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Abstract. Handling changes to programs and specifications efficiently
is a particular challenge in formal software verification. Change impact
analysis is an approach to this challenge where the effects of changes
made to a document (such as a program or specification) are described in
terms of rules on a semantic representation of the document. This allows
to describe and delimit the effects of syntactic changes semantically. This
paper presents an application of generic change impact analysis to formal
software verification, using the GMoC and SAMS tools. We adapt the
GMoC tool for generic change impact analysis to the SAMS verification
framework for the formal verification of C programs, and show how a few
simple rules are sufficient to capture the essence of change management.

1 Introduction

Software verification has come of age, and a lot of viable approaches to verifying
the correctness of an implementation with respect to a given specification exist.
However, the real challenge in software verification is to cope with changes —
real software is never finished, the requirements may change, the implementa-
tion may change, or the underlying hardware may change (particularly in the
embedded domain, where hardware is a major cost factor). Here, many existing
approaches show weaknesses; it is not untypical to handle changes by rerunning
the verification and see where it fails (though there exist more sophisticated
approaches [1, 5], cf. Sec. 5).

To handle changes efficiently, a verification methodology which supports a
notion of modularity is needed, together with the appropriate tool support which
allows to efficiently delimit the impact of changes made to source code or spec-
ifications, thus leveraging the benefits of modularity. This is known as change
impact analysis, and this paper describes how to adapt it to formal software
verification. We make use of a change impact analysis tool for collections of
documents developed by the first author, which supports document-type spe-
cific, rule-based semantic annotation and change propagation, and apply it to a
framework for formal verification of C programs developed by the second author
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and others, which is based on annotating C programs with specifications. Our
contribution here is to demonstrate that a generic change impact analysis tool
can be adapted quickly to obtain a working solution for management of change
in formal verification. We posit that separating change impact analysis from the
actual software verification is useful, as it is a sensible separation of concerns and
allows the impact analysis to be adapted and reused with other tools. This is a
typical situation in verification, where often different tools are used for different
aspects of the verification (e.g. abstract interpretation to check safety properties,
and a theorem prover for functional correctness).

This paper is structured as follows: we first describe the two frameworks, the
generic change impact analysis tool GMoC in Sec. 2 and the SAMS verification
framework in Sec. 3, and show how to apply the former to the latter in Sec. 4.

2 Generic Semantic Change Impact Analysis

The motivation to develop a framework for generic semantic change impact is
that an overwhelming amount of documents of different types are produced
every day, which are rarely isolated artifacts but rather related to other kinds of
documents. Examples of documents are filled and signed forms, research reports,
or artifacts of the development process, such as requirements, documentation,
and in particular specifications and program source code as in our application.
These documents evolve over time and there is a need to automate the impact
of changes on other parts of documents as well as on related documents. In [4],
we proposed the GMoC framework for semantic change impact analysis that
embraces existing document types and allows for the declarative specification
of semantic annotation and propagation rules inside and across documents of
different types. We give a brief and necessarily incomplete overview over the
framework here, and refer the reader to [4] for the technical details.

Document Graph Model. The framework assumes documents to be XML files,
represented and enriched by semantic information in a single typed graph called
the document graph. The framework is parametrised over the specific XML for-
mat and types for the nodes and vertices of the document graph. The document
graph is divided into syntactic and semantic subgraphs; the latter is linked to
those syntactic parts which induced them, i.e. their origins. As a result the
graphs have interesting properties, which can be methodologically exploited for
the semantic impact analysis: it may contain parts in the document subgraph for
which there exists no semantic counter-part, which can be exploited during the
analysis to distinguish added from old parts. Conversely, the semantic subgraph
may contain parts which have no syntactic origin, that is they are dangling se-
mantics. This can be exploited during the analysis to distinguish deleted parts
of the semantics from preserved parts of the semantics. The information about
added and deleted parts in the semantics subgraph is the basis for propagating
the effect of changes throughout the semantic subgraph. In order to be able to
distinguish semantically meaningful changes, we further define an equivalence
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<guests> <guests>

<person confirmed="true"> <person confirmed="true">
<firstName>Serge< /firstName> <firstName>Normen< /firstName>
<lastName>Autexier< /lastName> <lastName>Miiller< /lastName>
<email>serge.autexier@dfki.de <email type="prv">n.mueller@gmail.com< /email>
< /email> </person>

< /person> 2 o N

<person confirmed="true"> <per-son confirmed= >
<firstName>Normen< /firstName> <f”'StName>Serge_</f|rstName>
<lastName>Miiller</lastName> <lastName>Autexier</lastName>
<email type="prv"> \ <birthday>1/23/45< /birthday > \

n.mueller@gmail.com

< /email> <email type:"">serge.autexier©dfki.de</emai|>

</person>< /guests> </person>< /guests>

Fig. 1: Semantically Equivalent Guest Lists.

relation indicating when two syntactically different XML elements are to be
considered equivalent.

