
Semantics-Based Change Impact Analysis for
Heterogeneous Collections of Documents ∗

Serge Autexier
Safe and Secure Cognitive Systems

German Research Center for Artificial
Intelligence (DFKI), Bremen, Germany

serge.autexier@dfki.de

Normen Müller
Comp. Science, Jacobs University, Bremen, DE

n.mueller@jacobs-university.de
BSgroup Technology Innovation, Zürich, CH

normen.mueller@bsgroup.ch

ABSTRACT
An overwhelming amount of documents is produced and
changed every day in most areas of our everyday life, such
as, for instance, business, education, research or administra-
tion. The documents are seldom isolated artifacts but are
related to other documents. Therefore changing one docu-
ment possibly requires adaptations to other documents. Al-
though dedicated tools may provide some assistance when
changing documents, they often ignore other documents or
documents of a different type. To resolve that discontinuity,
we present a framework that embraces existing document
types and supports the declarative specification of semantic
annotation and propagation rules inside and across docu-
ments of different types, and on which basis we define change
impact analysis for heterogeneous collections of documents.
The framework is implemented in the tool GMoC which can
be used to semantically annotate collections of documents
and to analyze the impacts of changes made in different doc-
uments of a collection.

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document and
Text Editing—Document Management

General Terms
Theory,Management,Algorithms

Keywords
Document Collections, Document Management, Change Im-
pact Analysis, Semantics, Graph Rewriting

∗This work was funded by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft, DFG) under grants
Hu737/3-1 and KO2428/8-1 (project OMoC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng2010, September 21–24, 2010, Manchester, United Kingdom.
Copyright 2010 ACM 978-1-4503-0231-9/10/09 ...$10.00.

1. INTRODUCTION
Recent analyses of the Association for Information and

Image Management, the international authority on enter-
prise content management, indicate that our globalized in-
formation society produces, maintains, and publishes about
5 petabytes of documents a year. Thus, an overwhelming
amount of documents is produced and changed every day in
nearly all areas of our every day life, such as, for instance, in
business, in education, in research or in administration. A
non-exhaustive list of examples are filled and signed forms
in administration, research reports, test documents, or lec-
ture notes, slides and exercise sheets in education, as well
as requirements, documentations and software artifacts in
development processes. The documents are seldom isolated
artifacts but are intentionally related and intertwined with
other documents. Thus changing a document may require
adaptations to other documents and due to the huge amount
of documents, there is a need for a reliable and efficient sys-
tem support. While dedicated authoring and maintenance
tools ranging from simple text-editors to integrated devel-
opment environments may provide some assistance when
changing documents, they typically are restricted to sin-
gle documents or documents of a specific type. To resolve
that discontinuity, we present a framework that embraces
existing document types, allows for the declarative specifi-
cation of semantic annotation and propagation rules inside
and across documents of different types, and on that basis
define change impact analysis for heterogeneous collections
of documents.

The enabling idea is to represent in a single graph all re-
lated structured documents together with that part of their
intentional semantics necessary to analyze specific semantic
properties of the documents, for instance consistency checks,
as well as to analyze the impact of changes on these seman-
tic properties. The whole framework is based on document
models defining the syntax, semantics and impacts descrip-
tion languages for specific document types as well as graph
transformations to obtain the semantic annotation and to
propagate the effect of changes for documents of this type.
For the interaction between documents of different types
it builds on interaction models specifying graph transfor-
mations propagating semantic information over document
boundaries. The framework is implemented in the prototype
tool GMoC built on top of the graph rewriting tool GrGen,
where annotation and propagation rules can be specified in
the declarative GrGen syntax and used to semantically an-
notate collections of documents and to analyze the impact
of changes on the whole the collection.

<guests>
<person confirmed=”true”>

<firstName>Serge</firstName>
<lastName>Autexier</lastName>
<email>serge.autexier@dfki.de</email>

</person>
<person confirmed=”true”>

<firstName>Normen</firstName>
<lastName>Müller</lastName>
<email type=”prv”>normen.mueller@gmail.com</email>

</person></guests>
. .
<guests>

<person confirmed=”true”>
<firstName>Normen</firstName>
<lastName>Müller</lastName>
<email type=”prv”>normen.mueller@gmail.com</email>

</person>

<person confirmed=” false ”>

<firstName>Serge</firstName>
<lastName>Autexier</lastName>

<birthday>1/23/45</birthday>

<email type=” bus ”>serge.autexier@dfki.de</email>

</person></guests>

Figure 1: Semantically Equivalent Guest Lists.

The paper is organized as follows: In Sec. 2 we define
the central semantic document impact (SDI) graphs together
with the document models and interaction models to define
the semantics-based analysis framework. In the realization
part in Sec. 3 we describe the GMoC tool implementing that
framework and discuss applications in Sec. 4. Related work
is reviewed in Sec. 5 before concluding in Sec. 6.

As a running example for this paper we consider a wed-
ding planning scenario, where two types of documents occur.
The first document represents the guest list and the second
one the seating arrangement. The latter depends on the
former with the condition of male and female guests being
paired. Using this simple example, we explain the complex
practice of verification of consistency and identification of
ripple effects: if one guest cancels the invitation the respec-
tive change in the guest list ripples through to the seating
arrangement breaking the consistency condition of guests
being rotationally arranged by gender.

2. SEMANTICS-BASED ANALYSIS
The semantics document impact (SDI) graphs are de-

signed around the following idea: An SDI graph comprises
both the syntactic parts of a document, such as the actual
files containing the guest list and the seating arrangement,
which are, for instance, given in some XML format as shown
in Fig. 1. Additionally, the graph contains a separated ex-
plicit representation of the intentional semantics of the file
content, which can be similar to the actual syntax but also
quite different; in general, this will be a qualitative represen-
tation of the semantic entities of these documents and the
relationship among them. For instance, these are the guests
from the guest list, links indicating which guests belong to-
gether, the seats and their arrangement and which guest is
assigned to which seat. The idea of the semantic entities
is that the semantic entity for a specific guest remains the
same, even if its syntactic structure may change. For in-
stance, the semantic entity of guest Serge remains the same
even though the syntactic subtree is changed by updating
the confirmed status.

That way each SDI graph by design has interesting prop-
erties, which can be methodologically exploited for the se-
mantic analysis and change propagation: indeed, it can con-
tain parts in the document subgraph, for which there exists
no semantic counter-part, which can be exploited during the
analysis to distinguish added from old parts. Conversely, the
semantic graph may contain parts, which have no syntactic
origin, that is they are dangling semantics. This can be ex-
ploited during the analysis to distinguish deleted parts of
the semantics from preserved parts. The information about
added and deleted parts in an SDI graph is the basis for
propagating the effect of changes throughout the semantic
graph structure. This exemplifies the benefit of the dual
representation of the documents with their syntactic struc-
ture and their intentional semantics in separate subgraphs,
and we call this the explicit semantics method.

