec+ acc pre+ rec+ acc pre+ rec+ acc pre+ rec+ f+ acc switch+ switch

No Concept 0 0 .86 0 0 0.81 0 0 .92 0 0 0 0.82 0 0
Confirmation State 0.87 0.85 0.86 0.64 0.54 0.58 0.71 0.87 0.78 0.14 0.79 0.24 0.14 17 72.3

RAW 0.65 0.53 0.92 0.25 0.01 0.96 0.38 0.07 0.96 0.67 0.34 0.45 0.85 6.43 4.03
LEX 0.70 0.70 0.93 0.67 0.15 0.97 0.65 0.62 0.98 0.75 0.56 0.64 0.89 9.94 4.93
LEX RAW 0.70 0.72 0.93 0.66 0.38 0.97 0.68 0.57 0.98 0.76 0.60 0.67 0.90 10.32 5.10

DH1 LEX RAW 0.71 0.68 0.93 0.68 0.38 0.97 0.78 0.63 0.98 0.77 0.60 0.67 0.90 8.15 4.55
DH3 LEX RAW 0.71 0.70 0.93 0.67 0.42 0.97 0.79 0.63 0.98 0.77 0.62 0.68 0.90 7.20 4.57

ASR DH3 LEX
RAW

0.71 0.70 0.93 0.69 0.42 0.97 0.79 0.63 0.98 0.77 0.62 0.68 0.90 7.20 4.54

CTM DH3 LEX
RAW

0.82 0.82 0.96 0.86 0.71 0.99 0.76 0.68 0.98 0.85 0.74 0.79 0.93 3.89 2.94

CTM ASR DH3
LEX RAW

0.82 0.81 0.96 0.86 0.69 0.99 0.76 0.68 0.98 0.85 0.74 0.79 0.93 4.27 3.01

Table 5: Concept type classification results: recognized speech (all models include feature DIA). Best
overall values in each group are highlighted in bold.

For transcribed speech, the LEXRAW model
does not perform significantly differently from the
LEX model in terms of overall accuracy,rec+, or
switch+ errors. However, for recognized speech,
LEX RAW achieves significantly higherrec+ and
overall accuracy than LEX (p < .001). Lexical
content from transcribed speech is a very good in-
dicator of concept type. However, lexical content
from recognized speech is noisy, so concept type
classification from ASR output can be improved
by using acoustic/prosodic features.

We note that models containing only features
from the current utterance perform significantly
worse than theconfirmation statebaseline in terms
of rec+ (p < .001). However, they have signif-
icantly better overall accuracy and fewerswitch+
errors (p < .001) .

4.4.2 Features from the Dialog History

Next, we add features from the dialog history
to our best-performing models so far. For tran-
scribed speech, DH1LEX performs significantly
better than LEX in terms of overall accuracy,rec+,
and switch+ errors (p < .001). DH3 LEX per-
forms significantly worse than DH1LEX in terms
of rec+ (p < 0.05). For recognized speech,
neither DH1LEX RAW nor DH3 LEX RAW is
significantly different from LEXRAW in terms
of rec+ or overall accuracy. However, both

DH1 LEX RAW and DH3LEX RAW do per-
form significantly better than LEXRAW in terms
of switch+ errors (p < .05). There are
no significant performance differences between
DH1 LEX RAW and DH3LEX RAW.

4.4.3 Features Specific to Recognized Speech

Finally, we add the ASR and CTM features to
models trained on recognized speech.

We hypothesized that the classifier can use the
recognizer’s confidence score to decide whether
an utterance is likely to have been misrecognized.
However, ASRDH3 LEX RAW is not signifi-
cantly different from DH3LEX RAW in terms of
rec+, overall accuracy orswitch+ errors.

We hypothesized that the CTM feature will im-
prove cases where a part of (but not the whole)
concept instance is recognized in first-pass recog-
nition5. The generic language model used in first-
pass recognition recognizes some concept-related
words. So, if in the utteranceMadison avenue,
avenue(but not Madison), is recognized in the
first-pass recognition, the CTM feature can flag
the utterance with a partial match forplace, help-
ing the classifier to correctly assign theplace

5We do not try the CTM feature on transcribed speech be-
cause there is a one-to-one correspondence between presence
of the concept and the CTM feature, so it perfectly indicates
presence of a concept.
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type to the utterance. Then, in the second-pass
recognition the utterance will be decoded with
a place concept-specific language model, poten-
tially improving speech recognition performance.
Adding the CTM feature to DH3LEX RAW and
ASR DH3 LEX RAW leads to a large statistically
significant improvement in all measures: a 12%
absolute increase inrec+, a 3% absolute increase
in overall accuracy, and decreases inswitch+ er-
rors (p< .001). There are no statistically signifi-
cant differences between these two models.

4.4.4 Summary and Discussion

In this section we evaluated different models for
concept type classification. The best perform-
ing transcribed speech model, DH1LEX, signif-
icantly outperforms theConfirmation State base-
line on overall accuracy and onswitch+andswitch
errors (p< .001), and is not significantly different
on rec+. The best performing recognized speech
model, CTMDH3 LEX RAW, significantly out-
performs theConfirmation State baseline on
overall accuracy and onswitch+ and switch er-
rors, but is significantly worse onrec+ (p < .001).
The best transcribed speech model achieves signif-
icantly higherrec+ and overall accuracy than the
best recognized speech model (p< .01).

5 Speech Recognition Experiment

In this section we report the impact of concept type
prediction on recognition of post-confirmation ut-
terances inLet’s Go! system data. We hypothe-
sized that speech recognition performance for ut-
terances containing a concept can be improved
with the use of concept-specific LMs. We (1) com-
pare the existingdialog state-specificLM adap-
tation approach used inLet’s Go! with our pro-
posed concept-specificadaptation; (2) compare
two approaches toconcept-specificadaptation (us-
ing the system’s confirmation prompt type and us-
ing our concept type classifiers); and (3) evaluate
the impact of different concept type classifiers on
concept-specificLM adaptation.

5.1 Method

We used the PocketSphinx speech recognition en-
gine (et al., 2006) with gender-specific telephone-
quality acoustic models built for Communica-
tor (et al., 2000). We trained trigram LMs us-
ing 0.5 ratio discounting with the CMU language

modeling toolkit (Xu and Rudnicky, 2000)6. We
built state- and concept-specific hierarchical LMs
from theLet’s Go! 2005 data. The LMs are built
with [place], [time] and[bus] submodels.

We evaluate speech recognition performance
on the post-confirmation user utterances from the
2006 testing dataset. Each experiment varies in 1)
the LM used for the final recognition pass and 2)
the method of selecting a LM for use in decoding.

5.1.1 Language models

We built seven LMs for these experiments. The
state-specificLM contains all utterances in the
training data that were produced in theyes-nodi-
alog state. Theconfirm-place, confirm-busand
confirm-timeLMs contain all utterances produced
in theyes-nodialog state followingconfirm place,
confirm bus and confirm time system confirma-
tion prompts respectively. Finally, theconcept-
place, concept-busandconcept-timeLMs contain
all utterances produced in theyes-nodialog state
that contain a mention of aplace, busor time.

5.1.2 Decoders

In the baseline,1-pass generalcondition, we
use thestate-specificLM to recognize all post-
confirmation utterances. In the1-pass stateex-
perimental condition we use theconfirm-place,
confirm-bus and confirm-time LMs to recog-
nize testing utterances produced following acon-
firm place, confirm busandconfirm time prompt
respectively7. In the 1-pass conceptexperimen-
tal condition we use theconcept-place, concept-
busandconcept-timeLMs to recognize testing ut-
terances produced following aconfirm place, con-
firm busandconfirm timeprompt respectively.

In the 2-passconditions we perform first-pass
recognition using thegeneralLM. Then, we clas-
sify the output of the first pass using a concept
type classifier. Finally, we perform second-pass
recognition using theconcept-place, concept-bus
or concept-timeLMs if the utterance was classi-
fied asplace, busor time respectively8. We used
the three classification models with highest overall
rec+: DH3 LEX RAW, ASR DH3 LEX RAW,

6We chose the same speech recognizer, acoustic models,
language modeling toolkit, and LM building parameters that
are used in the liveLet’s Go! system (Raux et al., 2005).

7As we showed in Table 2, most, but not all, utterances in
a confirmation state contain the corresponding concept.

8We treat utterances classified as containing more than
concept type asnone. In the 2006 data, only 5.6% of ut-
terances with a concept contain more than one concept type.
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Recognizer Concept type Language Overall Concept utterances
classifier model WER WER Concept recall

1-pass general state-specific 38.49% 49.12% 50.75%
1-pass confirm state confirm-{place,bus,time} 38.83% 48.96% 51.36%
1-pass confirm state concept-{place,bus,time},

state-specific
46.47%♠ 50.73%♣ 52.9%∗

2-pass DH3 LEX RAW concept-{place,bus,time},
state-specific

38.48% 47.56%♠ 53.2%∗

2-pass ASR DH3 LEX
RAW

concept-{place,bus,time},
state-specific

38.51% 47.99%♣ 52.7%

2-pass CTM ASR DH3
LEX RAW

concept-{place,bus,time},
state-specific

38.42% 47.86%♣ 52.6%

2-pass oracle concept-{place,bus,time},
state-specific

37.85%♠ 45.94%♠ 54.91%♠

Table 6: Speech recognition results.♠ indicates significant difference (p<.01). ♣ indicates significant
difference (p<.05). * indicates near-significant trend in difference (p<.07). Significance for WER is
computed as a paired t-test. Significance for concept recallis an inference on proportion.

and CTMASR DH3 LEX RAW. To get an idea
of “best possible” performance, we also report 2-
pass oracle recognition results, assuming an oracle
classifier that always outputs the correct concept
type for an utterance.

5.2 Results

In Table 6 we report average per-utterance word
error rate (WER) on post-confirmation utterances,
average per-utterance WER on post-confirmation
utterances containing a concept, and average con-
cept recall rate (percentage of correctly recog-
nized concepts) on post-confirmation utterances
containing a concept. In slot-filling dialog sys-
tems likeLet’s Go!, the concept recall rate largely
determines the potential of the system to under-
stand user-provided information and continue the
dialog successfully. Our goal is to maximize con-
cept recall and minimize concept utterance WER,
without causing overall WER to decline.

As Table 6 shows, the1-pass stateand1-pass
concept recognizers perform better than the1-
pass generalrecognizer in terms of concept recall,
but worse in terms of overall WER. Most of these
differences are not statistically significant. How-
ever, the1-pass conceptrecognizer has signifi-
cantly worse overall and concept utterance WER
than the1-pass generalrecognizer (p< .01).

All of the 2-pass recognizers that use au-
tomatic concept prediction achieve significantly
lower concept utterance WER than the1-pass
general recognizer (p< .05). Differences be-
tween these recognizers in overall WER and con-
cept recall are not significant.

The 2-pass oraclerecognizer achieves signif-
icantly higher concept recall and significantly

lower overall and concept utterance WER than
the 1-pass generalrecognizer (p< .01). It
also achieves significantly lower concept utterance
WER than any of the 2-pass recognizers that use
automatic concept prediction (p< .01).

Our2-pass conceptresults show that it is possi-
ble to use knowledge of the concepts in a user’s ut-
terance to improve speech recognition. Our1-pass
concept results show that this cannot be effec-
tively done by assuming that the user will always
address the system’s question; instead, one must
consider the user’s actual utterance and the dis-
course history (as in our DH3LEX RAW model).

6 Conclusions and Future Work

In this paper, we examined user responses to sys-
tem confirmation prompts in task-oriented spoken
dialog. We showed that these post-confirmation
utterances may contain unrequested task-relevant
concepts that are likely to be misrecognized. Us-
ing acoustic, lexical, dialog state and dialog his-
tory features, we were able to classify task-
relevant concepts in the ASR output for post-
confirmation utterances with 90% accuracy. We
showed that use of a concept type classifier can
lead to improvements in speech recognition per-
formance in terms of WER and concept recall.

Of course, any possible improvements in speech
recognition performance are dependent on (1) the
performance of concept type classification; (2)
the accuracy of the first-pass speech recognition;
and (3) the accuracy of the second-pass speech
recognition. For example, with our general lan-
guage model, we get a fairly high overall WER
of 38.49%. In future work, we will systematically
vary the WER of both the first- and second-pass
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speech recognizers to further explore the interac-
tion between speech recognition performance and
concept type classification.

The improvements our two-pass recognizers
achieve have quite small local effects (up to 3.18%
absolute improvement in WER on utterances con-
taining a concept, and less than 1% on post-
confirmation utterances overall) but may have
larger impact on dialog completion times and task
completion rates, as they reduce the number of
cascading recognition errors in the dialog (et al.,
2002). Furthermore, we could also use knowledge
of the concept type(s) contained in a user utterance
to improve dialog management and response plan-
ning (Bohus, 2007). In future work, we will look
at (1) extending the use of our concept-type clas-
sifiers to utterances following any system prompt;
and (2) the impact of these interventions on overall
metrics of dialog success.
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Abstract

LOGUS is a French-speaking spoken lan-
guage understanding (SLU) system which
carries out a deeper analysis than those
achieved by standard concept spotters. It
is designed for multi-domain conversa-
tional systems or for systems that are
working on complex application domains.
Based on a logical approach, the sys-
tem adapts the ideas of incremental ro-
bust parsing to the issue of SLU. The pa-
per provides a detailed description of the
system as well as results from two evalu-
ation campaigns that concerned all of cur-
rent French-speaking SLU systems. The
observed error rates suggest that our log-
ical approach can stand comparison with
concept spotters on restricted application
domains, but also that its behaviour is
promising for larger domains. The ques-
tion of the generality of the approach is
precisely addressed by our current inves-
tigations on a new task: SLU for an emo-
tional robot companion for young hospital
patents.