Abstraction and Projection Rules. To relate the two subgraphs, we define ab-
straction rules, which construct the semantic graph representing the semantics
of a document, and projection rules, which project semantic properties computed
in the semantic graph into impact annotations for the syntactic documents. The
rules are defined as graph rewriting rules operating on the document graph.

Change Propagation Rules. The actual change impact is described by propaga-
tion rules, which are defined on the semantic entities, taking into account which
parts of the semantics have been added and which have been deleted.

Ezxample 1. Consider for instance a wedding planning scenario, where two types
of documents occur: The first document is the guest list and the second one the
seating arrangement. Both are semi-structured documents in an XML format as
shown in Fig. 1; the latter depends on the former with the condition of male and
female guests being paired. The change impact we consider is if one guest cancels
the invitation the respective change in the guest list ripples through to the seat-
ing arrangement breaking the consistency condition of guests being rotationally
arranged by gender. The idea of the semantic entities is that the semantic entity
for a specific guest remains the same, even if its syntactic structure changes. For
instance, the semantic entity of guest Serge remains the same even though the
subtree is changed by updating the confirmed status.

Change Impact Analysis. Change impact analysis starts with taking all doc-
uments under consideration, building the syntactic document graph from the
XML input, and applying in order the abstraction, propagation, and projec-
tion rule sets exhaustively. This initial step semantically annotates a document
collection, and can be used to define semantic checks on document collections.
For change impact analysis between two versions of document collections, we
then analyse the differences between the source and target documents. In order
to ignore syntactic changes which are semantically irrelevant, we use a semantic
difference analysis algorithm [13] for XML documents which is parametric in
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the equivalence relation of the documents. The result of the difference analysis
is an edit script, which is a set of edit operations; the effect of the equivalence
models is that in general the edit scripts are less intrusive, thus preserving those
parts of the documents from which the semantic parts have been computed.
The edit scripts are applied on the syntactic parts of the document graph. As a
result now there exists in the document graph new syntactic objects, for which
no semantic counterparts exist yet as well as there are semantic parts, which
syntactic origins have been deleted. On the graph we execute again the semantic
annotation step, which exploits the information on added and deleted parts to
compute the impact of the syntactic changes, represented by impact annotations
to the documents.

Ezample 1 (continued). To sharpen our intuition on equivalent XML fragments,
let us assume the two guests records shown in Fig. 1. Our focus is on the identifi-
cation of guests. A guest is represented by an unordered person with the addition
of whether this is committed or cancelled (confirmed attribute). Furthermore,
information such as first name (firstName), surname (lastName), and e-mail ad-
dress is stored. For the latter the distinction is between private address (prv)
and business address (bus) encoded within a (type) attribute whereas the type is
defaulted to be private. Optionally the date of birth is represented in a birthday
element. Over time, the entries in the guest list change. Thus, for example, in the
bottom half of Fig. 1 the order of guests is permuted and for one person element
the status of commitment and the e-mail address type changed. In addition, the
date of birth has been registered. To identify guests, we are not interested in
the status regarding commitment or cancellation and we do not care if we send
the invitation to the business address or home address. Therefore, we define the
primary key of a guest as a combination of first name, last name and e-mail
address, i.e. when comparing two person elements, changes in confirmed status
or e-mail address type are negligible as well as the existence of birthday infor-
mation. Existing XML differencing tools, however, would even with an adequate
normalisation consider the two guest records to be different. The change of the
confirmation status makes the two XML fragments unequal although regarding
our primary key definition for person elements those two are equal.