An SDI graph thus will consist of the documents, the se-
mantic information computed from the documents, and in
addition of impact information on parts of the documents
in a serializable format. In our running example, this can
be inconsistency information, such as that a seat is occupied
by a guest, who has declined the invitation. To distinguish
the different parts we define SDI graphs as instances of typed
graphs, which consist of nodes n which have exactly one node
type from some given set of node types and of a set of par-
tially ordered links l which have exactly one link type from
some given set of link types.

Definition 1 (Typed (Pre-)Graphs). Let N be a set
of node types and L a set of link types. A (N,L)-typed
pre-graph is a triple (N,L,≺) where N =]ν∈NNν is the
disjoint union of sets of nodes of type ν, L =]λ∈LLλ the
disjoint union of sets of links of link type λ and ≺ a partial
order on L. A typed pre-graph is a typed graph if for each
n → n′ ∈ Lλ it holds n, n′ ∈ N . The class of all (N,L)-

typed pre-graphs (resp. graphs) is denoted by GLN (resp. ĜLN)

or simply G (resp. Ĝ) if N and L are clear from the context.
Let N′ ⊆ N and L′ ⊆ L and g = (N,L,≺) be a (N,L)-typed
pre-graph. Then the projection g on N′ and L′ is defined by

g|N′,L′ = (N,L,≺)|N′,L′ := (]ν∈N′Nν ,]λ∈L′Lλ,≺|]λ∈L′Lλ)

where ≺|E := {l ≺ l′ | l, l′ ∈ E}, for every set of links E. We
denote empty typed (pre-)graphs by ∅. A path in a pre-graph
is a non-empty list of links n0 → n1 → . . .→ nk from L.

In the following we deal with collections of documents
which are part of a whole graph, but that are actually collec-
tions of trees; for this we introduce the notion of collections
of typed trees.

Definition 2 (Typed Trees).A typed graph (N,L,≺)
is a typed tree if there exists a unique node r such that for
every node n different from r there exists exactly one path
from r to n, no path from r to r, and ≺|{n→n′∈L} is a total
order, for every node n ∈ N . We denote r as the root node
of the typed tree. A typed graph g is a collection of typed
trees if there exists a partitioning of g into non-overlapping
typed graphs g1, . . . , gn (i.e. g = g1] . . .] gn) and each gi
is a typed tree. The root nodes of a collection of typed trees
is the set of root nodes of each typed tree gi.

Now we can distinguish the three parts using specific node
and link types for each type of subgraph: We introduce syn-
tactic node and link types (Nsyn,Lsyn) for the document

parts and semantic node and link types (Nsem,Lsem) for the
semantic parts. For the impact information parts we use
impact node and link types (Nimp,Limp).

An entire semantic document impact graph (SDI) g is a
typed graph with respect to all these node types and link
types: its document subgraph is the projection of g to the
syntactic node and link types and must be a typed graph;
the semantics subgraph is the projection of g to the seman-
tic node and link types and must also be a typed graph;
finally, the impacts subgraph is obtained by projecting g on
the impact node and link types which must not form a typed
graph on its own but all links must connect one node from
the impact graph to a node from the document graph.

Definition 3 (SDI Graph). Let N = Nsyn] Nsem]
Nimp be the disjoint union of syntactic, semantic and impact
node types and L = Lsyn] Lsem] Limp the disjoint union
of syntactic, semantic and impact link types. A (N,L)-typed
document graph g = (N,L,≺) is a semantic document
impact graph if, and only if,
(1) the document subgraph g|Nsyn,Lsyn is a collection of

(Nsyn,Lsyn)-typed trees;
(2) the semantics subgraph g|Nsem,Lsem is (Nsem,Lsem)-

typed graph;
(3) the impacts subgraph g|Nimp,Limp is (Nimp,Limp)-

typed pre-graph and for all n → n′ ∈ LLimp it holds:
n ∈ NNimp and n′ ∈ NNsyn (or vice-versa)

We agree on the following notation for SDI graphs that
makes the three parts document graph D, semantic graph
S and impact graph I explicit: g = 〈D,S, I〉.

In our running example, a document subgraph represents
the tree-structured syntactical content of the documents.
The semantics graph holds information, for example, of the
individual guests and tables and if they have been added,
deleted or maintained. Moreover, it links guests and tables
and left and right neighbors of guests. The impacts sub-
graph marks the ripple effects resulting from modifications,
for example, on a guest’s status.
Graph Transformations: Given a graph, we want to denote
transformations of this graph into a new graph. In general,
given a typed graph g a graph transformation results in a
new typed graph and given some node and link types N and
L, a graph transformation τ is a total function GLN → GLN.
However, we want to distinguish different kinds of graph
transformation with respect to how they affect the docu-
ment graph, the semantics graph and the impacts graph of
an SDI graph. We consider the following two basic graph
transformations:

Semantic Annotation is a graph transformation starting
with an SDI graph with empty impacts subgraph and re-
turns a graph with an updated semantics subgraph, possibly
some updated document graph and an impacts subgraph.
We will also write ’annotation’ instead of ’semantic annota-
tion’, if the context is clear.

Change Impact Analysis is a graph transformation start-
ing with an SDI graph with empty impact subgraph, applies
a patch graph transformation which only affects the docu-
ment graph, followed by a semantic annotation.

In order to meet the real world, we have to refine these
two basic graph transformations for the application context,
where we want to treat collections of documents, which are

each of a specific document type. For the refinement we
have to answer the following questions:
(1) Where does a patch transformation come from?
(2) Where does the annotation transformation come from?
For the patches we will rely on a generic tree patch mech-
anism and tree difference analysis algorithm, that can take
some semantic properties of the documents into account.
For example, a stronger notion of equality leads to more
compact, less intrusive edit scripts1 which allows to ignore
semantically insignificant differences. The semantic proper-
ties are specific to document types which will be described as
equivalence specifications in document models. For a given
collection of document trees we assign specific document
models to each document tree. In order to determine the
changes between two versions of collections of document
trees we use the individual equivalence specifications to de-
termine the changes between associated document trees.

Definition 4. (Document Types and Equivalence
Specifications) A document type specification D is a

triple (Nsyn,Lsyn, P), where P is a predicate on ĜLsynNsyn which

specifies the set of syntactically valid documents

DD := {d ∈ ĜLsynNsyn | d is a tree and P (d) holds}

Two document type specifications are disjoint if their re-
spective node and link types are pairwise disjoint. An equiv-
alence specification ≈D for D is a congruence on DD.

A document type specification characterizes the syntac-
tically correct documents and the equivalence specification
defines equivalence classes on their subparts.

The intentional semantics of documents of a specific type
is represented explicitly in semantics graphs with specific
node and link types and defined in semantic models. Fur-
thermore, it defines the impact nodes and links to annotate
the syntactic parts of a semantic document impact graph.