1 Introduction

Despite the indisputable advances of automatic
speech recognition (ASR), highly spontaneous
speech remains an important barrier to the wide
spreading of speech based applications. The goal
of spontaneous speech understanding remains fea-
sible, provided the interaction between the user
and the system is restricted to a task-oriented di-
alogue (restricted vocabulary). Present research is
investigating mixed or user initiated dialogue for
less restricted tasks. It is the purpose of this paper,
which focuses on spontaneous speech understand-
ing in such complex applications.

Generally speaking, information speech dia-
logue systems are based on the same architecture.

At first, a speech recognizer processes the speech
signal and provides a string (or a lattice) of words
that should correspond to the spoken sentence.
Then, this string is parsed by a spoken language
understanding module (SLU) in order to build a
semantic representation that represents its propo-
sitional meaning. Finally, this semantic structure
is sent to a dialogue manager which controls the
interaction with the user (database interrogation,
dialogue management, answer generation). The
answers to the user can be displayed on screen
and/or through a message generated by a text-to-
speech synthesis. This paper focuses on the SLU
module of such a dialogue system. On the whole,
SLU has to cope with two main difficulties:

• speech recognition errors: highly sponta-
neous speech remains hard to recognize for
current ASR systems (Zue et al., 2000).
Therefore, the SLU module has to work on
a strongly corrupted string of words.

• spoken disfluencies: filled pauses, repetitions
and repairs make the parsing of conversa-
tional spoken language significantly harder to
achieve (Heeman, Allen, 2001).

In order to overcome those difficulties, most SLU
systems follow a selective strategy which comes
down to a simple concept spotting: they restrict
the semantic analysis to a mapping of the sentence
with the main expectations of the user in relation
with the task (Minker W. et al., 1999; Bangalore S.
et al., 2006). Consider, for instance, an air trans-
port information system and the following spoken
utterance:

(1) Cou- could you list me the flights uh the
scheduled flights for Tenerife Tenerife Tenerife
North please

Satisfying the speaker’s goals only requires de-
tecting the nature of their requests (list flights) and
the required destination (Tenerife North). Those
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two concepts (list, Tenerife North) will fill a shal-
low semantic frame which is supposed to repre-
sent the useful meaning of the sentence. Such
task-driven approaches meet, to a great extent, the
needs of SLU in terms of robustness, since they
only involve a partial analysis of the sentence.
Whether the processing is based on a statistical or
a knowledge-based approach, several evaluation
campaigns proved that concept spotting is suitable
for spoken language understanding, provided the
application task is sufficiently restricted. How-
ever, concept spotters suffer from noticeable limi-
tations:

• Although they resist gracefully speech recog-
nition errors, they are not able to detect their
eventual presence, since they do not consider
the global structure of the sentence. This lim-
itation can be particularly penalizing when
the error is related to a key element, for ex-
ample when the error prevents the system to
determine the type (dialogue act) of the ut-
terance. Indeed, concept spotters often base
SLU on the initial characterization of the
question type. When analyzing the errors
of his statistical concept spotter, Minker has
shown that the correct identification of the
question type is a key issue in terms of final
robustness (Minker W. et al., 1999).

• Since they are based on the identification of
rather flat semantic frames, these approaches
hardly succeed in representing complex syn-
tactic relations such as overlapping coordi-
nate phrases or negations.

• Although it is well known that generality is
an important issue for SLU, this question
is generally approached in term of technical
portability from one (narrow) task to another.
Now, one should wonder whether concept
spotting is still suitable on larger application
domains. It seems that the robustness of the
spotting process depends strongly on the de-
gree of lexical ambiguity of the considered
task. For instance, Bousquet has shown that
the concept error rate of her stochastic spot-
ter is two times higher on ambiguous words
than on non ambiguous ones (Bousquet et al.,
2003).

Such considerations tend to show that to apply
concept spotting to more complex tasks could be

difficult. Such observations are well known (Zech-
ner K., 1998; Van Noord et al., 1999), and no-
ticeable attempts have already been done to reach
a deeper semantic analysis. However, statistical
or knowledge-based concept spotting remains the
prevailing paradigm in SLU, mainly because of
engineering motivations (quick and easy build-
ing). On the contrary, we have decided to de-
velop a SLU system (LOGUS1) which carries out
a complete analysis of the utterance while keep-
ing the robustness of standard concept spotting ap-
proaches. The system, which is based on a logi-
cal approach, adapts the ideas of incremental ro-
bust parsing (Äıt-Mokhtar S., 2002; Basili, 2003)
to the issue of speech conversational systems. In
section 2, we will describe the system into de-
tail. Then, section 3 will present results from dif-
ferent evaluation campaigns in which we partici-
pated. These experiments concerned standard re-
stricted tasks (hotel reservation for instance) for
which concept spotting is well adapted. As a re-
sult, this section does not aim to prove a supe-
riority of our approach, but simply to show that
this deeper processing is able to keep a satisfac-
tory robustness, by comparison with prevailing ap-
proaches. Finally, we give in section 4 a brief de-
scription on our present work concerning the inte-
gration of LOGUS in a conversational robot which
is dedicated to general interaction with children
who are in hospital for a long-stay. This exam-
ple will illustrate the portability abilities of our ap-
proach on complex application tasks, in addition
with our previous works on general tourism infor-
mation.

2 Description of the LOGUSsystem

The task of a SLU is to turn a sequence or a graph
of words into a semantic representation; so a SLU
system has to perform a translation from natural
language to a formal target language. This section
begins with the description of the formal language
chosen for the LOGUS system. We then explain
the basic principles of parsing and its main steps.

2.1 Semantic representation

When it comes to the choice of a target language
for the system, the following points must be taken
into account.

• We want to implement automatic understand-
ing in application domains where predefined

1LOGical Understanding System.
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semantic frames are not sufficient to repre-
sent all the possible queries (Van Noord et al.,
1999). Furthermore, any SLU aims at pro-
viding results usable by a dialogue manager:
the target language must reconcile simplicity
with precision.

• This semantic representation must obviously
extend to a pragmatic one. That means that it
should involve the characterization of the di-
alogue acts related to the speech turn (Austin
J.-L., 1962).

We have chosen a formalism compatible with
these constraints and inspired by the illocutionary
logic of D. Vanderveken (Vanderveken D., 1981).
In this formalism, the form of an elementary illo-
cutionary act isF(P) whereF is the illocutionary
force, andP its propositional content.

The LOGUS system thus provides a logical for-
mula as the semantic representation of an utter-
ance. Alanguage actcontains clues about the in-
tentions of the speaker: it is labelled illocutionary
force, while the propositional content is a structure
built with the domain objects and their properties
which is called anobject string.

The following example shows a single speech
turn uttered for a tourism information system:

(2) j’ai r éserv́e une chambre dans un deux
étoiles l’ĥotel euh l’ĥotel Rex pour y aller d’ici
comment est-ce que je peux faire (I booked a room
in a two-star hotel in the hotel hum in the Rex hotel
from here how can I go at there)

This turn expresses two different language acts,
which is quite usual in conversational speech:
a piece of information(I booked a room...) is
followed by the user question(... how can I go....
Such complex speech turns are difficult to analyze
for concept spotters, since they usually base
the parsing on one language act detection. The
logical formula LOGUS provides is split into two
language acts:(information act) and (question
how). The second act is interpreted by the system
in the context of the first one:
((information act)
(of (reservation [])

(hotel [(ident. (name ”Rex”)),(star (int 2))])))
((question how)
(to go [(to (contextuallocation [])),

(from (hotel [(ident. (name ”Rex”))]))]))

In the formula,reservation, hotelandto go are
object labels;(ident. (name ”Rex”)), (star (int 2))

are properties. The two objects of labelsreserva-
tion andhotelare linked with the generic relation
of, which indicates a subordination relation. It is
the main relation, (in addition with logical coordi-
nationsand, orandnot) which is used for building
complex object strings.

2.2 General system architecture

Incremental parsing methodology is used for text
parsing in order to combine efficiency with robust-
ness (Äıt-Mokhtar S., 2002). With LOGUS, we
tried to show that such methods can be extended
to spoken language parsing.

The system has to parse out-of-grammar con-
structions but spoken language studies have shown
that minimal syntactic structures are generally pre-
served in repairs and false-starts (Mc Kelvie D.,
1998). We have thus chosen to carry out an
incremental bottom-up parsing, where words are
gradually combined. At the beginning, the parser
groups words according to mainly syntactic rules
in order to form minimal chunks that correspond
to basic concepts of the application domain. Then,
as word group size increases, their meaning be-
comes more precise, enough to relax syntactic cri-
teria and thereby overcome the problem of out-of-
grammar sentences.

The general architecture of the system is shown
in Figure 1. The parsing is essentially split into
three stages. The first stage ischunking (Ab-
ney S., 1991) where grammatical words are linked
to the lexical words to which they are referred.
The following stage gradually builds links be-
tween the chunks in order to detect semantic re-
lations between the corresponding concepts, and
the last one achieves a contextual interpretation
(anaphoric resolution for instance). The process
of building links between chunks and contextual
understanding uses a domain ontology.

Only one formalism is used during these pars-
ing stages. It is designed to distinguish syntax and
semantics and to preserve genericity of the pars-
ing rules. Each component is specified by a list
of what we can call definitions; each of them is a
triplet < C, R, T > where

C: is a syntactic label, calledsyntactic category:
for exampleadjective, (verb 1 present).

R: points out the semantic function of the compo-
nent. It is calledsemantic role: for example
object, (prop price)whereprop is for prop-
erty.

52



− level 1
− level 2
− level 3
− semantic kernel

dependenciescontextual understanding

chunk dependencies

chunking

word sequence

domain
ontology

lexicon

logical formula

Figure 1: General architecture of the LOGUSsys-
tem

T: is the semantic translation. It is an element
of the logical formula built by the system. It
belongs thus to the target language.

The first two triplet elements,C and R, are
widely domain independent. A basic principle is
to define parsing rules from these elements in or-
der to preserve the genericity of the system. Each
parsing rule combines two or three triplets in order
to build a new result triplet.

2.3 Chunking

Our experiments with LOGUShave clearly shown
that chunking is effective for spoken language,
provided the chunks are very short: more pre-
cisely, errors made at the speech recognition level
make it dangerous to link objects or properties ac-
cording to pure syntactic criteria, without check-
ing these links with semantic criteria. Therefore
thechunksbuilt by LOGUS include only one con-
tent word: we call themminimal chunks. Chunk-
ing is based on the principle of linking function
words to the near content word.

The formalism used in this step is inspired by
Categorial Grammars of the AB type2, whose
rules are generalized from the first two elements of
the constituent triplets. Function words have def-
initions in which syntactic category and semantic
role are fractional. In such definitions, the seman-
tic translation is aλ-abstraction (in theλ-calculus
meaning)3. The semantic translation of the re-
sult triplet is achieved by applying this abstrac-
tion to the semantic translation of the un-fractional
triplet. Formally, the following two rules are ap-
plied, whereF is an abstraction:

< CA/CB, RA/RB, F >, < CB, RB, SB >
→ < CA, RA, (F SB) >

< CB, RB, SB >, < CB\CA, RB\RA, F >
→ < CA, RA, (F SB) >

2The formalism can be expressed in terms of pregroup
formalism too (Lambek J., 1999).

3LOGUSis implemented inλProlog, a logic programming
language whose terms areλ-terms with simple types.

In the following example only one definition is
shown for each component (gn is for nominal
group).

trois (three) étoiles (stars)
C adj num adj num\gn
R (prop nb) (prop nb)\(prop nbstar)
S (int 3) λx.(star x)

By applying the second rule, we obtain the fol-
lowing chunk:

“trois étoiles” (three stars)
<gn, (prop nbstar), (star (int 3))>.

The semantic translation of the result triplet
is obtained by β-reduction of the λ-term
(λx. (star x) (int 3)). For example, the utterance

(3) “ À l’hôtel Caumartin quels sont le les tar-
ifs pour pour une chambre double” (In Caumartin
hotel what are the the prices for for a double room)
is segmented into six chunks during thechunking
stage. Their semantic translations are:

[1] (hotel []),
[2] (identity (name “Caumartin”))]),
[3] (what (interrogation)),[4] (price []),
[5] (room []), [6] (size double).
At the end of thechunkingprocess, the deter-

minerle and the first occurrence of the preposition
pour are deleted because they are fragments with-
out semantic content. Deletions such as these are
a first way of dealing with repairs.

2.4 Domain ontology

The limited scope of the application domain
makes it possible to describe exhaustively the
pragmatic and semantic domain knowledge. A do-
main ontology specifies how objects and proper-
ties can be compounded. The handled processings
are expected to be generic while using a domain
dependent ontology: to achieve that, the ontology
is defined by generic predicates whose domain ob-
jects and domain properties are the arguments.

For example, the possibility of building the con-
ceptual relationof between two objects (cf. 2.1)
is defined by the predicateis subobject whose
arguments are two object labels: so the relation
is subobject(room, hotel)expresses a part-whole
relation possibility between such two objects.

2.5 Chunk dependencies

Chunk dependencies are built by an incremental
process which is compound of several successive
stages. Each stage is based on rewriting rules
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which are specified from the first two components
of the constituent triplets and from the generic on-
tology predicates. They are thus not specific to the
domain of application, what assures, to a certain
extent, the genericity of the process.

Consider for instance the following rule, which
leads to the binding of two consecutive chunks
which share a meronomic (partof) relation:

< C1, object, O1 >, < C2, object, O2 >
- O1 simple object of labelEt1
- O2 object string of labelEt2
- is subobject(Et1, Et2)

< C, object, (of O1 O2) >
whereC is obtained by composingC1 andC2.

As an illustration, this rule will form a com-
plex object(of (price []) (room [(size double)]))
from the initial two chunks(price []) and (room
(size double)). This rule is completely generic and
should apply on any task. The knowledge spe-
cific to the task intervenes only on the definition of
the predicateis subobject. As a result, one could
speak of procedural genericity to qualify our sys-
tem.