Realisation. The semantics-based analysis framework has been realised in the
prototype tool GMoC [2] that annotates and analyses the change impacts on col-
lections of XML-documents. The abstraction, propagation and projection rules
are graph transformation rules of the graph rewriting tool GrGen [9], which
has a declarative syntax to specify typed graphs in so-called GrGen graph mod-
els as well as GrGen graph rewriting rules and strategies. The GMoC-tool is
thus parametrised over a document model which contains (i) the GrGen graph
model specifying the types of nodes and edges for the syntactic and semantic
subgraphs for these documents, as well as the equivalence model for these docu-
ments; (ii) the abstraction and projection rules for these documents in GrGen’s
rule syntax; and (iii) the propagation rules for these documents, written in the
GrGen rule syntax as well.
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3 Formal Verification of C Programs

In this section, we give a brief exposition of the SAMS verification framework
in order to make the paper self-contained and show the basics on which the
change management is built in Sec. 4. For technical details, we may refer the
interested reader to [10]. The verification framework is based on annotations: C
functions are annotated with specifications of their behaviour, and the theorem
prover Isabelle is used to show that an implementation satisfies the specification
annotated to it by breaking down annotations to proof obligations, which are
proven interactively. Thus, in a typical verification workflow, we have the role of
the implementer, who writes a function, and the verifier, who writes the proofs.
Specifications are typically written jointly by implementer and verifier.

Language. We support a subset of the C language given by the MISRA pro-
gramming guidelines [11]; supported features include a limited form of address
arithmetic, arbitrary nesting of structures and arrays, function calls in expres-
sions, and unlimited use of pointers and the address operator; unsupported are
function pointers, unstructured control flow elements such as goto, break, and
switch, and arbitrary side effects (in particular those where the order would
be significant). Programs are deeply embedded into Isabelle and modelled by
their abstract syntax, thus there are datatypes representing, inter alia, expres-
sions, statements and declaration. (A front-end translates concrete into abstract
syntax, see Fig. 3.) The abstract syntax is very close to the phrase structure
grammar given in [7, Annex A].

Semantics. The foundation of the verification is a denotational semantics as
found e.g. in [15], suitably extended to handle a real programming language,
and formalised in Isabelle. It is deterministic and identifies all kinds of faults like
invalid memory access, non-termination, or division by zero as complete failure.
Specifications are semantically considered to be state predicates, as in a classical
total Hoare calculus. A specification of a program p consists of a precondition P
and a postcondition (), both of which are state predicates, and we define that
p satisfies this specification if its semantics maps each state satisfying P to one
satisfying Q:

I [Plp[Q £ VS. P S — def([p] S)AQ([p] S) (1)

where I is the global environment containing variables and the specifications
of all the other functions. We can then prove rules for each of the constructors
of the abstract syntax as derived theorems. Special care has been taken to keep
verification modular, such that each function can be verified separately.

Specification language. Programs are specified through annotations embedded in
the source code in specially marked comments (beginning with /@, as in JML or
ACSL). This way, annotated programs can be processed by any compiler with-
out modifications. Annotations can occur before function declarations, where
they take the form of function specifications, and inside functions to denote
loop invariants. A function specification consists of a precondition (@requires),
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/+Q@
Qrequires 0 <=w
&& w < sams_ config.brkdist.measurements[0].v
&& brkconfig_ OK(sams_ config)
@modifies \nothing
Q@ensures 0 < \result
&& \result < sams_ config.brkdist.length
&& sams__config.brkdist.measurements[\result—1].v > w
&& w >= sams_ config.brkdist.measurements[\result].v
Q@x/
Int32 bin_search idx v( Float32 w);

Fig. 2: Example specification: Given a velocity w, find the largest index i into
the global array sams_config. brkdist . measurements such that measurements|i].v
is larger than w. The assumption is that at least the first entry in measurements
is larger than w, and that the array is ordered (this is specified in the predicate
brkconfig_ OK). The function has no side effects, as specified by the @modifies
\nothing clause.

a postcondition (Q@ensures), and a modification set (@modifies). Fig. 2 gives an
example. The state predicates are written in a first-order language into which
Isabelle expressions can be embedded seamlessly using a quotation/antiquota-
tion mechanism; the exact syntax can be found in [10]. In contrast to programs,
specifications are embedded shallowly as Isabelle functions; there is no abstract
syntax modelling specifications.

Tool chain and data flow. The upper part of Fig. 3 shows a graphical repre-
sentation of the current data flow in the SAMS environment. We start with
the annotated source code; it can either be compiled and run, or verified. For
each source file, the frontend checks type correctness and compliance with the
MISRA programming guidelines, and then generates a representation of the ab-
stract syntax in Isabelle, and for each function in that source file, a stub of the
correctness proof (if the file does not exist). The user then has to fill in the
correctness proofs; users never look at or edit the program representation. The
resulting proof scripts can be run in Isabelle; if Isabelle finishes successfully, we
know the program satisfies its specification. Crucially, the verification is modular
— the proofs can be completed independently and in any order.