Definition 5 (Semantic Model). Let D = (Nsyn,
Lsyn, P) be a document type specification, then S =
(D, (Nsem,Lsem), (Nimp,Limp)) is a semantic model for
D if Nsyn, Nsem and Nimp are pairwise disjoint node types
and Lsyn, Lsem, and Limp are pairwise disjoint link types.
Two semantic models are disjoint if their document type
specifications, semantic node types and link types as well as
impact node types and link types are pairwise disjoint.

For our running example, the semantic model for guest
lists contains a node type for individual persons, the model
for the seating contains node types for individual tables and
seats and link types for identification of which seat belongs
to which table and the neighborhood relationship of seats.

To compute the semantic annotation we use graph rewrit-
ing rules that operate on SDI graphs. Like the document
type specific equivalence specifications these rewriting rules
are document type specific and are also part of the docu-
ment model. The overall semantic annotation mechanism
is entirely parametric in these document type specific graph
rewriting rules. In our running example, these are, for in-
stance, rules that lift syntactic entries in the guest list and
seating to semantic objects in the semantic model and stores
the origin of semantic nodes. However, we cannot yet check

1An edit script between a tree T and a tree T ′ is a sequence
of edit operations turning T into T ′.

(D1] . . .]Dn, S, ∅)

(D′1] . . .]D′n, S, ∅) (D′1] . . .]D′n, S′, ∅)

(D′1] . . .]D′n, S′′, ∅)(D′′1] . . .]D′′n, S′′, I)

annotate
patch(δ1),. . . ,patch(δn)

abstraction

propagation
projection

Figure 2: Change Impact Analysis in Detail

the seating arrangement, as we have no links from persons
to seats in the semantic graph. Indeed, so far, semantic
models only allow us to semantically annotate single doc-
uments, but not to semantically annotate across document
boundaries. For this we introduce interaction models for
a set of document models that specify annotation systems
that operate between such documents. In our running ex-
ample, these are graph rewrite rules that lift the declarative
assignment of guests to seats given in the documents to se-
mantic links between the respective individual persons and
seats obtained before by the document model annotation
rules and checks consistency of the seating arrangements.
This in turn makes it unclear how to combine the different
annotation graph transformations: indeed, some informa-
tion propagated across document boundaries needs to be
propagate further inside these documents, whereas some in-
formation needs to be first propagated inside the documents
before the information can be propagate further to other
documents using the propagation information from an in-
teraction model. Thus, the introduction of cross-document
interaction models requires the specification how the differ-
ent graph transformations must be orchestrated.

In order to do this, we have a closer look at how seman-
tic annotation actually proceeds: First, it gets a syntactic
document and synchronizes it with a corresponding seman-
tic graph, on which the impact analysis is then performed.
During the analysis phase, the syntax does not change and
until the analysis is completed on the semantic graph, it does
not make sense to annotate the impacts on the syntax. This
observation also allows for a better orchestration of anno-
tation models and interaction models defined in a modular
manner for different document kinds: First, all syntactic
documents are analyzed in parallel to synchronize with the
semantic graphs. Then the impact analysis is applied for
all document and interaction models exhaustively and ex-
clusively on the semantic graphs. Only then the documents
are syntactically annotated with the impact information.

We now turn this observation into a methodology and
subdivide the annotation graph transformations method-
ologically into three phases, namely (i) an abstraction phase
which synchronizes the semantic graph with the (new) doc-
ument trees, (ii) a propagation phase which propagates the
information inside the semantic graph only, and (iii) a pro-
jection phase which dumps the information from the seman-
tic graph into the document trees and the impact graph. The
overall change impact analysis can be depicted as shown in
Fig. 2, where the δi are the patches of the individual docu-
ment trees.

To describe the three phases of the annotation process we
introduce the concept of annotation models as follows:

Definition 6 (Annotation Model). Let S = (D,
(Nsem,Lsem), (Nimp,Limp)) be a semantic model, then an
annotation model R for S is a triple (αS, πS, ιS) of graph
transformations of the following form:

Abstraction: αS : P(DD) × ĜLsemNsem → Ĝ
Lsem
Nsem is a mapping

synchronizing the semantic graph with the document graph.
Its homomorphic extension α#

S to SDI graphs is only appli-
cable on semantic document impact graphs with empty im-
pact graph and defined by: α#

S (D1] . . .] Dn] D′, S, ∅) =
(D1] . . .]Dn]D′, S′, ∅) where D′ contains no documents
of type D (i.e., D′ ∩ DD = ∅) and S′ := (S \ S|Nsem,Lsem) ∪
αS(D1] . . .]Dn, S|Nsem,Lsem) and Di ∈ DD.

Propagation: πS : ĜLsemNsem → ĜLsemNsem propagates semantic
information in the semantic graph. Its homomorphic exten-
sion π#

S to semantic document impact graphs is only appli-
cable on semantic document impact graphs with empty im-
pact graph and defined by: π#

S (D,S, ∅) = (D,S′, ∅) where
S′ := (S \ S|Nsem,Lsem) ∪ πS(S|Nsem,Lsem)

Projection: ιS : P(DD) × ĜLsemNsem → P(DD × G
Limp
Nimp) prop-

agates semantic information back into the document graph
and builds up the impact graph for this document, that is
if ιS(D1] . . .] Dn, S) = {(D′1, I ′1), . . . , (D′n, I

′
n)}, then for

all 1 ≤ i ≤ n holds that D′i] I ′i are typed graphs (not

a pre-graph). Its homomorphic extension ι#S to semantic

document impact graphs is defined by: ι#S (D1] . . .] Dn]
D′, S, I) = (D′1] . . .] D′n] D′, S, I] I ′1] . . .] I ′n) where
Di ∈ DD, D′ ∩ DD = ∅ and {(D′1, I ′1), . . . , (D′n, I

′
n)} =

ιS(D1] . . .]Dn, S|Nsem,Lsem).

We agree to denote by RS that the annotation model be-
longs to the semantic model S. Furthermore, we will not
distinguish the mappings of the annotation models and their
homomorphic extensions.

Definition 7 (Document Model). Let D be a docu-
ment type specification, ≈D an equivalence specification for
D, S a semantic model for D, and R an annotation model
for S. Then M := (≈D, S,R) is a document model for
D. Two document models are disjoint if their respective
semantic models are disjoint.

We agree to denote by MD that the document model be-
longs to the document type specification D.

2.1 Interaction Models
An interaction model intentionally defines the propaga-

tion of semantic information between documents of different
types. Thus, an interaction model presupposes a set of doc-
ument models and extends it by an additional propagation
graph transformation between the different semantic graphs
of the given document models, for instance, the creation of
links assigning persons to seats and checking the seating ar-
rangement in our running example. To do so, it may require
additional types of semantic nodes and links, which are also
specified in the interaction model.