As long as possible, the first processing stages
try to respect syntactic criteria. However, in pres-
ence of spoken disfluencies or speech recogni-
tion errors, it is likely that the utterance is out-
of-grammar. Therefore, since the detected links
between chunks make the meaning of the linked
chunks more specific, the next stage tries to detect
chunk dependencies more on more on semantic or
pragmatic features only. Subsequently, studying
dependencies between the components makes it
possible to eliminate some components, especially
in the case of word recognition errors.

As an illustration, Figure 2 shows how links are
gradually built during the parsing stage of utter-
ance (3) (cf. section 2.3). The chunks are in rect-
angular boxes in dotted lines.

The first step of chunk binding links the first two
chunks into the object:

(hotel [(ident. (name “Caumartin”))]).
The second step links the object(room []) with

the property(size (double))to obtain the object
(room [(size double)]). Then, the two objectsprice
androomare linked with the conceptual relationof
to obtain(of (price []) (room [(size double)]))and
this object string is connected to the language act:
(question what). The position of the prepositional
phraseà l’hotel Caumartin is not usual in French
syntagmatic ordering. It is indeed an example of

extraposition which is not accepted by the syn-
tactic constraints considered by the system. As a
result, the conceptual relationof, which links the
object of labelroomwith the object(hotel [ident.
(name “Caumartin”)]) is built later, when these
constraints are relaxed.

2.6 Contextual understanding

Many sentences are elliptical and incomplete in a
dialogue. Therefore, it is necessary to use the cur-
rent context of the task and the dialogue history
in order to complete their understanding. The ob-
jectives of the contextual understanding in LOGUS

are thus close to the objectives of the authors of the
OntoSem system (McShane M., 2005): the com-
pletion of semantic fragments. Reference resolu-
tion is thereby extended to a more general comple-
tion of the semantic representation.

While syntactic anaphora criteria are generally
respected in texts, anaphora gender and number
are frequently broken in spoken language. More-
over, gender and number morphological marks are
hardly perceptible in spoken French. They are
therefore very often corrupted by speech recogni-
tion errors. So, in the LOGUS system, anaphora
resolution is based on the same principles as the
rest of the parsing: combining syntactic and se-
mantic criteria. Both nominal and pronominal
anaphora (with definite expressions) are consid-
ered during this contextual interpretation stage.

Completion is based on the concept ofobject
string. A property or an object may be completed
by an “over-object” of the context, if the ontology
makes it possible to do so. For example, the ob-
jectpriceof the sentence“quel est le tarif” (what
is the price)is automatically completed in
(of (price []) (of (room []) (hotel [(name “Rex”)]))
if the object string (of (room []) (hotel [(name
“Rex”)])) is anobject stringwhich is part of the
previous utterance.

3 Evaluations and results

LOGUS is a French-speaking system. It took part
in the two evaluation campaigns that were carried
out in the last year designed for French spoken
language understanding: the GDR-I3 challenge-
based campaign and the MEDIA project.

3.1 The GDR-I3 campaign

LOGUS took part in the challenge-based cam-
paign, held by the GDR-I3 consortium of the
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Figure 2: Characterization of chunk dependencies : example on the utterance“ à l’hotel Caumartin quels
sont le les tarifs pour pour une chambre double” (in Caumartin hotel whatare the the prices for for a
double room.

French CNRS research agency (Antoine et al.,
2002). We won’t describe here in detail the re-
sults of this campaign, since it concerned a for-
mer version of LOGUS. It seems however in-
teresting to analyse the distribution of the errors
made by LOGUS to have an idea of the benefits
of our approach. The evaluation corpus was di-
vided among several tests which were respectively
related to a specific difficulty: speech recognition
errors, speech repairs and other disfluences, and fi-
nally messages of a structural complexity (embed-
ded coordination or subordination, for instance)
significantly higher than those usually met in stan-
dard ATIS-like application domains.

The distribution of the concept error rates of the
LOGUS SLU system is the following:

Speech recognition: 9.5%
Complex structures: 9.8%
Repairs: 15%

It should be noted here that the robustness of
LOGUS decreases rather gracefully on complex
messages, while SLU systems based on concept
spotting meet real difficulties on such utterances.
For instance, Cacao (Bousquet-Vernhettes et al.,
1999; Bousquet-Vernhettes et al., 2003) is a con-
cept spotter which participated to the GDR-I3
campaign. It has been shown that most of its er-
rors resulted from its difficulties to resolve lexical
ambiguities in complex sentences. This observa-
tion suggests that our logical deep parsing should
fulfill better than concept spotting the needs of
complex application domains such as general pur-
pose tourist information or collaborative plan-
ning (Allen J. et al., 2002), or even multi-domain
applications (Dzikovska M. et al., 2005). Unfortu-

natedly, French evaluation campaigns have never
investigated such difficult tasks.

3.2 The MEDIA project

MEDIA-EVALDA was an evaluation campaign
hold by the French Ministry of Research. It con-
cerned all the French laboratory working on SLU.
Once again, this evaluation investigated a rather
restricted application domain: hotel reservation.
It is well known that concept spotters fit succes-
fully such simple tasks. Nevertheless, we decided
to take part in this evaluation in order to see to
which extent LOGUS should be compared to stan-
dard concept spotters in such disavantageous con-
ditions.

Participants defined reservation scenarios which
were used to build a corpus made up of 1250
recorded dialogues. Recording used a WOZ sys-
tem simulating vocal tourist phone server (Dev-
illers et al., 2004). The MEDIA corpus, which
is made up of real-life French spontaneous dia-
logues, is surely to become a benchmark reference
for French contextual SLU.

The evaluation paradigm forced every partici-
pant to convert his own semantic representation
into a common reference, which relies-on an at-
tribute/value frame: each utterance is divided into
semantic segments, aligned on the sentence, and
each segment is represented by a triplet: (mode,
attribute, value). Relations between attributes are
represented by their order in the representation and
the composed attribute names.

Nine systems participated to this first campaign.
An error was count for any difference with one
of the elements of the reference (mode, attribute
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System 1 2 3 4 (LOGUS) 5

Approach
concept
spotting

concept
spotting

syntactic
deep parsing

logical
deep parsing

concept
spotting

Error rate 29.0% 30.3% 36.3% 37.8% 41.3%

Table 1: MEDIA results.

or value). Table 1 summarises the results of the
best five systems. At first glance, one should find
the reported error rates rather deceptive. How-
ever, one must realize that the test corpus involved
highly spontaneous conversational speech, with
very frequent speech disfluences. As a result,
these results should be compared, for instance,
to ASR errors rates observed on the SWITCH-
BOARD corpus (Greenberg S. et al., 2000).

LOGUS was ranked fourth and its robustness
was rather close to the best participants. Now,
if you consider that the systems ranked 1st, 2nd
and 5th were using a concept spotter, these re-
sults shows that our approach can bear compar-
ison with standard approaches even on this task.
These encouraging performances suggest that it is
possible to achieve a deep understanding of con-
versational speech while respecting at the same
time some robustness requirements: our approach
seems indeed competitive even in a domain where
concept spotters are known to be very efficient. To
our mind, the interest of our approach is that this
robustness should remain on larger application do-
mains. We are precisely trying to test this gener-
icity by adapting LOGUS to a wider application
domain in the framework of the Emotirob project.

4 Genericity and portability experiment

We are currently testing the portability of our
approach by adapting LOGUS to a really differ-
ent task, which corresponds to an unrestricted
application domain, general purpose understand-
ing of child language, with additional emotional
state detection. The whole project, supported by
ANR (National French Research Agency), aims
at achieving a robot companion which can inter-
act with sick or disabled young children with the
help of facial expressions. Although the robot
does not have to react to every speech act of the
child, we have to deal with spoken understanding
in an unrestricted domain. Fortunately, the age of
the children involved (3-5) implies a restricted vo-
cabulary. This work is still in progress. Our first
investigations suggest however that LOGUS is a

suitable understanding system for the pursued pur-
pose: since there will never be significant corpora
related to this kind of task, we can’t use statisti-
cal methods. Moreover, because of the generic-
ity of L OGUS, the main part of the analysis can
be reused without important changes. Thus, three-
month work was enough to build a first prototype
of the system and the problem is restricted to the
main problem of this project: building an ontology
which models the cognitive and emotional world
of young children.

The generality of the used formalism makes it
possible to include an emotional component by
turning the triplet structure into a quadruplet struc-
ture. Of course, composition rules have to in-
clude this new component. We are currently work-
ing on the computation of the emotional states
from both prosodic and lexical cues. Whereas
many works have investigated a prosodic-based
detection (Devillers et al., 2005), word-based ap-
proaches remain quite original. Our hypothesis is
that emotion is compositional, e.g. that is pos-
sible to compute the global emotion carried by a
sentence from the emotion of every content word.
This calculation depends obviously of the seman-
tic structure of the utterance: our system will
precisely benefit from the characterization of the
chunk dependencies carried on by LOGUS. For the
moment being, we are working on the definition of
a complete lexical norm of emotional values from
children of 3, 5 and 7 years. This norm will be
established in collaboration with psycholinguists
from Montpellier University, France.

5 Conclusion

When we started implementing the LOGUS sys-
tem, one of our objectives was to achieve robust
parsing of spontaneous spoken language while
making the application domain much wider than
is currently done. Logical formalisms are not usu-
ally viewed as efficient tools for pragmatic appli-
cations. The promising results of LOGUS show
that they can be brought into interesting new ap-
proaches.
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Another objective was to have a rather generic
system, despite the use of a domain-based seman-
tic knowledge. We have fulfilled this constraint
through the definition of generic predicates as
well as generic rules working on semantic triplets
or quadruplets which makes it possible to have
generic chunk linking rules. The performances of
LOGUSshow that a deeper understanding can bear
comparison with concept spotting approaches.
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Abstract

Spoken dialogue is notoriously hard to
process with standard NLP technologies.
Natural spoken dialogue is replete with
disfluent, partial, elided or ungrammatical
utterances, all of which are very hard to
accommodate in a dialogue system. Fur-
thermore, speech recognition is known to
be a highly error-prone task, especially for
complex, open-ended discourse domains.
The combination of these two problems
– ill-formed and/or misrecognised speech
inputs – raises a major challenge to the de-
velopment of robust dialogue systems.

We present an integrated approach for ad-
dressing these two issues, based on a in-
cremental parser for Combinatory Cate-
gorial Grammar. The parser takes word
lattices as input and is able to handle ill-
formed and misrecognised utterances by
selectively relaxing its set of grammati-
cal rules. The choice of the most rele-
vant interpretation is then realised via a
discriminative model augmented with con-
textual information. The approach is fully
implemented in a dialogue system for au-
tonomous robots. Evaluation results on a
Wizard of Oz test suite demonstrate very
significant improvements in accuracy and
robustness compared to the baseline.

1 Introduction

Spoken dialogue is often considered to be one of
the most natural means of interaction between a
human and a robot. It is, however, notoriously
hard to process with standard language process-
ing technologies. Dialogue utterances are often in-
complete or ungrammatical, and may contain nu-
merous disfluencies like fillers (err, uh, mm), rep-
etitions, self-corrections, etc. Rather than getting

crisp-and-clear commands such as ”Put the red
ball inside the box!”, it is more likely the robot
will hear such kind of utterance: ”right, now, could
you, uh, put the red ball, yeah, inside the ba/ box!”.
This is natural behaviour in human-human interac-
tion (Fernández and Ginzburg, 2002) and can also
be observed in several domain-specific corpora for
human-robot interaction (Topp et al., 2006).

Moreover, even in the (rare) case where the ut-
terance is perfectly well-formed and does not con-
tain any kind of disfluencies, the dialogue sys-
tem still needs to accomodate the various speech
recognition errors thay may arise. This problem
is particularly acute for robots operating in real-
world noisy environments and deal with utterances
pertaining to complex, open-ended domains.

The paper presents a new approach to address
these two difficult issues. Our starting point is the
work done by Zettlemoyer and Collins on parsing
using relaxed CCG grammars (Zettlemoyer and
Collins, 2007) (ZC07). In order to account for
natural spoken language phenomena (more flex-
ible word order, missing words, etc.), they aug-
ment their grammar framework with a small set
of non-standard combinatory rules, leading to a
relaxation of the grammatical constraints. A dis-
criminative model over the parses is coupled with
the parser, and is responsible for selecting the most
likely interpretation(s) among the possible ones.

In this paper, we extend their approach in two
important ways. First, ZC07 focused on the treat-
ment of ill-formed input, and ignored the speech
recognition issues. Our system, to the contrary,
is able to deal with both ill-formed and misrec-
ognized input, in an integrated fashion. This is
done by augmenting the set of non-standard com-
binators with new rules specifically tailored to deal
with speech recognition errors.

Second, the only features used by ZC07 are syn-
tactic features (see 3.4 for details). We signifi-
cantly extend the range of features included in the
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discriminative model, by incorporating not only
syntactic, but also acoustic, semantic and contex-
tual information into the model.

An overview of the paper is as follows. We first
describe in Section 2 the cognitive architecture in
which our system has been integrated. We then
discuss the approach in detail in Section 3. Fi-
nally, we present in Section 4 the quantitative eval-
uations on a WOZ test suite, and conclude.

2 Architecture

The approach we present in this paper is fully im-
plemented and integrated into a cognitive architec-
ture for autonomous robots. A recent version of
this system is described in (Hawes et al., 2007). It
is capable of building up visuo-spatial models of
a dynamic local scene, continuously plan and exe-
cute manipulation actions on objects within that
scene. The robot can discuss objects and their
material- and spatial properties for the purpose of
visual learning and manipulation tasks.

Figure 1: Architecture schema of the communica-
tion subsystem (only for comprehension).

Figure 2 illustrates the architecture schema for
the communication subsystem incorporated in the
cognitive architecture (only the comprehension
part is shown).