Proving correctness. This is because correctness is proven in a modular fash-
ion, for each function separately. The correctness proof starts with the goal
correct © f, which is unfolded to a statement of the form © F, [pre] body [post],
where body is the body of the function, and pre and post the pre- and postcon-
ditions, respectively. This goal is reduced by a tactic which repeatedly applies
proof rules matching the constructors of the abstract syntax of the body, together
with tactics to handle state simplification and framing. After all rules have been
applied, we are left with proof obligations relating to the program domain, which



Adding Change Impact Analysis to the Formal Verification of C Programs 7
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Fig. 3: Dataflow of the verification environment. Grey files are generated, white
files are created and edited by the user. The lower part (highlighted in grey) is
the added change impact analysis; given a change made by the user, the GMoC
tool compares the two XML representations of original and changed copy, and
calculates which proof scripts are affected by the change.

have to be proven interactively in Isabelle. These proofs make up the individual
proofs scripts in Fig. 3.

The proof scripts can be large, and the whole framework including proof rules
and tactics implementing the reduction of correctness assertions to proof obli-
gations is even larger. However, the correctness of the whole verification process
reduces to correctness of a very small trusted core, consisting of the denotational
semantics of the programming language and the notion of satisfaction from equa-
tion (1); the rest is developed conservatively from that. One consequence of this
is that when we implement change management as meta-rules, we can never
produce wrong results (i.e. a result which erroneously states a program satisfies
a specification), as Isabelle is always the final arbiter of correctness.

Change Management. The framework has been developed and used in the SAMS
project to verify the correctness of an implementation of a safety function for
autonomous vehicles and robots, which dynamically computes safety zones de-
pending on the vehicle’s current speed. The implementation consists of about
6 kloc of annotated C source code, with around fifty functions. What happens
now if we change one of these functions or its specification? In the current frame-
work, any changes to the annotated source code require the front-end to be run
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again, producing a new representation of the program. (The front-end will never
overwrite proof scripts.) One then has to rerun the proof scripts, and see where
they fail. For large programs, this is not very practical, as proof scripts can run
from several minutes up to an hour. One might break down a source file into
smaller parts containing only one function each, but besides not being desirable
from a software engineering point of view, this does not help when we change
the specification or declaration of a function, which lives in its header file, and
is always read by other functions.

In practise, the change impact analysis formalised here is done manually —
when a change is made, the verifier reruns those proof scripts which he suspects
may break. But this is error prone, and hence we want to make use of change
impact analysis techniques, and in particular the GMoC tool, to help us delim-
iting the effects of changes, pointing us to the proofs which we need to look at.
This will extend the current tool chain as depicted in the lower part of Fig. 3.

4 Change Impact Analysis for the SAMS Environment

In order to adapt the generic change impact analysis to the specific SAMS set-
ting, we need to instantiate the generic document model of Sec. 2 in three easy
steps: (i) define the graph model representing the syntax and semantics of an-
notated C programs, together with the equivalence relation on the semantics,
then (ii) define abstraction and projection rules relating syntax and semantics,
and finally (iii) define the rules how changes in annotated programs propagate
semantically. We also need to tool the SAMS front-end to generate output of the
abstract syntax in the specified XML format, so it can be input to GMoC. All
of this has only to be done once and for all, to set up the generic environment.
This is because of the basic assumption of the GMoC tool that the underlying
document model does not change during the document lifetime (which is the
case here, as the syntax and semantics of annotated C programs is fixed).

We now describe the three steps in turn. As a running example we consider
the safety function software for autonomous vehicles and robots mentioned in
the previous section. In this software one source file contained the functions
to compute the configuration of the safety function based on an approxima-
tion of the braking distance. It consists of three functions bin search idx v
called by the function brkdist straight itself called by compute brkconfig. The
specification of bin_search idx v was given in Fig. 2, and the change we con-
sider is that there had been an error in the postcondition saying @ensures w >
sams_ config.brkdist.measurements[\result].v (wrongly using > instead of >=),
and this is now changed in the source code to result in the (correct) spec-
ification in Fig. 2. This changes the specification of bin _search idx v, and
as a consequence the proofs of bin _search idx v and of the calling function
brkdist _straight must be inspected again, but not the proof of any other func-
tion, such as compute _brkconfig. Detecting this automatically is the goal of the
change impact analysis with GMoC.
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enum ClAStatus {added,deleted,preserved}