Definition 8 (Interaction Model).Let M1, . . . ,Mn

be disjoint document models with respective semantic node
and link types Nisem and Lisem, 1 ≤ i ≤ n and let N0

sem and
L0
sem be node types and link types such that N0

sem ∩ Nisem =
L0
sem ∩ Lisem = ∅, 1 ≤ i ≤ n and let N∗sem =

⋃n
i=0 N

i
sem

and L∗sem =
⋃n
i=0 L

i
sem. Then an interaction model I

between M1, . . . ,Mn is a pair ((Nsem,Lsem), π) where

Propagation: π : GN
∗
sem

L∗sem
→ GN

∗
sem

L∗sem
propagates semantic in-

formation in the joint semantic graph of the different doc-
ument models. Its homomorphic extension π# to semantic
document impact graphs is only applicable on semantic doc-
ument impact graphs with empty impact graph and defined
by π#(D,S, ∅) = (D,S′, ∅) where S′ := (S \ S|N∗sem,L∗sem) ∪
π(S|N∗sem,L∗sem)

As for the graph transformations of annotation models, we
will not distinguish the propagation graph transformations
of interaction models and their homomorphic extensions.

2.2 Combined Models
We now consider semantic document impact graphs com-

posed from documents of different types. We assume one
document model for each document type is given as well as
one interaction model that specifies the interaction between
these different document types.

Definition 9. Let Mi = (≈Di , Si,Ri) be document mod-
els for Di, 1 ≤ i ≤ n and I be an interaction model for the
Mi. An SDI graph g is compatible with the Mi, 1 ≤ i ≤ n
and the I if it contains only node types and link types from
the document models and the interaction model.

The combined annotation graph transformation for the
whole graph consist of (1) the abstraction graph transfor-
mations from each document model, followed by (2) an ex-
haustive application of the propagation graph transforma-
tions from the document models and the interaction model,
and (3) a final phase where all projection functions from the
document models are applied.

Definition 10 (M and I Combined). Let Mi = (≈Di
, Si, (αSi , πSi , ιSi) be document models for Di, 1 ≤ i ≤ n and
I = ((Nsem,Lsem), πI) be an interaction model for the Mi

and let g be a compatible semantic document impact graph.
Then the combined graph transformations are defined by:

Abstraction: The combined abstraction of some g is the
application of the combined abstraction α := α#

Sn ◦ . . . ◦ α
#
S1 .

Propagation: The combined propagation on some g is the
exhaustive application of the intermediate combined propa-
gation π := πI ◦ π#

Sn ◦ . . . ◦ π
#
S1 on g. I.e., we apply π on g

until we reach a fix-point which is easily expressed using a
fix point combinator Fix defined by (Fix F) = F (Fix F) on
F = λf.λg.(if (g = π(g)) g else f(π(g)).2

Projection: The combined projection of some g is the ap-
plication of the combined projection ι := ι#Sn ◦ . . . ◦ ι

#
S1(g).

From the disjointness of the document models it follows
that the order of the combinations of the abstraction and
projections in the definition of the combined abstraction and
projections is irrelevant.

2.3 Semantic Analysis
Based on the notion of combined document models, we

can now precisely define the semantic annotation and change
impact analysis for a heterogeneous collection of documents.

Assume a set of document models with associated in-
teraction model and a collection of documents D1, . . . , Dn

2To wit: (Fix F) g → (F ((Fix F)) g → (if (g =
π(g)) g else (Fix F)(π(g))

each belonging to one of the document models. Let fur-
ther be (α, π, ι) the respective graph transformations of the
combined document and interaction model. The seman-
tic annotation of the document collection consists of ap-
plying the three graph transformations on the SDI graph
(D1] . . .] Dn, ∅, ∅) for the given collection of documents
with empty semantics graph and empty impacts graph:

(D′1] . . .]D′n, S, I1] . . .] In) := ι◦π ◦α(D1] . . .]Dn, ∅, ∅)

Here D′i is the new version of document Di and Ii contains
further annotations for parts of this document, such as, for
instance, consistency information, errors, and others.

Analogously, the change impact analysis of the document
collection consists of applying the patches for each individual
document, and followed by the application of the three graph
transformations of the combined document and interaction
model. Again, in the resulting graph (D′1] . . .]D′n, S, I1]
. . .]In) the D′i is the new version of document Di after patch
application and semantic annotation. The impacts graph Ii
contains the annotations for parts of this document, such as,
for instance, consistency information, errors, etc. obtained
by ripple effects from all patches via the combined document
and interaction model graph transformations.

3. REALIZATION
The semantics-based analysis framework has been realized

in the prototype tool GMoC [1] that annotates and analyses
the change impacts on collections of XML-documents. The
tool is parametrized over document models and interaction
models specified in a declarative syntax (cf. Sec. 3.3).

For the difference analysis we use a generic tree difference
analysis algorithm (cf. Sec. 3.1) which is parametrized over
an equivalence specification for XML-trees. For the graph
transformations we use the graph rewriting tool GrGen [8],
which has a declarative syntax to specify typed graphs as
well as graph rewriting rules and strategies (cf. Sec. 3.2).

3.1 Semantic Difference Analysis
Before we can analyze impacts of changes, we have to

identify them — just because everything is different, does
not mean anything has changed. Most previous work in
change detection has focused on computing differences be-
tween text-based (aka. flat) files [10] which cannot be gen-
eralized to handle XML because these methods do not un-
derstand the hierarchical structure information contained in
such data sets. Fortunately, the increasing use of XML over
the last years has motivated the development of many differ-
encing tools capable of handling tree-structure documents.
However, none of these tools considers semantics of XML
documents and either work with completely ordered trees,
e.g. [24, 25, 9, 30, 6, 4], or completely unordered trees,
e.g. [31, 28]. A comprehensive analysis and evaluation of
theses methods can be found in [23]. In addition, due to the
neglect of the semantics, none of these are capable of effi-
ciently calculating changes within XML documents by com-
paring two XML documents for semantic equivalence. An
example scenario, where this is important is a web service
that serves results of queries, and wants to cache query re-
sults so that duplicate queries use previously cached results
instead of always accessing the underlying database. The
senders of those queries may potentially be using a variety
of tools to generate the queries, though, these tools may in-
troduce trivial differences into the XML. The intent of the

equivspec E for D {
element guests { constituents { unordered { person } }}}
unordered element person { constituents { alternative {
{unordered {firstName, lastName, email}}
{unordered {email, birthday? }}}}

element firstName { constituents { unordered { <TEXT> }}}
element lastName { constituents { unordered { <TEXT> }}}
unordered element email{constituents{unordered{<TEXT>}}}
element birthday { constituents { unordered { <TEXT> }}}}

Figure 3: An Equiv. Spec. for the Guest List in Fig. 1.

queries may be identical, but the standard DOM equality [7]
returns false even if the XML trees compared contain se-
mantically equivalent, but trivially different queries. It is
this class of equality that this finding addresses: given two
distinct XML structures, can we decide if they convey “the
same information”.