Starting with ASR, we process the audio signal
to establish a word lattice containing statistically
ranked hypotheses about word sequences. Subse-
quently, parsing constructs grammatical analyses
for the given word lattice. A grammatical analy-
sis constructs both a syntactic analysis of the ut-
terance, and a representation of its meaning. The
analysis is based on an incremental chart parser1

for Combinatory Categorial Grammar (Steedman
and Baldridge, 2009). These meaning represen-
tations are ontologically richly sorted, relational

1Built on top of the OpenCCG NLP library:
http://openccg.sf.net

structures, formulated in a (propositional) descrip-
tion logic, more precisely in the HLDS formal-
ism (Baldridge and Kruijff, 2002). The parser
compacts all meaning representations into a sin-
gle packed logical form (Carroll and Oepen, 2005;
Kruijff et al., 2007). A packed LF represents con-
tent similar across the different analyses as a single
graph, using over- and underspecification of how
different nodes can be connected to capture lexical
and syntactic forms of ambiguity.

At the level of dialogue interpretation, a packed
logical form is resolved against a SDRS-like di-
alogue model (Asher and Lascarides, 2003) to
establish contextual co-reference and dialogue
moves.

Linguistic interpretations must finally be associ-
ated with extra-linguistic knowledge about the en-
vironment – dialogue comprehension hence needs
to connect with other subarchitectures like vision,
spatial reasoning or planning. We realise this
information binding between different modalities
via a specific module, called the “binder”, which is
responsible for the ontology-based mediation ac-
cross modalities (Jacobsson et al., 2008).

2.1 Context-sensitivity
The combinatorial nature of language provides
virtually unlimited ways in which we can commu-
nicate meaning. This, of course, raises the ques-
tion of how precisely an utterance should then be
understood as it is being heard. Empirical stud-
ies have investigated what information humans use
when comprehending spoken utterances. An im-
portant observation is that interpretation in con-
text plays a crucial role in the comprehension of
utterance as it unfolds (Knoeferle and Crocker,
2006). During utterance comprehension, humans
combine linguistic information with scene under-
standing and “world knowledge”.

Figure 2: Context-sensitivity in processing situ-
ated dialogue understanding

Several approaches in situated dialogue for
human-robot interaction have made similar obser-
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vations (Roy, 2005; Roy and Mukherjee, 2005;
Brick and Scheutz, 2007; Kruijff et al., 2007): A
robot’s understanding can be improved by relating
utterances to the situated context. As we will see
in the next section, by incorporating contextual in-
formation into our model, our approach to robust
processing of spoken dialogue seeks to exploit this
important insight.

3 Approach

3.1 Grammar relaxation
Our approach to robust processing of spoken di-
alogue rests on the idea of grammar relaxation:
the grammatical constraints specified in the gram-
mar are “relaxed” to handle slightly ill-formed or
misrecognised utterances.

Practically, the grammar relaxation is done
via the introduction of non-standard CCG rules
(Zettlemoyer and Collins, 2007). In Combinatory
Categorial Grammar, the rules are used to assem-
ble categories to form larger pieces of syntactic
and semantic structure. The standard rules are ap-
plication (<,>), composition (B), and type rais-
ing (T) (Steedman and Baldridge, 2009).

Several types of non-standard rules have been
introduced. We describe here the two most impor-
tant ones: the discourse-level composition rules,
and the ASR correction rules. We invite the reader
to consult (Lison, 2008) for more details on the
complete set of grammar relaxation rules.

3.1.1 Discourse-level composition rules
In natural spoken dialogue, we may encounter ut-
terances containing several independent “chunks”
without any explicit separation (or only a short
pause or a slight change in intonation), such as

(1) “yes take the ball no the other one on your
left right and now put it in the box.”

Even if retrieving a fully structured parse for
this utterance is difficult to achieve, it would be
useful to have access to a list of smaller “discourse
units”. Syntactically speaking, a discourse unit
can be any type of saturated atomic categories -
from a simple discourse marker to a full sentence.

The type raising rule Tdu allows the conversion
of atomic categories into discourse units:

A : @if ⇒ du : @if (Tdu)

where A represents an arbitrary saturated
atomic category (s, np, pp, etc.).

The rule>C is responsible for the integration of
two discourse units into a single structure:

du : @if, du : @jg ⇒
du : @{d:d-units}(list∧

(〈FIRST〉 i ∧ f)∧
(〈NEXT〉 j ∧ g)) (>C)

3.1.2 ASR error correction rules
Speech recognition is a highly error-prone task. It
is however possible to partially alleviate this prob-
lem by inserting new error-correction rules (more
precisely, new lexical entries) for the most fre-
quently misrecognised words.

If we notice e.g. that the ASR system frequently
substitutes the word “wrong” for the word “round”
during the recognition (because of their phonolog-
ical proximity), we can introduce a new lexical en-
try in the lexicon in order to correct this error:

round ` adj : @attitude(wrong) (2)

A set of thirteen new lexical entries of this type
have been added to our lexicon to account for the
most frequent recognition errors.

3.2 Parse selection
Using more powerful grammar rules to relax the
grammatical analysis tends to increase the number
of parses. We hence need a a mechanism to dis-
criminate among the possible parses. The task of
selecting the most likely interpretation among a set
of possible ones is called parse selection. Once all
the possible parses for a given utterance are com-
puted, they are subsequently filtered or selected
in order to retain only the most likely interpreta-
tion(s). This is done via a (discriminative) statisti-
cal model covering a large number of features.

Formally, the task is defined as a function F :
X → Y where the domain X is the set of possible
inputs (in our case, X is the set of possible word
lattices), and Y the set of parses. We assume:

1. A function GEN(x) which enumerates all
possible parses for an input x. In our case,
this function simply represents the set of
parses of x which are admissible according
to the CCG grammar.

2. A d-dimensional feature vector f(x, y) ∈
<d, representing specific features of the pair
(x, y). It can include various acoustic, syn-
tactic, semantic or contextual features which
can be relevant in discriminating the parses.
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3. A parameter vector w ∈ <d.

The function F , mapping a word lattice to its
most likely parse, is then defined as:

F (x) = argmax
y∈GEN(x)

wT · f(x, y) (3)

where wT · f(x, y) is the inner product∑d
s=1ws fs(x, y), and can be seen as a measure

of the “quality” of the parse. Given the parameters
w, the optimal parse of a given utterance x can be
therefore easily determined by enumerating all the
parses generated by the grammar, extracting their
features, computing the inner product wT ·f(x, y),
and selecting the parse with the highest score.

The task of parse selection is an example of
structured classification problem, which is the
problem of predicting an output y from an input
x, where the output y has a rich internal structure.
In the specific case of parse selection, x is a word
lattice, and y a logical form.

3.3 Learning
3.3.1 Training data
In order to estimate the parameters w, we need a
set of training examples. Unfortunately, no corpus
of situated dialogue adapted to our task domain is
available to this day, let alone semantically anno-
tated. The collection of in-domain data via Wizard
of Oz experiments being a very costly and time-
consuming process, we followed the approach ad-
vocated in (Weilhammer et al., 2006) and gener-
ated a corpus from a hand-written task grammar.

To this end, we first collected a small set of
WoZ data, totalling about a thousand utterances.
This set is too small to be directly used as a cor-
pus for statistical training, but sufficient to cap-
ture the most frequent linguistic constructions in
this particular context. Based on it, we designed
a domain-specific CFG grammar covering most of
the utterances. Each rule is associated to a seman-
tic HLDS representation. Weights are automati-
cally assigned to each grammar rule by parsing our
corpus, hence leading to a small stochastic CFG
grammar augmented with semantic information.

Once the grammar is specified, it is randomly
traversed a large number of times, resulting in a
larger set (about 25.000) of utterances along with
their semantic representations. Since we are inter-
ested in handling errors arising from speech recog-
nition, we also need to “simulate” the most fre-
quent recognition errors. To this end, we synthe-

sise each string generated by the domain-specific
CFG grammar, using a text-to-speech engine2,
feed the audio stream to the speech recogniser,
and retrieve the recognition result. Via this tech-
nique, we are able to easily collect a large amount
of training data3.

3.3.2 Perceptron learning
The algorithm we use to estimate the parameters
w using the training data is a perceptron. The al-
gorithm is fully online - it visits each example in
turn and updates w if necessary. Albeit simple,
the algorithm has proven to be very efficient and
accurate for the task of parse selection (Collins
and Roark, 2004; Collins, 2004; Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007).

The pseudo-code for the online learning algo-
rithm is detailed in [Algorithm 1].

It works as follows: the parameters w are first
initialised to some arbitrary values. Then, for
each pair (xi, zi) in the training set, the algorithm
searchs for the parse y′ with the highest score ac-
cording to the current model. If this parse happens
to match the best parse which generates zi (which
we shall denote y∗), we move to the next example.
Else, we perform a simple perceptron update on
the parameters:

w = w + f(xi, y
∗)− f(xi, y

′) (4)

The iteration on the training set is repeated T
times, or until convergence.

The most expensive step in this algorithm is
the calculation of y′ = argmaxy∈GEN(xi) w

T ·
f(xi, y) - this is the decoding problem.

It is possible to prove that, provided the train-
ing set (xi, zi) is separable with margin δ > 0, the
algorithm is assured to converge after a finite num-
ber of iterations to a model with zero training er-
rors (Collins and Roark, 2004). See also (Collins,
2004) for convergence theorems and proofs.

3.4 Features
As we have seen, the parse selection operates by
enumerating the possible parses and selecting the

2We used MARY (http://mary.dfki.de) for the
text-to-speech engine.

3Because of its relatively artificial character, the quality
of such training data is naturally lower than what could be
obtained with a genuine corpus. But, as the experimental re-
sults will show, it remains sufficient to train the perceptron
for the parse selection task, and achieve significant improve-
ments in accuracy and robustness. In a near future, we plan
to progressively replace this generated training data by a real
spoken dialogue corpus adapted to our task domain.
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Algorithm 1 Online perceptron learning

Require: - set of n training examples {(xi, zi) : i = 1...n}
- T : number of iterations over the training set
- GEN(x): function enumerating possible parses

for an input x, according to the CCG grammar.
- GEN(x, z): function enumerating possible parses

for an input x and which have semantics z,
according to the CCG grammar.

- L(y) maps a parse tree y to its logical form.
- Initial parameter vector w0

% Initialise
w← w0

% Loop T times on the training examples
for t = 1...T do

for i = 1...n do
% Compute best parse according to current model
Let y′ = argmaxy∈GEN(xi)

wT · f(xi, y)

% If the decoded parse 6= expected parse, update the
parameters
if L(y′) 6= zi then

% Search the best parse for utterance xi with se-
mantics zi

Let y∗ = argmaxy∈GEN(xi,zi)
wT · f(xi, y)

% Update parameter vector w
Set w = w + f(xi, y

∗)− f(xi, y
′)

end if
end for

end for
return parameter vector w

one with the highest score according to the linear
model parametrised by w.

The accuracy of our method crucially relies on
the selection of “good” features f(x, y) for our
model - that is, features which help discriminat-
ing the parses. They must also be relatively cheap
to compute. In our model, the features are of four
types: semantic features, syntactic features, con-
textual features, and speech recognition features.

3.4.1 Semantic features
What are the substructures of a logical form which
may be relevant to discriminate the parses? We de-
fine features on the following information sources:

1. Nominals: for each possible pair
〈prop, sort〉, we include a feature fi in
f(x, y) counting the number of nominals
with ontological sort sort and proposition
prop in the logical form.

2. Ontological sorts: occurrences of specific
ontological sorts in the logical form.

Figure 3: graphical representation of the HLDS
logical form for “I want you to take the mug”.

3. Dependency relations: following (Clark and
Curran, 2003), we also model the depen-
dency structure of the logical form. Each
dependency relation is defined as a triple
〈sorta, sortb, label〉, where sorta denotes
the sort of the incoming nominal, sortb the
sort of the outgoing nominal, and label is the
relation label.

4. Sequences of dependency relations: number
of occurrences of particular sequences (ie. bi-
gram counts) of dependency relations.

The features on nominals and ontological sorts
aim at modeling (aspects of) lexical semantics -
e.g. which meanings are the most frequent for a
given word -, whereas the features on relations and
sequence of relations focus on sentential seman-
tics - which dependencies are the most frequent.
These features therefore help us handle lexical and
syntactic ambiguities.

3.4.2 Syntactic features
By “syntactic features”, we mean features associ-
ated to the derivational history of a specific parse.
The main use of these features is to penalise to a
correct extent the application of the non-standard
rules introduced into the grammar.

To this end, we include in the feature vector
f(x, y) a new feature for each non-standard rule,
which counts the number of times the rule was ap-
plied in the parse.
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Figure 4: CCG derivation of “pick cup the ball”.

In the derivation shown in the figure 4, the rule
corr (correction of a speech recognition error) is
applied once, so the corresponding feature value is
set to 1. The feature values for the remaining rules
are set to 0, since they are absent from the parse.

These syntactic features can be seen as a penalty
given to the parses using these non-standard rules,
thereby giving a preference to the “normal” parses
over them. This mechanism ensures that the gram-
mar relaxation is only applied “as a last resort”
when the usual grammatical analysis fails to pro-
vide a full parse. Of course, depending on the
relative frequency of occurrence of these rules in
the training corpus, some of them will be more
strongly penalised than others.

3.4.3 Contextual features
As we have already outlined in the background
section, one striking characteristic of spoken dia-
logue is the importance of context. Understanding
the visual and discourse contexts is crucial to re-
solve potential ambiguities and compute the most
likely interpretation(s) of a given utterance.

The feature vector f(x, y) therefore includes
various features related to the context:

1. Activated words: our dialogue system main-
tains in its working memory a list of contex-
tually activated words (cfr. (Lison and Krui-
jff, 2008)). This list is continuously updated
as the dialogue and the environment evolves.
For each context-dependent word, we include
one feature counting the number of times it
appears in the utterance string.

2. Expected dialogue moves: for each possible
dialogue move, we include one feature indi-
cating if the dialogue move is consistent with
the current discourse model. These features
ensure for instance that the dialogue move
following a QuestionYN is a Accept, Re-
ject or another question (e.g. for clarification
requests), but almost never an Opening.