node class CIANode extends GmocNode {status:CIAStatus = CIAStatus::added;}
abstract node class Symbol extends CIANode { name : string;}

node class Function extends Symbol {}

node class SemSpec extends CIANode { function : string;}

node class SemBody extends CIANode { function : string;}

edge class Origin extends GmocLink {}

edge class ClIALink extends GmocLink { status : CIAStatus = CIAStatus::added;}
edge class Uses extends CIALink {}

edge class IsSpecOf extends CIALink {}

edge class IsBodyOf extends CIALink {}

Fig. 4: Semantic GrGen Graph Model for Annotated C Programs

equivspec annotatedC {
element invariant {}
unordered declaration {constituents = {InitDecl, StorageClassSpec}}
element InitDecl {constituents = {IdtDecl, FunDecl}}
element FunDecl {constituents = {IdtDecl}}
element IdtDecl {constituents = { Identifier }}
element Identifier {annotations = {id?}} ... }

Fig. 5: Part of the equivalence model for the XML syntax of annotated C files

4.1 Graph Model of the Documents

The syntactic document model is the abstract syntax of the annotated C pro-
grams, with nodes corresponding to the types of the non-terminals of the abstract
syntax, and edges to the constructors. We use an an XML representation of that
abstract syntax, and let the SAMS front-end generate that XML representation.
The semantic entities relevant for change impact analysis of the annotated C
programs as sketched above are:
— functions of a specific name and for which we use the node type Function;
— the relationship which function calls which other functions directly and for
which we have the Uses edges among Function nodes;
— specifications of functions, for which we use the nodes of type SemSpec which
are linked to the respective Function-nodes by IsSpecOf edges; and
— bodies of functions, for which we use nodes of type SemBody, are linked to
the respective Function-nodes by IsBodyOf edges.
Every semantic node has at most one link from a syntactic part, its Origin. Fi-
nally, all semantic nodes and edges have a status attribute indicating whether
they are added, deleted, or preserved. Fig. 4 shows the GrGen graph model dec-
laration to encode the intentional semantics of annotated C files.

Next we use the declarative syntax to specify the equivalence model for these
files, an excerpt of which being shown in Fig. 5: first, the equivalence model
specifies to ignore the filename and the file-positions contained as attributes.
Thus, for most XML elements, the annotations-slot in the entry on the equiva-
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rule detectNewFunDecls { rule detectExistingFunDecls {
attr : Attribute —: IsAttribute —> attr: Attribute —: IsAttribute —>
id: Identifier —:isin —> idt:IdtDecl id: Identifier —:isin —> idt:IdtDecl
—:isin —> fd:FunDecl —:isin—> —:isin —> fd:FunDecl —:isin —>
d:FunDef; d:FunDef;
if { attr.name == "id";} if { attr.name == "id";}
negative { id —:Origin—> f:Function;
id —:Origin—> f:Function; if { f.status == CIAStatus::deleted;}
if { f.name == attr.value; }} if { f.name == attr.value;}
modify { modify {
id —:Origin—> f:Function; eval {f.status=CIAStatus::preserved;}
exec ( findSpec(fd,f)); exec (findSpec(fd,f));
exec ( findFctBody(d,f)); }} exec (findFctBody(d,f)); }}

Fig. 6: Rules to detect new and existing functions

lence model does not contain these attribute names. Furthermore, it indicates
that declarations are unordered elements and that two declarations are to be con-
sidered equal, if the children Initdecl and StorageClassSpec are equivalent. These
equivalence relations specifications are also given and for Identifiers the recursion
is over the value of the attribute id.

For the specifications spec and the bodies FctBody of functions no entries
are specified. As a consequence, they are compared by deep tree equality in
the semantic difference analysis and thus every change in these is detected as a
replacement of the whole specification (respectively body) by a new version.