Example 1. To sharpen our intuition on equivalent XML
fragments, let us assume the two guests records depicted in
Fig. 1. Our focus in this scenario is on the identification of
the invited guests. A guest is represented by an unordered
person with the addition of whether this is committed or can-
celed (confirmed attribute). Furthermore, information such
as first name (firstName), surname (lastName), and e-mail
address is stored. For the latter the distinction is between
private address (prv) and business address (bus) encoded
within a (type) attribute whereas the type is defaulted to
be private. Optionally the date of birth is represented in
a birthday element. Over time, the entries in the guest list
change. Thus, for example, in the bottom half of Fig. 1 the
order of guests is permuted and for one person element the
status of commitment and the e-mail address type changed.
In addition, the date of birth has been registered. To iden-
tify guests we are not interested in the status regarding com-
mitment or cancellation and we do not care if we send the
invitation to the business address or home address. There-
fore, we define the primary key of a guest as a combination
of first name, last name and e-mail address, i.e. when com-
paring two person elements, changes in confirmed status or
e-mail address type are negligible as well as the existence
of birthday information. Existing XML differencing tools,
however, would even with an adequate normalization con-
sider the two guest records to be different. The change of the
confirmation status makes the two XML fragments unequal
although regarding our primary key definition for person el-
ements those two are equal.

With an equivalence specification ≈ at hand, however, we
can determine if two XML documents are equivalent and
decide if they convey “the same information”, in particular:
two XML documents are considered as “semantically” equal
with respect to an equivalence specification ≈ if and only
if both respective documents are in the same equivalence
class. Architecturally, an equivalence specification splits up
the vocabulary of an XML document into similarity groups
with respect to specific constraints.

The EQ Syntax: Here we illustrate our declarative EQ syn-
tax to formalize equivalence specifications. A detailed de-
scription of the syntax and the semantics can be found
in [19]. An implementation is available at [20]. In general,
an equivalence specification as depicted in Fig. 3 comprises a
set of element specifications which altogether define the con-
gruence relation ≈. An element is declared by the element

keyword and identified by name. With respect to the XML
specification all elements are ordered per se. By prefixing
an element specification with the keyword unordered one can
break through this property. The body of an element spec-
ification comprises either alternative constraints or a sin-
gleton constraint. An alternative is a sequence of disjoint
constraints. With both one determines when two XML frag-
ments are considered equivalent: two XML fragments are
considered to be equivalent iff the specified singleton con-
straint holds or, in case of alternatives, if at least one con-
straint within the sequence holds. A constraint consists of
optional restrictions on attributes or constituents. Both sets
specify the element’s attributes/children to consider during
a comparison. Constituents can be distinguished to be con-
sidered order dependent or order independent. For the or-
dered case the specified list of constituents has to be pairwise
equal. For the unordered case the set of constituents has to
be equal. For both cases equality is with respect to the in-
dividual element constraints. Items marked with a question
mark (?) are optional.

Recalling Example 1, the equivalence specification in
Fig. 3 precisely denotes the desired primary key for iden-
tification of guests. However, in contrast to the introduc-
tory example, we now even specify two alternative primary
keys for identification: a person element is either identified
by its first name, last name and e-mail address, or the e-
mail address and, if available, the date of birth. All remain-
ing elements are considered to be equivalent iff their nested
text fragments are equal. Note that the order of the con-
stituents to take into account in the equivalence check of
person elements does not matter. However, in the individ-
ual equivalence checks, for example, of firstName elements
and lastName elements, respectively, we declare that the po-
sition matters. One may think of a compound primary key
for person elements whereby in this case the key is inter-
preted as a set. Comparing the sequences of children of two
person elements, however, the order of firstName, lastName,
and birthday elements matters to E. Exactly this flexibility is
covered by an equivalence specification. Hence, we achieved
to identify both lists of persons to be considered equivalent,
i.e. we expressed the fact that both sequences convey the
same information modulo the equivalence specification E.

sdiff – A Semantic Differ: We employ the semantic-tree
difference analysis algorithm sdiff defined in [19]. The com-
plete code is available at [21]. The difference to standard tree
difference analysis algorithms is, that it relies on an equiv-
alence specification for subtrees to identify corresponding
subtrees that need not be syntactically equal. The equiva-
lence specification is a parameter to the algorithm. The ad-
vantage is that one can indicate on which basis syntactically
different subtrees are identified, such as indicating primary
and secondary key attributes or sub-elements. This allows
for a more fine-tuned control compared to the heuristic ap-
proaches of standard tree difference analysis algorithms that
rely on some built-in syntactic metric to measure the sim-
ilarity of subtrees. A detailed comparison and a discussion
on the complexity of sdiff can be found in [26].

At this point, we are interested not in the actual algo-
rithm, but only the basic mode of operation. In general, the
sdiff algorithm is a function δXML : ≈ × XML × XML 7→ ∆
parametrized by an equivalence specification, a source XML
document and a target XML document (modified version).
The algorithm compares the contents of the two files and

enum Effect {none, local, implicit}
abstract node class Item {
url : string ;
effect : Effect = Effect :: none;
changeTypes : set<string>;
activator : string ; }

node class Elem extends Item { path : string; }
abstract directed edge class Dependency connect Item → Item;
edge class childOf extends Dependency connect Item → Item[+];
edge class dependsOn extends Dependency
connect Item[+] → Item[+];

Figure 4: A Graph Meta Model W

produces a delta3, a sequence of edit operations turning
source into target . Applied on the two guest lists depicted
in Fig. 1 and the corresponding equivalence specification il-
lustrated in Fig. 3 the computed delta is:

sdiff (new EquivSpec(spec), source, target) == (
update(”/∗[1]/∗[1]/@confirmed”, ”false”) ::
update(”/∗[1]/∗[1]/∗[3]/@type”, ”bus”) ::
append(”/∗[1]/∗[1]”, <birthday>1/23/45</birthday>):: Nil)

The sdiff differencing algorithm equipped with an identifi-
cation of syntactically different but semantically equal se-
quences clearly generates less intrusive edit scripts, which
lessens the rippling of effects and simplifies the tracking and
understanding of changes.

3.2 Graph Transformation
Over the last few years, graph rewriting theory gained

more and more of importance. There are currently various
tools available all being theoretically sound, fast and easy to
use. We chose GrGen due to its reliability and sophisticated
declarative syntax for specifications of graph meta models,
rewrite rules, and rule application tactics. In this section,
we present the most important features of GrGen utilized
by GMoC to annotate and analyze the change impacts on
collections of XML-documents. A comprehensive description
of all GrGen features and grammars can be found at [2].

