
Pattern Recognition Engineering

Faisal Shafait1, Matthias Reif1, Christian Kofler1, and Thomas M. Breuel2
1Multimedia Analysis and Data Mining Competence Center

German Research Center for Artificial Intelligence (DFKI GmbH)
D-67663 Kaiserslautern, Germany

{faisal.shafait,matthias.reif,christian.kofler}@dfki.de
2Image Understanding and Pattern Recognition (IUPR) Research Group
Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany

tmb@informatik.uni-kl.de

Abstract— This paper outlines some key software components
developed in the Pattern Recognition Engineering (PaREn)
project. The goal of the PaREn project was to create the
methods and tools necessary allowing non-experts to use, train,
test, and deploy pattern recognition and machine learning
modules in real-world software systems. A major effort in the
PaREn project was therefore automating parameter optimiza-
tion, model selection, machine learning system construction,
and supporting rapid testing, validation, and on-line adaptivity.
To deliver our technologies as open source, we chose Rapid-
Miner as the software platform. Therefore, major software
components developed in PaREn are provided as RapidMiner
extensions. The expected benefits are a far wider usage of
pattern recognition and machine learning methods, leading to
both better quality of the decisions and behaviors of software
systems, as well as lower development costs.

I. INTRODUCTION

Although many new pattern recognition and machine
learning methods have been developed over the last two
decades, integrating those methods in real-world software
systems is still a trying experience for both users and
software developers. We believe that this gap is due to
a lack of tools and methods supporting such integration,
as well as to the high level of expertise demanded from
software developers in areas such as model construction,
model selection, and validation.

Perhaps the biggest obstacle to the adoption and integra-
tion of pattern recognition and machine learning methods
into real-world software systems is the mathematical com-
plexity and sophistication required for adapting them to par-
ticular problems. This is not primarily a software engineering
issue, it is a fundamental problem with the methods them-
selves: they usually have many parameters and their behavior
is highly sensitive to how pattern recognition modules are
interconnected. Furthermore, while many existing software
components also may have many parameters that affect their
behavior, those parameters generally correspond to concepts
that are meaningful to application developers and can be
optimized via trial and error. The goal of the PaREn project is
to develop technologies for automating and supporting model
construction and selection in real-world settings. Our vision
is that this will take pattern recognition methods out of the
hands of academics and specialists and make them far more

accessible to real-world software developers.
Each of the major stakeholders in the development of

pattern recognition systems–end users, application engineers,
software developers, pattern recognition researchers, and
students–should be able to focus on the relevant aspects of
development and deployment of such systems without having
to acquire significant expertise outside their own areas of
concern. We can illustrate this through a number of use cases
and scenarios.

Consider an application engineer who would like to
develop a pattern recognition system with data at hand but
does not have enough expertise to choose and configure an
appropriate pattern recognition software pipeline. A pipeline
in this context may e.g. consist of steps for providing data,
preprocessing and classification. The application engineer
uploads a labeled dataset to the PaREn tools. After analysis
of the data, the most appropriate Pattern Recognition (PR)
Pipeline is chosen from a set of candidates in a Case Base.
The application engineer may confirm or correct the selection
of the pipeline. The selected pipeline can then be optimized
according to the uploaded data.

In addition to the functionality for standard users, an ex-
pert user needs to have more control over the involved steps
and actual implementations of pattern recognition pipelines.
An expert user can review pipelines in depth and replace or
modify the individual algorithms involved. Modified versions
of an algorithm or new algorithms can be committed and
automatically evaluated. Using the experiment repository, the
performance of the respective algorithm can be compared to
previous revisions.

II. RELATED WORK

The pattern recognition community has recognized the
importance of pattern recognition engineering on various
occasions before, which we would like to illustrate with two
quotes:

“It is worth noting that Theo Pavlidis, in his King-Sun
Fu lecture during ICPR 2000, recommended PR researchers
to use the engineering paradigm in their work, because their
final goal is the design and construction of PR machines.” [1],
[2] “According to computer science encyclopedia and some
famous textbooks, pattern recognition (PR) can be defined as



Fig. 1. The main use cases of the PaREn tools for Application Engineers and Experts.

the discipline that studies theories and methods for designing
machines that are able to recognize patterns in noisy data [...].
Although this is only one of the possible definitions for PR,
it points out well the ‘engineering’ nature of this scientific
discipline, because it says that the final goal of PR is the
design of ‘machines’.”[1]