4.2 Abstraction and Projection Rules

The abstraction rules are sequences of GrGen graph rewriting rules that take
the abstract syntax of annotated C programs and compute the semantic repre-
sentation. In our case these are rules matching function declarations, bodies of
functions and specifications of functions and — depending on whether a corre-
sponding semantic entity exists or not — either adjust its status to preserved or
add a new semantic entity which gets status added. Corresponding GrGen rules
for these two cases are shown in Fig. 6. Both rules modify the graph structure as
specified in the modify part and can invoke the call to other rules now concerned
with matching the specification and body parts of found functions, which are
defined analogously, except that they also add or update the IsSpecOf and Is-
BodyOf edges to the given Function-node f passed as an argument. Finally, there
is one rule that establishes the function call relationship between functions by
checking the occurrence of functions in function bodies.

Prior to the application of the abstraction rules, the status of all nodes and
edges in the semantic graph are set to deleted. The adjustment of that informa-
tion during the abstraction phase for preserved parts and setting the status of
new semantic objects to added results in a semantic graph, where the status of



Adding Change Impact Analysis to the Formal Verification of C Programs 11

[ SemSpec [ SemBody ]
[id: 2, statfis: deleted | [id: 1. status: deleted |

SemSpfc | [ SemBody ] -

[ SemSpec ] Sem§pec SemBody ]
[id: 2, statud added | [id: 1, status: added | &

[id: 2. status: deleted | [id: 3. stafus: added | [id: 1. status: preserved |

<fundef>

<fundecl>

<IdtDecl> <FctBody>  <spec>’

<IdtDecl> ~ <spec>  <FctBody> <IdtDecl> <FctBody>  <spec>'

.
idx v />
< Identifier < Identifier

id="bin_search_idx_v''/> (b) After Edit id="bin_search_idx_v''/>
(a) After initial annotation  Script Application (c) After Impact Analysis

Fig. 7: Phases of the document graph during impact analysis

the nodes and edges indicates what happened to these objects. For instance, if
the specification of a function f has been changed, then the function node f has
one IsSpecOf edge to an old SemSpec node, which has status deleted, and one
IsSpecOf edge to a new SemSpec node, which has status added.

Ezxample 2. In our running example the abstraction rules detect the functions
bin_search idx v, brkdist straight and compute brkconfig as well as their cor-
responding bodies and specifications (see Fig. 7(a) for the part for the func-
tion bin_search idx v only). Finally, they add the Uses edges indicating that
bin_search idx v is called by brkdist straight, which in turn is called by the
function compute brkconfig (all not shown in Fig. 7(a)).

The projection rules simply project the computed affect information into
the syntactic documents by linking the origins of the semantic entities with
respective Impact nodes. Since we have essentially two kinds of changes causing
the re-inspection of proofs, we have two corresponding rules, of which we only
present the specification change rule:

pattern markSpecCauseProofRequiresInspection (f:Function,cause:Function) {
id: Identifier —:Origin—> f;
negative { if { f.status == CIAStatus:deleted; }
:fctSpecChangeMarked(f,cause); }
modify { i:Impact—:affects—> id;
eval { i.name = "ProofAffected"; i.value = "SpecChange "+cause.name;}}}

The Impact nodes will be automatically serialised into an XML description
of the impacts of the changes, reusing the name and value specified in the impact
node and referencing the XML subtree corresponding to the linked node (e.g.,
id:ldentifier) by its XPath in the document.

The final part of the projection phase is to actually delete those nodes and
edges in the semantic graph still marked as deleted, which is some kind of garbage
collection after completing the analysis — and before the next analysis phase
starts after application of the syntactic changes on the documents.
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4.3 Change Propagation Rules

In the SAMS verification environment, the verification is modular and each C
function is verified separately. In this context, changes in the annotated source
code affect proofs as follows:

(CIABodyChange) If a function is modified but its specification not changed,
then only the proof for this function needs to be checked again.

(CIASpecChange) If the specification of a function f is changed, then the
correctness proof of that function needs to be checked as well as the proofs
of all functions that directly call f, because in these proofs the specification
may have been used.

These are two simple rules that can be checked on the C files directly. In the fol-
lowing we describe how these checks have been automated using the GMoC-tool,
presenting the formalisation of the latter in detail. First, we specify a pattern
to recognise if the specification of a function has changed based on the fact that
we have a function which has not status deleted and which has an IsSpecOf edge
from an added SemSpec:

pattern fctSpecChanged(f:Function) {
negative { if { f.status == CIAStatus:deleted; }}
newss:SemSpec —:IsSpecOf—> f;
if { newss.status == CIAStatus::added; }}

This pattern is used to detect functions which specifications have changed and
mark these and all functions calling them as being affected by the change. This
is done by the sub-rules markSpecCauseProofRequiresInspection and markCalling-
FunctionsProoflnspection in the pattern below, where the keyword iterated indi-
cates that the enclosed pattern must be applied exhaustively:

pattern propagateChangedSpec {
iterated { f:Function;
:fctSpecChanged(f);
markself : markSpecCauseProofRequiresInspection(f,f);
markothers: markCallingFunctionsProoflnspection (f);

modify { markself(); markothers(); }}
modify {} }

A similar but simpler propagation rule exists to detect changed function bodies
which marks only the function itself, but not the calling functions.