Graph Meta Models. A GrGen meta model defines typed and
directed multi-graphs with multiple inheritance on node and
edge types. In addition these types can be equipped with
typed attributes and in order to restrict the set of well-
formed graphs, the user can give so called connection as-
sertions. These key features of a meta model are exemplary
shown in Fig. 4. We created a text file W.gm that contains
the graph meta model for our guest list scenario. Therein
we defined an Effect enumeration type comprising the enu-
meration items none, local, and implicit. Furthermore we
declared two base types, Item for general XML items and
Dependency for connecting XML elements. For the Elem type
we use inheritance which works like inheritance in object
oriented languages. Accordingly the abstract modifier on,
for example, Item means that one cannot create a node of
that precise type. The fact that certain edge types can only
connect specific nodes is stated by respective connection as-
sertions (connect). In particular these assertions allow for
constraints on the number of outgoing and incoming edges.

Graph Rewrite Rules: A GrGen rule file refers to graph mod-
els (using) and specifies a set of rewrite rules (rule). The
rule language covers pattern, replace, and modify specifica-

3sdiff has a generic output format but close to XUpdate [15].

using W;
rule markModified(v: Item) { modify { eval {
v. effect =Effect:: local ;
v.changeTypes=v.changeTypes | {"modified"}; } } }

rule rippleEffects {
pattern { dep:Item −:dependsOn−> prov:Elem; }
if {(dep. effect ==Effect::none && prov.effect==Effect::local);}
modify { eval {
dep. effect = Effect :: implicit ;
dep.changeTypes = prov.changeTypes;
dep.activator = prov.url; } } }

Figure 5: Graph Rewrite Rules for W.

tions. The pattern matcher is able to perform plain isomor-
phic subgraph matching as well as homomorphic matching
for a selectable set of nodes and edges. Matches can fur-
ther be restricted by arithmetic and logical conditions on
the attributes and types. Nested negative application con-
ditions are supported, too. Attributes of graph elements
can be re-evaluated (eval) during an application of a rule.
We present two example graph rewrite rules with the names
markModified and rippleEffects in Fig. 5.

Rule Application. The GrGen graph rewrite language of-
fers an extensive set of useful graph operations, including
recalculation of node and edge attributes and retyping of
nodes and edges. The rules can be composed with logi-
cal (e.g. &) and iterative sequence control (e.g. *) to an ex-
tended graph rewrite sequences (XGRS) like, for example,
xgrs <markModified(p) & rippleEffects∗>. Those sequences
can be executed within replace/ modify specifications as well
as in the script language of GrGen.

Because GrGen works on pure text files, handling of large
meta models and rule sets is easy. In addition GrGen enables
powerful interactive and batched execution of the graph
rewrite functionality. This includes commands for creation,
deletion, input, and output of graphs, nodes, and edges as
well as application of rewrite rules. These features made the
integration with GMoC straightforward.

3.3 The GMoC Tool
The GMoC-tool employs the described semantic difference

analysis from Sec. 3.1 and the GrGen-tool (Sec. 3.2) to imple-
ment the semantic annotation and change impact analysis
for heterogeneous collections of documents as described in
Sec. 2. The tool is available from [1] and implemented in
Java and utilizing GrGen for graph rewriting as a subsystem
via an internal interface. GMoC is based on declarations of
document types along with document models as well as in-
teraction models. For this we devised an XML language to
specify document models by: (1) the name of the file contain-
ing equivalence specification (2) the file name of the GrGen
graph meta model containing the node and link types of the
semantic graph and the impact graph for documents of this
type, (3) the file names of the GrGen rules for abstraction,
propagation, and projection for this model, (4) the names of
the main rules for abstraction, propagation and projection,
(5) a symbolic name used to reference it, and (6) a list of file
extensions that can be used to recognize files of that type.
As an example consider the document model specification
for our guests domain:

<DocumentModel name="Guests">
<suffix name="gxml"/> <equivspec filepath="Guests.eq"/>
<graphmodel filepath="Guests.gm"/>
<rulesystems>

<abstraction top="guestAbs" filepath="GuestsAbstr.gri"/>
<propagation top="guestProp" filepath="GuestsProp.gri"/>
<projection top="guestProj" filepath="GuestsProj.gri"/>
</rulesystems></DocumentModel>

The XML syntax to specify interaction models consists of
a symbolic name for that model as well as: (1) the names of
the document models (“partners”) this interaction model is
for, (2) the file name of the GrGen graph meta model con-
taining the node and link types of the semantic graph used
to represent the semantic relationships between the seman-
tic graphs of the respective document models, (3) the name
of GrGen rule files containing the propagation file for this
interaction model, and (4) the name of the main propaga-
tion rule. As an example consider the interaction model
specification for our guests and seats domain:

<InteractionModel name="GuestAndSeatingInteractionModel1">
<partner name="Guests"/><partner name="Seats"/>
<graphmodel filepath="Guests2Seats.gm"/>
<rulesystems>
<propagation top="gsProp" filepath="GuestsSeatsProp.gri"/>
</rulesystems></InteractionModel>

The XML document type definitions for document and
interaction models are available at [1].

For the practical application the idea is that document
models with the equivalence specifications and graph mod-
els and rules are written once for a class of documents, and
similarly for the interaction models. When using GMoC for
change impact analysis the author of the analyzed docu-
ments never has to look at these document model definition
files. Moreover, we envision that in a company, a change im-
pact analysis system engineer is responsible to develop and
maintain the document models and interaction models for
the documents occurring in the company. The other em-
ployees get the result of the analysis in form of annotations
to their documents, which are part of document plans which
specify document collections as a list of documents indexed
by a symbolic name for referencing purpose. The individ-
ual documents are given in an XML format and are either
referenced by their filename or can be in-lined. For each
document we can specify its type using the symbolic name
of the respective document model. If no type is specified,
the suffix of the document filename is used to determine its
document type. Upon loading a document plan and having
determined the document types of the documents, the GMoC
tool will select known interaction models between these doc-
ument types. For fine tuning, a document plan can include
directives to exclude specific interaction models using their
symbolic names. This is only for convenience but useful, for
instance, to experiment with different models or use differ-
ent models in different application contexts. An example
document plan is

<DocumentPlan>
<Document id="guests" filename="guests.gxml"/>
<Document id="seating" documentmodel="Seats"

filename="seating.sxml"/>
<exclude model="GuestAndSeatingInteractionModel1"/>
</DocumentPlan>

Since document plans also represent the output of GMoC,
a document plan can either contain the new document ver-
sions or the individual patch descriptions in the XUpdate-
format. In addition, we can specify impact information for
each document in form of a list of annotations for parts of
the documents referenced by XPaths. The complete DTD
for document plans is also available at [1].