3. Expected syntactic categories: for each
atomic syntactic category in the CCG gram-
mar, we include one feature indicating if the
category is consistent with the current dis-
course model. These features can be used to
handle sentence fragments.

3.4.4 Speech recognition features
Finally, the feature vector f(x, y) also includes
features related to the speech recognition. The
ASR module outputs a set of (partial) recognition
hypotheses, packed in a word lattice. One exam-
ple of such a structure is given in Figure 5. Each
recognition hypothesis is provided with an asso-
ciated confidence score, and we want to favour
the hypotheses with high confidence scores, which
are, according to the statistical models incorpo-
rated in the ASR, more likely to reflect what was
uttered.

To this end, we introduce three features: the
acoustic confidence score (confidence score pro-
vided by the statistical models included in the
ASR), the semantic confidence score (based on a
“concept model” also provided by the ASR), and
the ASR ranking (hypothesis rank in the word lat-
tice, from best to worst).

Figure 5: Example of word lattice

4 Experimental evaluation

We performed a quantitative evaluation of our ap-
proach, using its implementation in a fully inte-
grated system (cf. Section 2). To set up the ex-
periments for the evaluation, we have gathered a
corpus of human-robot spoken dialogue for our
task-domain, which we segmented and annotated
manually with their expected semantic interpreta-
tion. The data set contains 195 individual utter-
ances along with their complete logical forms.

4.1 Results
Three types of quantitative results are extracted
from the evaluation results: exact-match, partial-
match, and word error rate. Tables 1, 2 and 3 illus-
trate the results, broken down by use of grammar
relaxation, use of parse selection, and number of
recognition hypotheses considered.
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Size of word lattice
(number of NBests)

Grammar
relaxation

Parse
selection Precision Recall F1-value

(Baseline) 1 No No 40.9 45.2 43.0
. 1 No Yes 59.0 54.3 56.6
. 1 Yes Yes 52.7 70.8 60.4
. 3 Yes Yes 55.3 82.9 66.3
. 5 Yes Yes 55.6 84.0 66.9

(Full approach) 10 Yes Yes 55.6 84.9 67.2

Table 1: Exact-match accuracy results (in percents).

Size of word lattice
(number of NBests)

Grammar
relaxation

Parse
selection Precision Recall F1-value

(Baseline) 1 No No 86.2 56.2 68.0
. 1 No Yes 87.4 56.6 68.7
. 1 Yes Yes 88.1 76.2 81.7
. 3 Yes Yes 87.6 85.2 86.4
. 5 Yes Yes 87.6 86.0 86.8

(Full approach) 10 Yes Yes 87.7 87.0 87.3

Table 2: Partial-match accuracy results (in percents).

Each line in the tables corresponds to a possible
configuration. Tables 1 and 2 give the precision,
recall and F1 value for each configuration (respec-
tively for the exact- and partial-match), and Table
3 gives the Word Error Rate [WER].

The first line corresponds to the baseline: no
grammar relaxation, no parse selection, and use of
the first NBest recognition hypothesis. The last
line corresponds to the results with the full ap-
proach: grammar relaxation, parse selection, and
use of 10 recognition hypotheses.

Size of word
lattice (NBests)

Grammar
relaxation

Parse
selection WER

1 No No 20.5
1 Yes Yes 19.4
3 Yes Yes 16.5
5 Yes Yes 15.7

10 Yes Yes 15.7

Table 3: Word error rate (in percents).

4.2 Comparison with baseline
Here are the comparative results we obtained:

• Regarding the exact-match results between
the baseline and our approach (grammar re-
laxation and parse selection with all fea-
tures activated for NBest 10), the F1-measure
climbs from 43.0 % to 67.2 %, which means
a relative difference of 56.3 %.

• For the partial-match, the F1-measure goes
from 68.0 % for the baseline to 87.3 % for
our approach – a relative increase of 28.4 %.

• We obverse a significant decrease in WER:
we go from 20.5 % for the baseline to 15.7 %
with our approach. The difference is statisti-
cally significant (p-value for t-tests is 0.036),
and the relative decrease of 23.4 %.

5 Conclusions

We presented an integrated approach to the pro-
cessing of (situated) spoken dialogue, suited to
the specific needs and challenges encountered in
human-robot interaction.

In order to handle disfluent, partial, ill-formed
or misrecognized utterances, the grammar used by
the parser is “relaxed” via the introduction of a
set of non-standard combinators which allow for
the insertion/deletion of specific words, the com-
bination of discourse fragments or the correction
of speech recognition errors.

The relaxed parser yields a (potentially large)
set of parses, which are then packed and retrieved
by the parse selection module. The parse selec-
tion is based on a discriminative model exploring a
set of relevant semantic, syntactic, contextual and
acoustic features extracted for each parse. The pa-
rameters of this model are estimated against an au-
tomatically generated corpus of 〈utterance, logical
form〉 pairs. The learning algorithm is an percep-
tron, a simple albeit efficient technique for param-
eter estimation.

As forthcoming work, we shall examine the po-
tential extension of our approach in new direc-
tions, such as the exploitation of parse selection
for incremental scoring/pruning of the parse chart,
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the introduction of more refined contextual fea-
tures, or the use of more sophisticated learning al-
gorithms, such as Support Vector Machines.
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Abstract

We present RUBISC, a new incremen-
tal chunker that can perform incremental
slot filling and revising as it receives a
stream of words. Slot values can influ-
ence each other via a unification mecha-
nism. Chunks correspond to sense units,
and end-of-sentence detection is done in-
crementally based on a notion of seman-
tic/pragmatic completeness. One of RU-
BISC’s main fields of application is in
dialogue systems where it can contribute
to responsiveness and hence naturalness,
because it can provide a partial or com-
plete semantics of an utterance while the
speaker is still speaking. The chunker is
evaluated on a German transcribed speech
corpus and achieves a concept error rate of
43.3% and an F-Score of 81.5.

1 Introduction

Real-time NLP applications such as dialogue sys-
tems can profit considerably from incremental
processing of language. When syntactic and se-
mantic structure is built on-line while the speech
recognition (ASR) is still working on the speech
stream, unnatural silences can be avoided and
the system can react in a faster and more user-
friendly way. As (Aist et al., 2007) and (Skantze
and Schlangen, 2009) show, such incremental sys-
tems are typically preferred by users over non-
incremental systems.

To achieve incrementality, most dialogue sys-
tems employ an incremental chart parser (cf.
(Stoness et al., 2004; Seginer, 2007) etc.). How-
ever, most existing dialogue systems operate in
very limited domains, e.g. moving objects, peo-
ple, trains etc. from one place to another (cf.

(Aist et al., 2007), (Skantze, 2007), (Traum et al.,
1996)). The complexity of the semantic repre-
sentations needed is thus limited. Moreover, user
behaviour (ungrammatical sentences, hesitations,
false starts) and error-prone ASR require the pars-
ing process to be robust.1 We argue that obtaining
relatively flat semantics in a limited domain while
needing exigent robustness calls for investigating
shallower incremental chunking approaches as al-
ternatives to CFG or dependency parsing. Previ-
ous work that uses a combination of shallow and
deep parsing in dialogue systems also indicates
that shallow methods can be superior to deep pars-
ing (Lewin et al., 1999).

The question addressed in this paper is how to
construct a chunker that works incrementally and
robustly and builds the semantics required in a
dialogue system. In our framework chunks are
built according to the semantic information they
contain while syntactic structure itself is less im-
portant. This approach is inspired by Selkirk’s
sense units (Selkirk, 1984). She claims such
units to be relevant for prosodic structure and dif-
ferent to syntactic structure. Similarly, (Abney,
1991) describes some characteristics of chunks as
follows—properties which also make them seem
to be useful units to be considered in spoken dia-
logue systems:

“when I read a sentence, I read it a chunk at
a time. [...] These chunks correspond in some
way to prosodic patterns. Chunks also represent a
grammatical watershed of sorts. The typical chunk
consists of a single content word surrounded by a
constellation of function words, matching a fixed
template. By contrast, the relationships between
chunks are mediated more by lexical selection

1cf. The incremental parser in (Skantze, 2007) can jump
over a configurable number of words in the input.
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than by rigid templates. [...] and the order in
which chunks occur is much more flexible than the
order of words within chunks.”

In our approach chunks are built incrementally
(one at a time) and are defined semantically (a
sense unit is complete when a slot in our template
or frame semantics can be filled). Ideally, in a full
system, the definition of their boundaries will also
be aided by prosodic information. The current im-
plementation builds the chunks or sense units by
identifying a more or less fixed sequence of con-
tent and function words, similar to what Abney
describes as a fixed template. The relationships
between the units are mediated by a unification
mechanism which prevents selectional restrictions
from being violated. This allows the order of the
sense units to be flexible, even as flexible as they
appear in ungrammatical utterances. This unifi-
cation mechanism and the incremental method of
operation are also the main difference to Abney’s
work and other chunkers.

In this paper, we first present our approach of
chunking, show our grammar formalism, the main
features of the chunker (unification mechanism,
incrementality, robustness), and explain how the
chunker can cope with certain tasks that are an is-
sue in dialogue systems, such as online utterance
endpointing and revising hypotheses. In Section 3,
we evaluate the chunker on a German corpus (of
transcribed spontaneous speech) in terms of con-
cept error rate and slot filling accuracy. Then we
discuss related work, followed by a general dis-
cussion and the conclusion.

2 Incremental Chunking

Figure 1 shows a simple example where the chun-
ker segments the input stream incrementally into
semantically relevant chunks. The figure also dis-
plays how the frame is being filled incrementally.
The chunk grammar developed for this work and
the dialogue corpus used were German, but we
give some examples in English for better readabil-
ity.

As time passes the chunker receives more and
more words from the ASR. It puts the words in a
queue and waits until the semantic content of the
accumulated words is enough for filling a slot in
the frame semantics. When this is the case the
chunk is completed and a new chunk is started.
At the same time the frame semantics is updated if
slot unification (see below) is possible and a check

time

turn
erm
the
piece
erm
the
second
in
the
upper
row
to
erm
clockwise

chunk:

[turn]
erm
erm the
erm the piece
erm the piece erm
erm the piece erm the 

in
in the
in the upper
[in the upper row]
to
to erm
[to erm clockwise]

action:turning
end:−

grammar:
action:turning −>turn

end:right−>to the right|clockwise
...

action:turning

[erm the piece erm the second]

R
U
B
I
S
C

semantics:input:

object:xpos:2−>the second
object:ypos:−1−>the upper row

object: name:−

end:−
object: name:−

action:turning
end:−
object: name:−

action:turning
end:right
object: name:−

         xpos:2
          ypos:−

         xpos:2
          ypos:−1

         xpos:2
          ypos:−1

          ypos:−
         xpos:−

Figure 1: Incremental robust sense unit construc-
tion by RUBISC.

Figure 2: Puzzle-task of the corpus used for gram-
mar building and testing.

whether the utterance is complete is made, so that
the chunker can be restarted for the next utterance
if necessary.

2.1 A Regular Grammar for Semantics

The grammar we are using for the experiments in
this paper was developed using a small corpus of
German dialogue (Siebert and Schlangen, 2008),
(Siebert, 2007). Figure 2 shows a picture of the
task that the subjects completed for this corpus.2 A
number of pentomino pieces were presented. The
pieces had to be moved into an animal-shaped fig-
ure. The subjects were shown partly completed
puzzles and had to give concise and detailed ver-
bal instructions of the next move that had to be
done. The locations inside this figure were usually
referred to in terms of body parts (move the x into

2For the corpus used here the difference was that the but-
ton labels were German and that the pentomino pieces were
not ordered in two rows. For better readability, we show the
picture with the English labels.
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the head of the elephant).
For such restricted tasks, a simple frame se-

mantics seems sufficient, representing the action
(grasping, movement, flipping or turning of an ob-
ject), the object that is involved, and where or
in which position the object will end up. In our
current grammar implementation the object can
be described with three attributes:name is the
name of the object. In our domain, the objects are
pentomino-pieces (i.e., geometrical forms that can
be built out of five squares) which have traditional
letter names such asx or w; the grammar maps
other descriptions such ascrossor plus to such
canonical names. A piece can also be described
by its current position, as inthe lower piece in
the third column. This is covered by the attributes
xpos andypos demarking the x-position and y-
position of a piece. The x- or y-position can
be a positive or negative number, depending on
whether the description counts from left or right,
respectively.

The possible slots must be defined in the gram-
mar file in the following format:

@:action
@:entity:name
@:entity:xpos
@:entity:ypos
@:end

(That is: definition marker @:level
1: (optional) level 2.)

The position where or in which the piece ends
up could also be coded as a complex entry, but for
simplicity’s sake (in the data used for evaluation,
we have a very limited set of end positions that
would each be described by just one attribute re-
spectively), we restrict ourselves to a simple entry
calledend which takes the value of a body part
(head, back, leg1etc.) in the case of movement,
and the value of a direction or end positionhor-
izontal, vertical, right, leftin the case of a turn-
ing or flipping action. It will be (according to
our current grammar) set toemptyin the case of a
grasping action, because grasping does not specify
an end position. This will also become important
later, when unification comes into play. Figure 3
shows a part of the German grammar used with
approximate translations (in curly brackets) of the
right-hand side into English. The English parts in
curly brackets is meta-notation and not part of the
grammar file. Note that one surface string can de-
termine the value of more than one semantic slot.
The grammar used in the experiments in this paper

action:grasping,end:empty -> nimm|nehme
{take}

action:turning -> drehe? {turn}
action:flipping -> spieg(le|el) {flip}
action:movement -> bewegt {moved}
action:turning -> gedreht {turned}
entity:name:x -> kreuz|plus|((das|ein) x)

{cross|pluss|((the|an) x)}
entity:name:w -> treppe|((das|ein) w$)

{staircase|(the|a) w}
entity:name:w -> (das|ein) m$

{(the|an) m}
entity:name:z -> (das|ein) z$

{(the|a) z}
end:head -> (in|an) den kopf

{(on|in) the head}
end:leg2 -> ins? das (hinterbein|hintere
bein|rechte bein|zweites bein) {in the hindleg|

back leg|right leg| second leg}
entity:ypos:lower -> der (unteren|zweiten)

reihe {(lower|second) row}
entity:xpos:1 -> das erste {the first}
entity:ypos:-1 -> das letzte {the last}
end:horizontal,action:flipping -> horizontal

{horizontally}

Figure 3: Fragment of the grammar file used in
the experiments (with English translations of the
patterns for illustration only).

had 97 rules.