4.4 Change Impact Analysis

For the change impact analysis, the original annotated C programs are seman-
tically annotated using the abstraction, propagation and projection rules from
the previous section. Before analysing the changes caused by a new version of
the annotated C programs, all impact nodes are deleted, because they encode
the impacts of going from empty annotated C programs to the current versions.
This is the equivalent to an adjustment of the baseline in systems like DOORS.
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Next the differences to the new versions of the annotated C programs are
analysed using the semantic difference analysis instantiated with the equivalence
model for annotated C programs. This model is designed such that all type,
constant and function declarations are determined by the name of the defined
objects and any change in a specification or function body causes its entire
replacement. Applying the resulting edit script thus deletes the node which was
marked as the origin of a specification (resp. body, function, type or constant),
and thus the corresponding node in the semantic graph becomes an orphan.

Ezample 2 (continued). For our example, the change in the specification of
bin_search idx v from > to >= is detected by the semantic difference analysis
and due to the way the equivalence model is defined, the edit script contains the
edit operation to remove the entire specification and replace it with a new one.
Applying that on the SDI graph deletes the old specification node in the docu-
ment graph and adds a new specification to the document graph. Thus, in the
semantic graph the SemSpec node for the function bin _search idx v now lacks
an Origin-node. The shape of the graph now including deletion information on
the semantic parts and the removed/added syntactic parts from the edit script
is shown in Fig. 7(b).

On that graph the same abstraction, propagation and projection rules are
applied again. All rules are change-aware in the sense that they take into ac-
count the status (added, deleted, or preserved) of existing nodes and edges in
the semantic graph and adapt it to the new syntactic situation. As a result we
obtain Impact-nodes marking those functions, which proofs must be inspected
again according to the rules (CIABodyChange) and (CIASpecChange).

More specifically, for our example C files, the abstraction-phase introduces
a new SemSpec, and hence the Function-node for bin_search idx v in the se-
mantic graph now has one IsSpecOf-edge to the old SemSpec-node (i.e. with
status deleted) and one to the SemSpec-node which has just been added (see
Fig. 7(c)). This is exploited by the propagation rules to mark bin_search idx v
and brkdist straight as those functions which proofs need inspection.

5 Conclusions, Related and Future Work

This paper has shown how change impact analysis can be used to handle changes
in formal software verification. Our case study was to adapt the generic GMoC
tool to the change impact analysis for annotated C programs in the SAMS
verification framework, and demonstrate its usage with source code developed
in the SAMS project. Currently, prototypes of both tools are available at their
respective websites [2, 14]

Results. The case study has shown that the principles of the explicit semantic
method underlying the GMoC framework indeed allow to add change impact
analysis to an existing verification environment. Note that we have not shown
all rules above, but only those of semantic importance. As far as the C language is
concerned, further impact analysis is unlikely to be much of an improvement, as
functions are the appropriate level of abstraction. One could consider analysing
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the impact of changing type definitions, but because type checking takes place
before the change impact analysis, this is covered by the rules described above:
if we change the definition of a type, then in order to have the resulting code
type-check, one will typically need to make changes in the function definitions
and declarations using the type, which will in turn trigger the existing rules.

On a more technical note, the case study also showed that the current proto-
type implementation of GMoC does not scale well for large XML files, because
interaction between GMoC, implemented in Java, and GrGen, based on .NET,
is currently based on exchanging files. Thus, future work will consist of moving
to an API based communication between GrGen and GMoC.