The semantic annotation procedure is implemented as fol-
lows: Given a collection of documents, these are all parsed
into the one SDI graph, hence forming a disjoint set of docu-
ment subgraphs. The link types here are simple childOf and
isAttribute links, whereas the node types are the element
types (labels) of the XML language (for instance, guests,
firstName, . . .). These are assembled along with the GrGen
graph meta model declarations from the document model
specifications to one large GrGen graph meta model file. Fur-
thermore, from the document models and interaction models
we assemble all GrGen rules into a single large rule file by
memorizing all main rules for abstraction, propagation and
projection declared in the document and interaction model
specifications. From these we create the combined abstrac-
tion, propagation and projection rules using the XGRS syn-
tax and exactly following the construction given in Def. 10.
For the semantic annotation we then generate from the SDI
graph a respective GrGen graph instance and include the
combined XGR sequence. Finally, we add the GrGen com-
mand to emit the resulting graph to some temporary file.
GrGen is invoked on that file and upon completion we in-
crementally adjust the SDI graph by reading the new graph
from the temporary file. The single graph now contains the
new document graphs, the corresponding impact graphs and
the semantic graphs. Finally, the new document plan and
the impact information is generated in the document plan
format described above.

The change impact analysis procedure is implemented as
follows: Given an old and a new document plan and having
checked they are compatible to each other, we first seman-
tically annotate the old document plan applying the above
procedure. The internal SDI graph now contains the se-
mantically annotated documents. The impact information
is skipped, since we are interested only in the ripple effects
when going from the old documents to the new documents.
Next we compute for each pair of document from the old
and the new document plan the semantic differences instan-
tiated with the equivalence specification obtained from the
document model. The resulting list of patches are applied to
the document subgraphs of the current SDI graph. The re-
sulting SDI graph has – like any SDI graph – the interesting
properties resulting from the explicit semantics method (see
Sec. 2). Thus, in the resulting SDI graph the abstraction
rules can statically determine for the semantics subgraph
which parts have been added and which parts have been
deleted. This information is used by the propagation rules
to ripple the effects of these semantic changes throughout
the semantic subgraph. Finally, the computed ripple effects
are projected into the documents and the impact subgraphs
using the projection rules. Technically this is realized by
calling the GrGen-tool on the patched SDI graph exactly as
for the semantic annotation. Afterwards we generate the re-
sulting document plan with the new documents, which may
have been further changed by the graph rewriting rules, and
the impact information.

Based on the implementation of these basic routines,
the GMoC-tool provides the following high-level services:
(i) computation of semantic differences between two doc-
ument plans (ii) semantic annotation, (iii) change impact
analysis, and (iv) semantic management of change:

Semantic management of change is a special form of
change impact analysis. Tools with no change impact anal-
ysis support may utilize GMoC as a subsystem without hav-

ing to implement the actual analysis. Indeed, assume some
e-teaching environment where students can submit their so-
lution, say S, to exercise sheets. These are marked by the
teacher in an extended internal format, say SA, of these doc-
uments and the teacher may request revisions from the stu-
dent. The revised solution S′, which does not contain the
teacher’s marking and remarks made for himself, must be
integrated into the e-teaching environment while preserving
the still valid teacher’s markings and remarks. In princi-
ple, this is a special form of a three-way difference problem,
where we have an inclusion relation between S and SA, and
an edit script from S to S′ which we want to apply to SA, i.e.
compute the push-out in the category theory sense. This is
supported by the GMoC tool by semantically annotating the
extended document (SA). For the change impact analysis,
the semantic differences between S and S′ is computed and
the known inclusion relationship between S and SA is ex-
ploited to apply the changes on SA and to obtain S′A. Next
the standard abstraction, propagation and projection loop
on S′A computes the effect of the changes while preserving
as much of the original information. The resulting change
impact information can then simply be read-out by the e-
teaching environment to update its internal representation.
Of course, this requires the e-teaching environment to fully
trust the GMoC-tool, but avoids having to implement the
change impact analysis procedures from scratch.

4. APPLICATIONS
Authoring. We have applied our framework on the Sub-
version book [5] (∼ 7 MB in total). The manual is split
into 17 documents represented in the DocBook format [27]
which gives us a sophisticated structural markup of content.
Equipped with a DocBook singleton interaction model we
could identify inconsistencies as well as ripple effects long
before the next revision. For example, we identified — with
respect to the level of markup granularity — all the oc-
currences regarding the syntactical extension of externals
definitions from version 1.4 to 1.5.

Formal Methods. We currently extend the existing tool
Hets [18] for formal software verification with change im-
pact analysis support. The Hets tool maintains the status of
formal software specifications along with information about
how required global properties have been decomposed into
local conjectures and the status of the proofs for these con-
jectures. Thus we are in the change management setting de-
scribed at the end of Sec. 3.3: the user specifies and changes
the software specification (which corresponds to the solu-
tions written by the student in our example) and the internal
representation in Hets extends that with information about
proof decomposition and proof status (which corresponds to
the representation on which the teacher worked on in our ex-
ample). Here GMoC is used to add change impact analysis
to Hets exactly in the same style as described above. In the
same area we have applied the GMoC to the change impact
analysis for annotated C programs in the SAMS verification
framework [17], and used it with source code developed in
the SAMS project. Only a few simple rules where necessary
to obtain the desired result, which confirmed that the prin-
ciples of the explicit semantic method are well suited for this
kind of operation and the division of analysis rules into doc-
ument models and interaction models allows for a modular
and compositional development of change impact analysis.

On a more technical note, it also showed that the current
prototype implementation of GMoC does not scale well for
large files, which is due to the fact, that the interaction be-
tween GMoC, implemented in Java, and GrGen, based on
.NET, is currently based on exchanging files. Thus, future
work will consist of moving to an API based communication
between GrGen and GMoC.

5. RELATED WORK
Change Impact Analysis: Modeling data, control, and com-
ponent dependency relationships are useful ways to deter-
mine software change impacts within the set of source code.
The basic impact analysis techniques to support these kinds
of dependencies are data flow analysis [29], data dependency
analysis [13], control flow analysis [16], program slicing [14],
cross referencing, and browsing [3], and logic-based defects
detection and reverse engineering algorithms [11]. All these
approaches only consider documents referring to the same
document type, but changing one document (e.g. a func-
tional system specification) possibly requires adaptations to
other documents of different type (e.g. the documentation).

Requirements Traceability [12] is concerned with tracing re-
quirements over different levels of refinement. It is a key
technology for software maintenance to determine which ar-
tifacts need to be adapted when requirements change. There
is strong tool support for this, such as the DOORS sys-
tem [22]. However, these systems have the limitation, that
they only support their own document types. Any change in
a software artifact referenced from DOORS cannot be traced
automatically. Hence, there is also no support to synchro-
nize the version control of the software artifacts and the ver-
sioning in DOORS (Baselines). While some of the support
offered by DOORS could probably be mimicked with GMoC,
we envision the actual contribution of GMoC to bridge the
gap between DOORS and other tools used in the software de-
velopment process, such as version control systems, software
documentation tools, but also issue tracking systems.