2.2 Unification

Unification is an important feature of RUBISC
for handling aspects of long-distance dependen-
cies and preventing wrong semantic representa-
tions. Unification enables a form of ‘semantic
specification’ of verb arguments, avoiding that the
wrong arguments are combined with a given verb.
It also makes possible that rules can check for the
value of other slots and hence possibly become
inapplicable. The verbmove, for instance, en-
sures thataction is set tomovement. For the ut-
teranceschieb das̈ah das horizontal̈ah liegt ins
Vorderbein(move that uh which is horizontal into
the front leg). The action-slot will be filled
with movementbut theend-slot remains empty
becausehorizontalas an end fits only with a flip-
ping action, and so is ignored here. Figure 4 illus-
trates how the slot unification mechanism works.

2.3 Robustness

The chunker meets various robustness require-
ments to a high degree. First, pronunciation vari-
ants can be taken account of in the grammar in
a very flexible way, because the surface string or
terminal symbols can be expressed through regu-
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action:−
end:−
...

unify frame with

Input: unification component:time: Frame:

[schieb]

[action:movement]

−>unification success: action:movement
end:−
...

das
das mh
[das mh horizontal]

unify frame with
action:flipping
end:horizontal

−>unification failed: action:movement
end:−

liegt
liegt ins
[liegt ins Vorderbein]

unify frame with
[end:leg1] action:movement

end:leg1

...

...

Figure 4: Example of slot unification and failure
of unification.

lar expression patterns.movein German for in-
stance can be pronounced with or without a final
-e asbewegeor beweg. flip (spieglecan be pro-
nounced with or without-el-inversion at the end.
Note, that this is due to the performance of speak-
ers in our corpus and does not necessarily reflect
German grammar rules. A system, however, needs
to be able to cope with performance-based varia-
tions.

Disfluencies are handled through how the chun-
ker constructs chunks as sense units. First, the
chunker only searches for relevant information in
a chunk. Irrelevant information such as an initial
uh in uh second rowis put in the queue, but ig-
nored as the chunker picks onlysecond rowas the
semantically relevant part. Furthermore the chun-
ker provides a mechanism that allows it to jump
over words, so thatsecond rowwill be found in
the second uh rowand the crosswill be found in
the strange cross, wherestrangeis an unknown
word.

2.4 Incrementality

One of the main features of RUBISC is its incre-
mentality. It can receive one word at a time and
extract semantic structure from it. Incrementality
is not strict here in the sense of (Nivre, 2004), be-
cause sometimes more than one word is needed
before parts of the frame are constructed and out-
put: into the right, for instance, needs to wait for a
word like leg that completes the chunk. We don’t
necessarily consider this a disadvantage, though,
as our chunks closely correlate to the minimal bits

of information that can usefully be reacted to. In
our corpus the first slot gets on average filled after
3.5 words (disregarding examples where no slots
are filled). The average utterance is 12.4 words
long.

2.5 End-of-Sentence Detection

An incremental parser in a dialogue system needs
to know when to stop processing a sentence and
when to start the next one. This can be done by
using prosodic and syntactic information (Atterer
et al., 2008) or by checking whether a syntactic
S-node is complete. Since RUBISC builds sense
units, the completeness of an utterance can be de-
fined as semantic-pragmatic completeness, i.e. by
a certain number of slots that must be filled. In our
domain, for instance, it makes sense to restart the
chunker when the action and end slot and either
the name slot or the two position slots are filled.

2.6 History

The chunker keeps a history of the states of the
frames. It is able to go back to a previous state
when the incremental speech recognition revokes
a word hypothesis. As an example consider the
current word hypothesis to bethe L. The slot en-
tity name will be filled with l. Then the speech
recognition decides to change the hypothesis into
the elephant. This results in clearing the slot for
entity name again.

3 Evaluation

The sense unit chunker was evaluated in terms of
how well it performed in slot filling on an unseen
part of our corpus. This corpus comes annotated
with utterance boundaries. 500 of these utterances
were manually labelled in terms of the semantic
slots defined in the grammar. The annotators were
not involved in the construction of the chunker or
grammar. The annotation guidelines detailed the
possible values for each slot. The entity names
had to be filled in with the letter names of the
pieces, the end slot with body parts orright, left,
horizontal etc., and the position slots with posi-
tive and negative numbers.3 The chunker was then
run on 400 of these utterances and the slot values
were compared with the annotated frames. 100
of the labelled utterances and 50 additional utter-

3In a small fraction (21) of the 500 cases an utterance
actually contained 2 statements that were combined with
und/and. In these cases the second statement was neglected.
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ances were used by the author for developing the
grammar.

We examined the following evaluation mea-
sures:
• the concept error (concept err) rate (percentage

of wrong frames)
• the percentage of complete frames that were

correct (frames corr)
• the percentage ofslotsthat werecorrect
• the percentage ofaction slotscorrect
• the percentage ofendslotscorrect
• the percentage of object:nameslotscorrect
• the percentage of object:xposslotscorrect
• the percentage of object:yposslotscorrect

The results are shown in Table 1. We used
a very simple baseline: a system that does not
fill any slots. This strategy still gets 17% of
the frames right, because some utterances do
not contain any real content. For the sentence
Also das ist recht schwer(Trans: That’s quite
difficult.), for instance, the gold standard seman-
tic representation would be: {action:None,
end:None, object:{xpos:None, name:None,

ypos:None}}. As the baseline ‘system’ always
returns the empty frame, it scores perfectly for
this example sentence. We are aware that this
appears to be a very easy baseline. However, for
some slots, such as the xpos and ypos slots it still
turned out to be quite hard to beat this baseline,
as wrong entries were common for those slots.
The chunker achieves a frame accuracy of 54.5%
and an overall slot filling accuracy of 86.80%
(compared to 17% and 64.3% baseline). Of the
individual slots the action slot was the one that
improved the most. The position slots were the
only ones to deteriorate. As 17% of our utterances
did not contain any relevant content, i.e. the frame
was completely empty, we repeated the evaluation
without these irrelevant data. The results are
shown in brackets in the table.

To check the impact of the unification mecha-
nism, we performed another evaluation with this
mechanism turned off, i.e. slots are always filled
when they are empty without regarding other slots.
In the second step in Figure 4, the end slot would
hence be filled. This resulted in a decline in per-
formance as can also be seen in Table 1. We also
turned off robustness features to test for their im-
pact. Surprisingly, turning off the skipping of one
word within a string specified by a grammar rule
(as into erm clockwise), did not have an effect on

the results on our corpus. When we also turn off
allowing initial material (erm the piece), however,
performance drops considerably.

We also tested a variant of the systemRUBISC-
o (for RUBISC-overlap) which considers overlap-
ping chunks: Take the third piecewill result in
xpos:3 for the original chunker, even if the utter-
ance is continued withfrom the right. RUBISC-o
also considers the previous chunkthe third piece
for the search of a surface representation. In this
case, it overwrites3 with -3. In general, this be-
haviour improves the results.4

To allow a comparison with other work that re-
ports recall and precision as measures, we also
computed those values for RUBISC: for our test
corpus recall was 83.47% and precision was
79.69% (F-score 81.54). A direct comparison with
other systems is of course not possible, because
the tasks and data are different. Nevertheless, the
numbers allow an approximate feel of how well
the system performs.

To get an even better idea of the performance,
we let a second annotator label the data we tested
on; inter-annotator agreement is given in Table 1.
The accuracy for most slots is around 90% agree-
ment beween annotators. The concept error rate
is 32.25%. We also examined 50 utterances of the
test corpus for an error analysis. The largest part of
the errors was due to vocabulary restrictions or re-
strictions in the regular expressions: subjects used
names for pieces or body parts or even verbs which
had not been seen or considered during grammar
development. As our rules for end positions con-
tained pronouns like (into the back), they were
too restricted for some description variants (such
that it touches the back). Another problem that
appears is that descriptions of starting positions
can be confounded with descriptions of end po-
sitions. Sometimes subjects refer to end positions
not with body parts but withat the right sideetc.
In some cases this leads to wrong entries in the
object-position slots. In some cases a full parser
might be helpful, but not always, because some
expressions are syntactically ambiguous:füge das
Teil ganz rechts in das Rechteck ein.(put the piece
on the right into the square/put the piece into the
square on the right.) A minority of errors was also

4Testing significance, there is a significant difference be-
tween RUBISC and the baseline, and RUBISC and RIBISC
w/o rob (for all measures exceptxposandypos). The other
variants show no significance compared with RUBISC but
clear tendencies in the directions described above.
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baseline RUBISC w/o unif w/o rob RUBISC-o i-annotator
concept err 83.0 (100) 45.5 (44.6) 49.5 (49.7) 73.3 (85.5) 43.3 (42.8) 32.3 (35.5)
frames corr 17.0 (0) 54.5 (55.4) 50.3 (50.3) 26.8 (14.5) 56.8 (57.2) 67.8 (64.5)
slots corr 64.3 (57.0) 86.8 (87.2) 84.6 (84.5) 78.8 (74.9) 87.6 (87.6) 92.1 (91.5)
action corr 27.8 (13.0) 90.3 (92.2) 85.8 (86.7) 64.3 (57.5) 89.8 (90.7) 89.0 (88.6)
end corr 68.0 (61.4) 85.8 (87.3) 81.0 (81.6) 73.8 (69.0) 85.5 (87.0) 95.8 (95.1)
name corr 48.8 (38.3) 86.3 (88.3) 84.5 (86.1) 79.0 (76.2) 86.5 (88.0) 86.8 (85.8)
xpos corr 87.5 (84.9) 83.0 (80.7) 83.0 (80.7) 86.5 (83.7) 85.5 (83.4) 94.5 (94.0)
ypos corr 89.5 (87.3) 88.8 (87.3) 88.8 (87.3) 90.3 (88.3) 90.5 (88.9) 94.5 (94.0)

Table 1: Evaluation results (in %) for RUBISC in comparison with the baseline,RUBISC without uni-
fication mechanism (w/o unif), without robustness (w/o rob), RUBISC with overlap (RUBISC-o), and
inter-annotator aggreement (i-annotator). See the text for more information.

due to complex descriptions (the damaged t where
the right part has dropped downwards– referring
to the f), transcription errors (rechtstattrechts) etc.

4 Related Work

Slot filling is used in dialogue systems such as
the Ravenclaw-Olympus system5, but the slots are
filled by using output from a chart parser (Ward,
2008). The idea is similar in that word strings are
mapped onto semantic frames. A filled slot, how-
ever, does not influence other slots via unification
as in our framework, nor can the system deal with
incrementality. This is also the main difference
to systems such as Regulus (Rayner et al., 2006).
Our unification is carried out on filled slots and in
an incremental fashion. It is not directly specified
in our grammar formalism. The chunker rather
checks whether slot entries suggested by various
independent grammar rules are unifiable.

Even though not incremental either, the ap-
proach by (Milward, 2000) is similar in that it can
pick information from various parts of an utter-
ance; for example, it can extract the arrival time
from sentences likeI’d like to arrive at York now
let’s see yes at 3pm. It builds a semantic chart us-
ing a Categorial grammar. The entries of this chart
are then mapped into slots. A number of settings
are compared and evaluated using recall and preci-
sion measures. The setting with the highest recall
(52%) achieves a precision of 79%. The setting
with the highest precision (96%) a recall of 22%.
These are F-scores of 62.7 and 35.8 respectively.

(Aist, 2006) incrementally identifies what they
call ‘pragmatic fragments’, which resemble the
sense units produced in this paper. However, their

5http://www.ravenclaw-olympus.org/

system is provided with syntactic labels and the
idea is to pass those on to a parser (this part ap-
pears to not be implemented yet). No evaluation is
given.

(Zechner, 1998) also builds frame representa-
tions. Contrary to our approach, semantic infor-
mation is extracted in a second step after syntac-
tic chunks have been defined. The approach does
not address the issue of end of sentence-detection,
and also differs in that it was designed for use with
unrestricted domains and hence requires resources
such as WordNet (Miller et al., 1993). Depend-
ing on the WordNet output, usually more than one
frame representation is built. In an evaluation, in
21.4% of the cases one of the frames found is cor-
rect. Other approaches like (Rose, 2000) also need
lexicons or similar resources.

(Helbig and Hartrumpf, 1997) developed an in-
cremental word-oriented parser for German that
uses the notion of semantic kernels. This idea
is similar in that increments correspond to con-
stituents that have already been understood se-
mantically. The parser was later on mainly used
for question answering systems and, even though
strongly semantically oriented, places more em-
phasis on syntactic and morphological analysis
and less on robustness than our approach. It
uses quite complex representations in the form of
multi-layered extended semantic networks.

Finally, speech grammars such as JSFG6 are
similar in that recognition patterns for slots like
’action’ are defined via regular patterns. The main
differences are non-incrementality and that the re-
sult of employing the grammar is a legal sequential
string for each individual slot, while our grammar

6java.sun.com/products/java-media/
speech/forDevelopers/JSGF/
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also encodes, what is a legal (distributed) combi-
nation of slot entries.

5 Discussion and Future Work

The RUBISC chunker presented here is
not the first NLU component that is robust
against unknown words or structures, or non-
grammaticalities and disfluencies in the input, nor
the first that works incrementally, or chunk-based,
or focusses predominantly on semantic content
instead of syntactic structure. But we believe that
it is the first that is all of this combined, and that
the combination of these features provides an
advantage—at least for the domains that we are
working on. The novel combination of unification
and incrementality has the potential to handle
more phenomena than simple key word spotting.
Consider the sentence:Do not take the piece that
looks like ans, rather the one that looks like aw.
The idea is to introduce a negation slot or flag,
that will be set when a negation occurs.nicht das
s (not the s) will trigger the flag to be set while at
the same time the name slot is filled withs. This
negation slot could then trigger a switch of the
mode of integration of new semantic information
from unification to overwriting. We will test this
in future work.