Related work. Other formal verification tools typically do not have much man-
agement of change. For example, two frameworks which are close to the SAMS
framework considered here are Frama-C [8] and VCC [6], both of which use C
source code annotated with specifications and correctness assertions, and both of
which handle changes by rerunning the proofs. Theorem provers like Isabelle and
Coq (which is used with Frama-C) have very course-grained change management
at the level of files (i.e. if a source file changes, all definitions and proofs in that
file and all other files using this, are invalidated and need to be rerun). Some
formal methods tools, such as Rodin [1] and KIV [5], have sophisticated change
management, which for these tools is more powerful than what a generic solution
might achieve, but the separation advocated here has three distinct advantages
which we believe outweigh the drawbacks: (i) it makes change impact analysis
(CIA) reusable with other systems (e.g. the SAMS instantiation could be reused
nearly as is with Frama-C); (ii) it allows experimentation with different CIA al-
gorithms (amounting to changing the rules of the document model); and (iii) it
allows development of the verification system to be separated from development
of the change management, and in particular allows the use of third-party tools
(such as Isabelle in our case) for verification. In previous work the first author co-
developed the MAYA system [3] to maintain structured specifications based on
development graphs and where change management support was integrated from
the beginning. These experiences went into the development of GMoC which is
currently also used to provide change impact analysis for the Hets tool [12] where
change management was not included right from the beginning.

Outlook. The logical next step in this development would be change impact
analysis for Isabelle theories, to allow a finer grained change management of
the resulting theories. As opposed to the situation in C, fine-grained analysis in
Isabelle makes sense, because in general proof scripts are much more interlinked
than program source code, and because they take far longer time to process.
However, for precisely this reason it requires a richer semantic model than C.
The change impact analysis could then be used for the Isabelle proof scripts
occurring in the SAMS framework, for standalone Isabelle theories, or for Isabelle
proof scripts used in other tools. This demonstrates that it is useful to keep
change impact analysis separate from the actual tools, as it allows its reuse,
both across different versions of the same tool (this is particularly relevant when
tools are still under active development, which is often the case in academic
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environment), or when combining different tools (a situation occurring quite
frequently in software verification). Thus, we could have implemented the rules
above straight into the frontend with not much effort, but that would still leave
the necessity to handle changes for the Isabelle theories.

On a more speculative note, we would like to extend the change impact

analysis to handle typical re-factoring operations (both for C, and even more
speculative, for Isabelle), such as renaming a function or parameter (which is
straightforward), or e.g. adding a field to a structure type ¢; the latter should
not impact any correctness proofs using ¢ except those calling sizeof for ¢.

References

1.

o

10.

11.

12.

13.

14.

15.

J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Metha, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. International
Journal on Software Tools for Technology Transfer (STTT), 2010.

S. Autexier. The GMoC Tool for Generic Management of Change. Website at
http://www.informatik.uni-bremen.de/dfki-sks/omoc/gmoc.html, 2010.

S. Autexier and D. Hutter. Formal software development in Maya. In Festschrift
in Honor of J. Siekmann, LNAT 2605. Springer, 2005.

S. Autexier and N. Miiller. Semantics-based change impact analysis for hetero-
geneous collections of documents. In Proc. 10th ACM Symposium on Document
Engineering (DocEng2010), UK, 2010.

M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system de-
velopment with KIV. In Fundamental Approaches to Software Engineering, LNCS
1783, pages 363— 366. Springer, 2000.

. E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,

W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In Theorem Proving in Higher Order Logics (TPHOLs 2009), LNCS 5674, pages
23-42. Springer, 2009.

Programming languages — C. ISO/IEC Standard 9899:1999(E), 1999. 2nd Edition.
Frama-C. Website at http://frama-c.cea.fr/, 2008.

R. Geif, G. V. Batz, D. Grund, S. Hack, and A. Szalkowski. GrGen: A fast SPO-
based graph rewriting tool. In Graph Transformations (ICGT 2006), LNCS 4178,
pages 383-397. Springer, 2006.

C. Liith and D. Walter. Certifiable specification and verification of C programs.
In Formal Methods (FM 2009), LNCS 5850, pages 419-434. Springer, 2009.
MISRA-C: 2004. Guidelines for the use of the C language in critical systems.
MISRA Ltd., 2004.

T. Mossakowski, C. Maeder, and K. Liittich. The Heterogeneous Tool Set. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2007),
LNCS 4424, pages 519-522. Springer, 2007.

N. Miiller. Change Management on Semi-Structured Documents. PhD thesis,
School of Engineering & Science, Jacobs University Bremen, 2010.

Safety Component for Autonomous Mobile Service Robots (SAMS). Website at
http://www.sams-project.org/, 2010.

G. Winskel. The Formal Semantics of Programming Langauges. Foundations of
Computing Series. The MIT Press, 1993.