6. CONCLUSION
We have presented a framework to model the annotation

of semantic properties for heterogeneous collections of doc-
uments and to design change impact analysis procedures in
a user-friendly declarative style. The key ingredients are
(i) changes are determined using a generic semantic tree dif-
ference analysis parametrized over document type specific
equivalence specifications, (ii) explicit representation of both
the syntactic documents and their intentional semantics in a
single graph (explicit semantics method), (iii) view of the se-
mantic annotation process as a specific graph transformation
process and its decomposition into the three phases abstrac-
tion, propagation and projection which allows one to com-
bine different document types via interaction models. The
framework has been implemented in the GMoC tool exactly
following the principles of the framework, based on the graph
rewriting tool GrGen. The primary application scenario for
GMoC is to bridge the gap between existing tools supporting
document type specific change impact analysis. However, it
can also be applied to add change impact analysis support
to existing systems. First experiments provide evidence that
GMoC can indeed significantly help to identify and manage
effects of changes in an environment of heterogeneous doc-
uments. Although an evaluation regarding scalability for

large collections of heterogeneous documents is missing, the
possibility to parse only semantically relevant parts of the
documents into the graph makes us confident that the ap-
proach scales.

The framework and its implementation provide good foun-
dation for future research: First, to develop methods to
prove properties about semantic annotation and interac-
tions, either on paper, but ideally using automated proof
support based on formal languages. Second, even if we as-
sume individual graph rewriting rule systems do terminate,
we are only sure that the combined abstraction and projec-
tions terminate as well. However, the combined propagation
rule systems may well be non-terminating due to some ping-
pong ripple effects. For this it would be highly desirable to
have some automated termination analysis, which is only
known for very restricted graph rewriting classes.

7. REFERENCES
[1] S. Autexier. The GMoC Tool for Generic Management

of Change, seen April 2010. http://www.informatik.
uni-bremen.de/dfki-sks/omoc/gmoc.html.

[2] J. Blomer and R. Geiß. The GrGen.NET User
Manual. Technical report, Universität Karlsruhe (TH),
Institut für Programmstrukturen und
Datenorganisation, June 2008.

[3] S. A. Bohner. A graph traceability approach for
software change impact analysis. PhD thesis, George
Mason University, Fairfax, VA, USA, 1995.

[4] G. Cobena, S. Abiteboul, and A. Marian. Detecting
Changes in XML Documents. In Proceedings of the
18th International Conference on Data Engineering,
26 February - 1 March 2002, San Jose, CA, pages
41–52. IEEE Computer Society, 2002.

[5] B. Collins-Sussman, B. W. Fitzpatrick, and C. M.
Pilato. Version Control with Subversion.
http://svnbook.red-bean.com/.

[6] F. Curbera and D. Epstein. Fast difference and update
of XML documents. In XTech, San Jose, 1999.

[7] Document object model, 2006. seen June.

[8] R. Geiß, G. V. Batz, D. Grund, S. Hack, and
A. Szalkowski. GrGen: A fast SPO-based graph
rewriting tool. In Graph Transformations - ICGT
2006. Lecture Notes In Computer Science, pages
383–397. Springer, 2006.

[9] C. Hoffmann and M. O’Donnell. Pattern Matching in
Trees. Journal of the ACM, 29(1):68–95, 1982.

[10] J. W. Hunt and M. D. McIlroy. An Algorithm for
Differential File Comparison. Technical Report CSTR
41, Bell Laboratories, Murray Hill, NJ, 1976.

[11] Y.-F. Hwang. Detecting faults in chained-inference
rules in information distribution systems. PhD thesis,
George Mason University, Fairfax, VA, USA, 1998.

[12] M. Jarke. Requirements tracing. Communication of
the ACM, 41(12), 1998.

[13] J. Keables, K. Roberson, and A. von Mayrhauser.
Data Flow Analysis and its Application to Software
Maintenance. In Proceedings of the Conference on
Software Maintenance, pages 335–347, Los Alamitos,
CA., October 1988. IEEE CS Press.

[14] B. Korel and J. Laski. Dynamic slicing of computer
programs. The Journal of Systems and Software,
13(3):187–195, 1990.

[15] A. Laux and L. Martin. XUpdate - XML Update
Language. http://xmldb-org.sourceforge.net.

[16] J. P. Loyall and S. A. Mathisen. Using Dependence
Analysis to Support the Software Maintenance
Process. In ICSM ’93: Proceedings of the Conference
on Software Maintenance, pages 282–291, Washington,
DC, USA, 1993. IEEE Computer Society.

[17] C. Lüth. Safety Componenet for Autonomous Mobile
Robots, seen April 2010. http://www.informatik.
uni-bremen.de/dfki-sks/sams/index.en.html.

[18] T. Mossakowski, C. Maeder, and K. Lüttich. The
heterogeneous tool set Hets. In O. Grumberg and
M. Huth, editors, 13th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS’07), volume LNCS 4424, pages
519–522. Springer, 2007.

[19] N. Müller. Change Management on Semi-Structured
Documents. PhD thesis, School of Engineering &
Science, Jacobs University Bremen, Campus Ring 1,
28759 Bremen, Germany, 2010.

[20] N. Müller. SCAla UP!, seen February 2010.
http://code.google.com/p/scaup.

[21] N. Müller. Scala XML Extensions, seen February
2010. http://code.google.com/p/scalaxx.

[22] rcm2 Ltd. DOORS - Dynamic Object-Oriented
Requirements System. http://www.rcm2.co.uk.

[23] S. Rönnau, G. Philipp, and U. M. Borghoff. Efficient
change control of xml documents. In U. M. Borghoff
and B. Chidlovskii, editors, ACM Symposium on
Document Engineering, pages 3–12. ACM, 2009.

[24] S. M. Selkow. The Tree-to-Tree Editing Problem.
Information Processing Letters, 6(6):184–186, 1977.

[25] K.-C. Tai. The Tree-to-Tree Correction Problem.
Journal of the ACM, 26(3):422–433, 1979.

[26] M. Wagner. Change-Oriented Architecture for
Mathematical Authoring Assistance. PhD thesis, FR
6.2 Informatik, Universität des Saarlandes, 2010.

[27] N. Walsh. The DocBook Schema Version 5.0.
http://www.docbook.org/.

[28] Y. Wang, D. J. DeWitt, and J. yi Cai. X-Diff: An
Effective Change Detection Algorithm for XML
Documents. In U. Dayal, K. Ramamritham, and T. M.
Vijayaraman, editors, Proceedings of the 19th
International Conference on Data Engineering, March
5-8, 2003, Bangalore, India, pages 519–530. IEEE
Computer Society, 2003.

[29] L. J. White. A Firewall Concept for both Control-
Flow and Data-Flow in Regression Integration
Testing. IEEE Trans. on Software Engineering, pages
171–262, 1992.

[30] K. Zhang and D. Shasha. Simple Fast Algorithms for
the Editing Distance Between Trees and Related
Problems. SIAM Journal on Computing,
18(6):1245–1262, 1989.

[31] K. Zhang, R. Statman, and D. Shasha. On the Editing
Distance Between Unordered Labeled Trees.
Information Processing Letters, 42(3):133–139, 1992.