One of the main restrictions of our approach is
that the grammar is strongly word-oriented and
does not abstract over syntactic categories. Its
expressive power is thus limited and some extra
coding work might be necessary due to the lack
of generalization. However, we feel that this is
mediated by the simplicity of the grammar for-
malism. A grammar for a restricted domain (and
the approach is mainly aiming at such domains)
like ours can be developed within a short time
and its limited size also restricts the extra cod-
ing work. Another possible objection to our ap-
proach is that handcrafting grammars like ours is
costly and to some extent arbitrary. However, for
a small specialized vocabulary as is typical for
many dialogue systems, we believe that our ap-
proach can lead to a good fast-running system in a
short developing time due to the simplicity of the
grammar formalism and algorithm, which makes
it easier to handle than systems that use large lexi-
cal resources for complexer domains (e.g. tutoring
systems). Other future directions are to expand
the unification mechanism and grammar formal-
ism such that alternatives for slots are possible.

This feature would allow the grammar writer to
specify thatend:right requires a turning actionor
a flipping action.

6 Conclusion

We presented a novel framework for chunking.
The main new ideas are that of incremental chunk-
ing and chunking by sense units, where the rela-
tionship between chunks is established via a uni-
fication mechanism instead of syntactic bounds,
as in a full parsing approach. This mechanism
is shown to have advantages over simple keyword
spotting. The approach is suitable for online end-
of-sentence detection and can handle revised word
hypotheses. It is thus suitable for use in a spoken
dialogue system which aims at incrementality and
responsiveness. Nevertheless it can also be used
for other NLP applications. It can be used in an
incremental setting, but also for non-incremental
tasks. The grammar format is easy to grasp, and
the user can specify the slots he wants to be filled.
In an evaluation it achieved a concept error rate of
43.25% compared to a simple baseline of 83%.
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Abstract

Taking so-calledsplit utterancesas our
point of departure, we argue that a new
perspective on the major challenge of dis-
ambiguation becomes available, given a
framework in which both parsing and gen-
eration incrementally involve the same
mechanisms for constructing trees reflect-
ing interpretation (Dynamic Syntax: (Cann
et al., 2005; Kempson et al., 2001)). With
all dependencies, syntactic, semantic and
pragmatic, defined in terms of incremental
progressive tree growth, the phenomenon
of speaker/hearer role-switch emerges as
an immediate consequence, with the po-
tential for clarification, acknowledgement,
correction, all available incrementally at
any sub-sentential point in the interpreta-
tion process. Accordingly, at all interme-
diate points where interpretation of an ut-
terance subpart is not fully determined for
the hearer in context, uncertainty can be
resolved immediately by suitable clarifica-
tion/correction/repair/extension as an ex-
change between interlocutors. The result
is a major check on the combinatorial ex-
plosion of alternative structures and inter-
pretations at each choice point, and the ba-
sis for a model of how interpretation in
context can be established without either
party having to make assumptions about
what information they and their interlocu-
tor share in resolving ambiguities.

1 Introduction

A major characteristic of dialogue is effortless
switching between the roles of hearer and speaker.
Dialogue participants seamlessly shift between
parsing and generation bi-directionally across any
syntactic dependency, without any indication of
there being any problem associated with such
shifts (examples from Howes et al. (in prep)):

(1) Conversation from A and B, to C:
A: We’re going
B: to Bristol, where Jo lives.

(2) A smelling smoke comes into the kitchen:
A: Have you burnt
B the buns. Very thoroughly.
A: But did you burn
B: Myself? No. Luckily.

(3) A: Are you left or
B: Right-handed.

Furthermore, in no case is there any guarantee that
the way the shared utterance evolves is what ei-
ther party had in mind to say at the outset, indeed
obviously not, as otherwise the exchange risks be-
ing otiose. This flexibility provides a vehicle for
ongoing clarification, acknowledgement, correc-
tions, repairs etc. ((6)-(7) from (Mills, 2007)):

(4) A: I’m seeing Bill.
B: The builder?
A: Yeah, who lives with Monica.

(5) A: I saw Don
B: John?
A: Don, the guy from Bristol.

(6) A: I’m on the second switch
B: Switch?
A: Yeah, the grey thing

(7) A: I’m on the second row third on the left.
B: What?
A: on the left

The fragmental utterances that constitute such in-
cremental, joint contributions have been analysed
as falling into discrete structural types according
to their function, in all cases resolved to propo-
sitional types by combining with appropriate ab-
stractions from context (Fernández, 2006; Purver,
2004). However, any such fragment and their
resolution may occur as mid-turn interruptions,
well before any emergent propositional structure
is completed:

74



(8) A: They X-rayed me, and took a urine
sample, took a blood sample.
Er, the doctor ...

B: Chorlton?

A: Chorlton, mhm, he examined me, erm,
he, he said now they were on about a slight
[shadow] on my heart. [BNC: KPY
1005-1008]

The advantage of such ongoing, incremental, joint
conversational contributions is the effective nar-
rowing down of the search space out of which
hearers select (a) interpretations to yield some
commonly shared understanding, e.g. choice
of referents for NPs, and, (b) restricted struc-
tural frames which allow (grammatical) context-
dependent fragment resolution, i.e. exact speci-
fications of what contextually available structures
resolve elliptical elements. This seems to pro-
vide an answer as to why such fragments are so
frequent and undemanding elements of dialogue,
forming the basis for the observedcoordination
between participants: successive resolution at sub-
sentential stages yields a progressively jointly es-
tablished common ground, that can thereafter be
taken as a secure, albeit individual, basis for filter-
ing out interpretations inconsistent with such con-
firmed knowledge-base (see (Poesio and Rieser,
2008; Ginzburg, forthcmg) etc). All such dialogue
phenomena, illustrated in (1)-(8), jointly and in-
crementally achieved, we address with the general
termsplit utterances.

However, such exchanges are hard to model
within orthodox grammatical frameworks, given
that usually it is the sentence/proposition that is
taken as the unit of syntactic/semantic analysis;
and they have not been addressed in detail within
such frameworks, being set aside as deviant, given
that such grammars in principle do not specify
a concept ofgrammaticalitythat relies on a de-
scription of the context of occurrence of a certain
structure (however, see Poesio and Rieser (2008)
for Germancompletions). In so far as fragment
utterances are now being addressed, the pressure
of compatibility with sentence-based grammars
is at least partly responsible for analyses of e.g.
clarificatory-request fragments as sentential in na-
ture (Ginzburg and Cooper, 2004). But such anal-
yses fail to provide a basis for incrementally re-
solved clarification requests such as the interrup-
tion in (8) where no sentential basis is yet avail-
able over which to define the required abstraction

of contextually provided content.
In the psycholinguistic literature, on the other

hand, there is broad agreement thatincrementality
is a crucial feature of parsing with semantic inter-
pretation taking place as early as possible at the
sub-sentential level (see e.g. (Sturt and Crocker,
1996)). Nonetheless, this does not, in and of it-
self, provide a basis for explaining the ease and
frequency of split utterances in dialogue: the inter-
active coordination between the parsing and pro-
duction activities, one feeding the other, remains
as a challenge.

In NLP modelling, parsing and generation algo-
rithms are generally dissociated from the descrip-
tion of linguistic entities and rules, i.e. the gram-
mar formalisms, which are considered either to be
independent of processing (‘process-neutral’) or
to require some additional generation- or parsing-
specific mechanisms to be incorporated. However,
this point of view creates obstacles for a success-
ful account of data as in (1)-(8). Modelling those
would require that, for the current speaker, the ini-
tiated generation mechanism has to be displaced
mid-production without the propositional genera-
tion task having been completed. Then the parsing
mechanism, despite being independent of, indeed
in some sense the reverse of, the generation com-
ponent, has to take over mid-sentence as though, in
some sense there had been parsing involved up to
the point of switchover. Conversely, for the hearer-
turned-speaker, it would be necessary to somehow
connect their parse with what they are now about
to produce in order to compose the meaning of the
combined sentence. Moreover, in both directions
of switch, as (2) shows, this is not a phenomenon
of both interlocutors intending to say the same
sentence: as (3) shows, even the function of the
utterance (e.g. question/answer) can alter in the
switch of roles and such fragments can play two
roles (e.g. question/completion) at the same time
(e.g. (2)). Hence the grammatical integration of
such joint contributions must be flexible enough
to allow such switches which means that such
fragment resolutions must occur before the com-
putation of intentions at the pragmatic level. So
the ability of language users to successfully pro-
cess such utterances, even at sub-sentential levels,
means that modelling their grammar requires fine-
grained grammaticality definitions able to char-
acterise and integrate sub-sentential fragments in
turns jointly constructed by speaker and hearer.
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This can be achieved straightforwardly if fea-
tures like incrementality and context-dependent
processing are built into the grammar architecture
itself. The modelling of split utterances then be-
comes straightforward as each successive process-
ing step exploits solely the grammatical apparatus
to succeed or fail. Such a view notably does not in-
voke high-level decisions about speaker/hearer in-
tentions as part of the mechanism itself. That this
is the right view to take is enhanced by the fact that
as all of (1)-(8) show, neither party in such role-
exchanges can definitively know in advance what
will emerge as the eventual joint proposition. If,
to the contrary, generation decisions are modelled
as involving intentions for whole utterances, there
will be no the basis for modelling how such in-
complete strings can be integrated in suitable con-
texts, with joint propositional structures emerging
before suchjoint intentionshave been established.

An additional puzzle, equally related to both
the challenges of disambiguation and the status
of modelling speaker’s intentions as part of the
mechanism whereby utterance interpretation takes
place, is the common occurrence of hearersNOT

being constrained by any check on consistency
with speaker intentions in determining a putative
interpretation, failing to make use of well estab-
lished shared knowledge:

(9) A: I’m going to cook salmon, as John’s
coming.
B: What? John’s a vegetarian.
A: Not my brother. John Smith.

(10) A: Why don’t you have cheese and noodles?
B: Beef? YouKNOW I’m a vegetarian

Such examples are problematic for any account
that proposes that interpretation mechanisms for
utterance understanding solely depend on selec-
tion of interpretations which either the speaker
could have intended (Sperber and Wilson, 1986;
Carston, 2002), or ones which are compati-
ble with checking consistency with the com-
mon ground/plans established between speaker
and hearer (Poesio and Rieser, 2008; Ginzburg,
forthcmg), mutual knowledge, etc. (Clark, 1996;
Brennan and Clark, 1996). To the contrary, the
data in (9)-(10) tend to show that the full range
of interpretations computable by the grammar has
in principle to be available at all choice points for
construal, without any filter based on plausibility
measures, thus leaving the disambiguation chal-
lenge still unresolved.

In this paper we show how with speaker and
hearer in principle using the same mechanisms for
construal, equally incrementally applied, such dis-
ambiguation issues can be resolved in a timely
manner which in turn reduces the multiplication
of structural/interpretive options. As we shall see,
what connects our diverse examples, and indeed
underpins the smooth shift in the joint endeav-
our of conversation, lies inincremental, context-
dependent processing andbidirectionality, essen-
tial ingredients of theDynamic Syntax(Cann et al.,
2005) dialogue model.

2 Incrementality in Dynamic Syntax

Dynamic Syntax(DS) is a procedure-oriented
framework, involving incremental processing, i.e.
strictly sequential, word-by-word interpretation of
linguistic strings. The notion of incrementality
in DS is closely related to another of its features,
thegoal-directednessof BOTH parsing and gener-
ation. At each stage of processing,structural pre-
dictions are triggered that could fulfill the goals
compatible with the input, in an underspecified
manner. For example, when a proper name like
Bob is encountered sentence-initially in English,
a semantic predicate node is predicted to follow
(?Ty(e → t)), amongst other possibilities.

By way of introducing the reader to the DS
devices, let us look at some formal details with
an example,Bob saw Mary. The ‘complete’ se-
mantic representation tree resulting after the com-
plete processing of this sentence is shown in Fig-
ure 2 below. A DS tree is formally encoded with
the tree logicLOFT (Blackburn and Meyer-Viol
(1994)), we omit these details here) and is gen-
erally binary configurational, with annotations at
every node. Important annotations here, see the
(simplified) tree below, are those which represent
semantic formulae along with their type informa-
tion (e.g. ‘Ty(x)’) based on a combination of the
epsilon and lambda calculi1.

Such complete trees are constructed, starting
from a radically underspecified annotation, theax-
iom, the leftmost minimal tree in Figure 2, and
going throughmonotonic updatesof partial, or
structurally underspecified, trees. The outline of
this process is illustrated schematically in Figure
2. Crucial for expressing the goal-directedness
are requirements, i.e. unrealised but expected

1These are the adopted semantic representation languages
in DS but the computational formalism is compatible with
other semantic-representation formats
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Figure 2: Monotonic tree growth in DS
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Figure 1: A DS complete tree

node/tree specifications, indicated by ‘?’ in front
of annotations. The axiom says that a proposition
(of type t, Ty(t)) is expected to be constructed.
Furthermore, thepointer, notated with ‘♦’ indi-
cates the ‘current’ node in processing, namely the
one to be processed next, and governs word order.

Updates are carried out by means of applying
actions, which are divided into two types.Compu-
tational actionsgovern general tree-constructional
processes, such as moving the pointer, introducing
and updating nodes, as well as compiling interpre-
tation for all non-terminal nodes in the tree. In our
example, the update of (1) to (2) is executed via
computational actions specific to English, expand-
ing the axiom to the subject and predicate nodes,
requiring the former to be processed next by the
position of the♦. Construction of only weakly
specified tree relations (unfixed nodes) can also be
induced, characterised only as dominance by some
current node, with subsequent update required. In-
dividual lexical items also provide procedures for

building structure in the form oflexical actions,
inducing both nodes and annotations. For exam-
ple, in the update from (2) to (3), the set of lexical
actions for the wordseeis applied, yielding the
predicate subtree and its annotations. Thuspartial
treesgrow incrementally, driven by procedures as-
sociated with particular words as they are encoun-
tered.

Requirements embody structural predictions as
mentioned earlier. Thus unlike the conven-
tional bottom-up parsing,2 the DS model takes
the parser/generator to entertain some predicted
goal(s) to be reached eventually at any stage of
processing, and this is precisely what makes the
formalism incremental. This is the characteri-
sation of incrementality adopted by some psy-
cholinguists under the appellation ofconnected-
ness(Sturt and Crocker, 1996; Costa et al., 2002):
an encountered word always gets ‘connected’ to a
larger, predicted, tree.

Individual DS trees consist of predicates and
their arguments. Complex structures are obtained
via a general tree-adjunction operation licensing
the construction of so-calledLINKed trees, pairs
of trees where sharing of information occurs. In
its simplest form this mechanism is the same one
which provides the potential for compiling in-

2The examples in (1)-(8) also suggest the implausibility
of purely bottom-up or head-driven parsing being adopted di-
rectly, because such strategies involve waiting until all the
daughters are gathered before moving on to their projection.
In fact, the parsing strategy adopted by DS is somewhat sim-
ilar to mixed parsing strategies like the left-corner or Earley
algorithm to a degree. These parsing strategic issues are more
fully discussed in Sato (forthcmg).
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A consultant, a friend of Jo’s, is retiring: Ty(t), Retire′((ǫ, x, Consultant′(x) ∧ Friend′(Jo′)(x)))

Ty(e), (ǫ, x, Consultant′(x) ∧ Friend′(Jo′)(x)) Ty(e→ t), Retire′

Ty(e), (ǫ, x, Friend′(Jo′)(x))

Ty(cn), (x, Friend′(Jo′)(x))

x Friend′(Jo′)

Jo′ Friend′

Ty(cn→ e), λP.ǫ, P

Figure 3: Apposition in DS

terpretation forapposition constructions as can
be seen in Figure (3)3. The assumption in the
construction of such LINKed structures is that at
any arbitrary stage of development, some type-
complete subtree may constitute the context for
the subsequent parsing of the following string as
an adjunct structure candidate for incorporation
into the primary tree, hence the obligatory sharing
of information in the resulting semantic represen-
tation.

More generally,contextin DS is defined as the
storage ofparse states, i.e., the storing of par-
tial tree, word sequence parsed to date, plus the
actions used in building up the partial tree. For-
mally, a parse stateP is defined as a set of triples
〈T, W, A〉, where: T is a (possibly partial) tree;
W is the associated sequence of words;A is the
associated sequence of lexical and computational
actions. At any point in the parsing process, the
contextC for a particular partial treeT in the set
P can be taken to consist of: a set of triplesP ′ =
{. . . , 〈Ti, Wi, Ai〉, . . .} resulting from the previ-
ous sentence(s); and the triple〈T, W, A〉 itself,
the subtree currently being processed. Anaphora
and ellipsis construal generally involve re-use of
formulae, structures, and actions from the setC.
Grammaticalityof a string of words is then de-
fined relative to its contextC, a string being well-
formed iff there is a mapping from string onto
completed tree with no outstanding requirements
given the monotonic processing of that string rela-
tive to context. All fragments illustrated above are
processed by means of either extending the current

3Epsilon terms, like ǫ, x, Consultant′(x), stand for wit-
nesses of existentially quantified formulae in the epsilon cal-
culus and represent the semantic content of indefinites in DS.
Defined relative to the equivalenceψ(ǫ, x, ψ(x)) = ∃xψ(x),
their defining property is their reflection of their contain-
ing environment, and accordingly they are particularly well-
suited to expressing the growth of terms secured by such ap-
positional devices.

tree, or constructing LINKed structures and trans-
fer of information among them so that one tree
provides the context for another, and are licensed
as wellformed relative to that context. In particu-
lar, fragments likethe doctorin (8) are licensed by
the grammar because they occur at a stage in pro-
cessing at which the context contains an appropri-
ate structure within which they can be integrated.
The definite NP is taken as an anaphoric device,
relying on a substitution process from the context
of the partial tree to which the node it decorates is
LINKed to achieve the appropriate construal and
tree-update:

(11) The“parse” tree licensing production ofthe
doctor: LINK adjunction

?Ty(t)

Chorlton′ ?Ty(e→ t)

(Doctor′(Chorlton′)),♦

3 Bidirectionality in DS

Crucially, for our current concern, this architec-
ture allows a dialogue model in which generation
and parsing function in parallel, following exactly
the same procedure in the same order. See Fig (2)
for a (simplified) display of the transitions manip-
ulated by a parse ofBob saw Mary, as each word
is processed and integrated to reach the complete
tree. Generation of this utterance from a complete
tree follows precisely the same actions and trees
from left to right, although the complete tree is
available from the start (this is why the complete
tree is marked ‘0’ for generation): in this case the
eventual message is known by the speaker, though
of course not by the hearer. What generation in-
volves in addition to the parse steps is reference
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to this complete tree to check whether each pu-
tative step is consistent with it in order not to be
deviated from the legitimate course of action, that
is, a subsumptioncheck. The trees (1-3) are li-
censed because each of these subsumes (4). Each
time then the generator applies a lexical action, it
is licensed to produce the word that carries that ac-
tion under successful subsumption check: at Step
(3), for example, the generator processes the lex-
ical action which results in the annotation ‘See′’,
and upon success and subsumption of (4) license
to generate the wordseeat that point ensues.

For split utterances, two more assumptions are
pertinent. On the one hand, speakers may have
initially only a partial structure to convey: this is
unproblematic, as all that is required by the for-
malism is monotonicity of tree growth, the check
being one ofsubsumptionwhich can be carried
out on partial trees as well. On the other hand,
the utterance plan may change, even within a sin-
gle speaker. Extensions and clarifications in DS
can be straightforwardly generated by appending
a LINKed structure projecting the added material
to be conveyed (preserving the monotonicity con-
straint)4.

(12) I’m going home, with my brother, maybe
with his wife.

Such a model under which the speaker and
hearer essentially follow the same sets of actions,
updating incrementally their semantic representa-
tions, allows the hearer to ‘mirror’ the same series
of partial trees, albeit not knowing in advance what
the content of the unspecified nodes will be.

4 Parser/generator implementation

The process-integral nature of DS emphasised
thus far lends itself to the straightforward imple-
mentation of a parsing/generating system, since
the ‘actions’ defined in the grammar directly pro-
vide a major part of its implementation. By now it
should also be clear that the DS formalism is fully
bi-directional, not only in the sense that the same
grammar can be used for generation and parsing,
but also because the two sets of activities, conven-
tionally treated as ‘reverse’ processes, are mod-
elled to run in parallel. Therefore, not only can the
same sets of actions be used for both processes,

4Revisions however will involve shifting to a previous
partial tree as the newly selected context:I’m going home,
to my brother, sorry my mother.

but also a large part of the parsing and generation
algorithms can be shared.

This design architecture and a prototype im-
plementation are outlined in (Purver and Otsuka,
2003), and the effort is under way to scale up the
DS parsing/generating system incorporating the
results in (Gargett et al., 2008; Gregoromichelaki
et al., to appear).5 The parser starts from the axiom
(step 0 in Fig.2), which ‘predicts’ a proposition to
be built, and follows the applicable actions, lexi-
cal or general, to develop a complete tree. Now,
as has been described in this paper, the genera-
tor follows exactly the same steps: the axiom is
developed through successive updates into a com-
plete tree. The only material difference from –
or rather in addition to– parsing is the complete
tree (Step 0(gen)/4), given from the very start of
the generation task, which is then referred to at
each tree update forsubsumptioncheck. The main
point is that despite the obvious difference in their
purposes –outputting a string from a meaning ver-
sus outputting a meaning from a string– parsing
and generation indeed share thedirection of pro-
cessing in DS. Moreover, as no intervening level
of syntactic structure over the string is ever com-
puted, the parsing/generation tasks are more effi-
ciently incremental in that semantic interpretation
is directly imposed at each stage of lexical integra-
tion, irrespective of whether some given partially
developed constituent is complete.

To clarify, see the pseudocode in the Prolog
format below, which is a close analogue of the
implemented function that both does parsing and
generation of a word (context manipulation is
ignored here for reasons of space). The plus
and minus signs attached to a variable indicate it
must/needn’t be instantiated, respectively. In ef-
fect, the former corresponds to the input, the latter
to the output.

(13) parse gen word(
+OldMeaning,±Word,±NewMeaning):-

apply lexical actions(+OldMeaning, ±Word,
+LexActions, −IntermediateMeaning ),

apply computational actions(
+IntermediateMeaning, +CompActions,
±NewMeaning )

OldMeaning is an obligatory input item, which
corresponds to the semantic structure con-
structed so far (which might be just structural
tree information initially before any lexical

5The preliminary results are described in (Sato,
forthcmg).
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input has been processed thus advocating a
strong predictive element even compared to
(Sturt and Crocker, 1996). Now notice that
the other two variables —corresponding to the
word and the new (post-word) meaning— may
function either as the input or output. More
precisely, this is intended to be a shorthand
for either (+OldMeaning,+Word,−NewMeaning)

i.e. Word as input andNewMeaning as out-
put, or (+OldMeaning,−Word,+NewMeaning), i.e.
NewMeaning as input andWord as output, to repeat,
the former corresponding to parsing and the latter
to generation.

In either case, the same set of two sub-
procedures, the two kinds of actions described in
(13), are applied sequentially to process the input
to produce the output. These procedures corre-
spond to an incremental ‘update’ from one par-
tial tree to another, through a word. The whole
function is then recursively applied to exhaust the
words in the string, from left to right, either in
parsing or generation. Thus there is no differ-
ence between the two in the order of procedures
to be applied, or words to be processed. Thus it is
a mere switch of input/output that shifts between
parsing and generation.6

4.1 Split utterances in Dynamic Syntax

Split utterances follow as an immediate conse-
quence of these assumptions. For the dialogues in
(1)-(8), therefore, while A reaches a partial tree of
what she has uttered through successive updates
as described above, B as the hearer, will follow
the same updates to reach the same representation
of what he has heard. This provides him with the
ability at any stage to become the speaker, inter-
rupting to continue A’s utterance, repair, ask for
clarification, reformulate, or provide a correction,
as and when necessary7. According to our model
of dialogue, repeating or extending a constituent
of A’s utterance by B is licensed only if B, the
hearer turned now speaker, entertains a message

6Thus the parsing procedure is dictated by the grammar to
a large extent, but importantly, not completely. More specif-
ically, the grammar formalism specifies the state paths them-
selves, but nothowthe paths should be searched. The DS ac-
tions are defined in conditional terms, i.e. what to do as and
when a certain condition holds. If a number of actions can be
applied at some point during a parse, i.e. locally ambiguity
is encountered, then it is up to a particular implementation
of the parser to decide which should be traversed first. The
current implementation includes suggestions of search strate-
gies.

7The account extends the implementation reported in
(Purver et al., 2006)

to be conveyed that matches or extends the parse
tree of what he has heard in a monotonic fashion.
In DS, this message is a semantic representation
in tree format and its presence allows B to only ut-
ter the relevant subpart of A’s intended utterance.
Indeed, this update is what B is seeking to clarify,
extend or acknowledge. In DS, B can reuse the
already constructed (partial) parse tree in his con-
text, rather than having to rebuild an entire propo-
sitional tree or subtree.

The fact that the parsing formalism integrates
a strong element ofpredictivity, i.e. the parser
is always one step ahead from the lexical in-
put, allows a straightforward switch from pars-
ing to generation thus resulting in an explana-
tion of the facility with which split utterances oc-
cur (even without explicit reasoning processes).
Moreover, on the one hand, because ofincremen-
tality, the issue of interpretation-selection can be
faced at any point in the process, with correc-
tions/acknowledgements etc. able to be provided
at any point; this results in the potential exponen-
tial explosion of interpretations being kept firmly
in check. And, structurally, such fragments can
be integrated in the current partial tree represen-
tation only (given the position of the pointer) so
there is no structural ambiguity multiplication. On
the other hand, for any one of these intermedi-
ate check points,bidirectionalityentails that con-
sistency checking remains internal to the individ-
ual interlocutors’ system, the fact of their mir-
roring each other resulting at their being at the
same point of tree growth. This is sufficient to en-
sure that any inconsistency with their own parse
recognised by one party as grounds for correc-
tion/repair can be processedAS a correction/repair
by the other party without requiring any additional
metarepresentation of their interlocutors’ informa-
tion state (at least for these purposes). This allows
the possibility of building up apparently complex
assumptions of shared content, without any neces-
sity of constructing hypotheses of what is enter-
tained by the other, since all context-based selec-
tions are based on the context of the interlocutor
themselves. This, in its turn, opens up the possi-
bility of hearers constructing interpretations based
on selections made that transparently violate what
is knowledge shared by both parties, for no pre-
sumption of common ground is essential as input
to the interpretation process (see, e.g. (9)-(10)).
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5 Conclusion

It is notable that, from this perspective, no pre-
sumption of common ground or hypothesis as to
what the speaker could have intended is necessary
to determine how the hearer selects interpretation.
All that is required is a concept of system-internal
consistency checking, the potential for clarifica-
tion in cases of uncertainty, and reliance at such
points on disambiguation/correction/repair by the
other party. The advantage of such a proposal, we
suggest, is the provision of a fully mechanistic ac-
count for disambiguation (cf. (Pickering and Gar-
rod, 2004)). The consequence of such an analysis
is that language use is essentially interactive (see
also (Ginzburg, forthcmg; Clark, 1996)): the only
constraint as to whether some hypothesised in-
terpretation assigned by either party is confirmed
turns on whether it is acknowledged or corrected
(see also (Healey, 2008)).
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