Most relevant work to PaREn has been carried out in
pattern recognition on model selection and model validation.
Of particular note is the EU STATLOG project [3], [4],
comparing algorithms from symbolic learning, statistics, and
neural networks on twelve data sets. The project focused
on classification problems and performed an extensive eval-
uation and comparison of different methods on common
datasets. The STATLOG project did not simply report the rel-
ative performance of different methods on different datasets,
but also applied statistical techniques to the performance of
the different algorithms and datasets themselves. This was
used, for example, to automatically generate a taxonomy of
pattern recognition methods based on their performance on
different datasets, and of datasets based on how close the
performance of different methods matched on those datasets.

STATLOG also included some work on meta-level learn-
ing and model selection and created an “Application Assis-
tant”, a rule-based expert system making recommendations
to users as to which pattern recognition methods to use,
combining both empirical and a priori information. The
Application Assistant was considered “promising” by its
developers and has been able to make useful recommen-
dations. However, the Application Assistant does not deal
with the construction of entire pattern recognition systems
(preprocessing, classification, post-processing), it only makes
recommendations. Furthermore, the Application Assistant
does not appear to have been integrated into the development
process itself; that is, it would make recommendations, but it
was up to the developer to put those recommendations into
practice.

Within the EU project MetaL [5], an open source software
for calculating measures of datasets was developed. This data
characterization toolkit (DCT) calculates several features,
that describe the dataset itself. These meta-features contain
skewness, kurtosis, SD ratio, and class entropy of the data
and can be used to predict the applicability of pattern recog-
nition algorithms. Additionally, landmarking was used for
characterizing datasets [6]. Landmarking utilizes simple, fast
computable classification algorithms and uses their achieved
accuracy values as features of the dataset.

Recently, developments in the areas of automatic algo-
rithm selection, model selection, and parameter optimization
have been tested as part of the Model Selection Workshop
(2006) [7]. The conclusions of the workshop are summarized
in [8]. Generally, simple cross-validation techniques were
found to work fairly reliably and predictably. The authors
and organizers concluded that “there is still a gap to be filled
between theory and practice in this game of performance
prediction and model selection”. Generally, work in recent
years has attempted to explore a large number of different
algorithms and approaches to meta-learning, but little more
work appears to have been delivering these new methods to
real-world environments.

III. CHOOSING A SOFTWARE PLATFORM

We performed a thorough review and evaluation of ex-
isting open source machine learning tools to incorporate our
methods into existing tools as much as possible. Twenty-two
requirements were defined and weighted according to their
importance for PaREn.

Table I shows an excerpt of the evaluation results and
the final overall rating. RapidMiner and KNIME fulfilled
the most important requirements. The final decision has
been supported by the fact that RapidMiner has evolved
as the de facto standard in open source data mining tools.
RapidMiner was the only open source tool in the top five



TABLE I
EXCERPT OF THE EVALUATION OF PATTERN RECOGNITION AND DATA MINING TOOLS. EACH SOFTWARE HAS BEEN RATED BETWEEN 1 (BAD) AND 5

(VERY GOOD) FOR EACH OF THE WEIGHTED REQUIREMENTS.

Requirement RapidMiner Orange KNIME KEEL Weka
reliable implementation of the major algorithms for classi-
fication and prediction

5 3 5 5 5

consistent implementation of a persistent pipeline concept 5 4 4 2 3
programmatic access to all relevant components and param-
eters (API)

5 5 5 1 5

extensibility with plug-ins 5 5 5 2 3
software runs stable and is robust against errors 5 4 5 4 4
implementation and integration of data preprocessing algo-
rithms

5 3 5 5 5

API is well-documented 5 4 5 1 5
good visualization of data and results 5 3 4 2 3
implementation and integration of clustering algorithms 5 3 4 2 4
handling of multiple data formats and sources 5 3 3 5 5
support for PMML (Predictive Model Markup Language) 3 1 5 1 4
high acceptance in the community 5 4 4 4 5
command line interface 5 3 5 4 3
intuitive HCI 4 3 5 2 3
support for multiple platforms and operating systems 5 3 4 4 5
... ... ... ... ... ...

Overall rating 4.83 3.52 4.00 2.75 3.52

in the KDnuggets Poll in 2009 [9]. KDnuggets is highly
accepted in the data mining community and creates yearly
surveys of the most popular software tools. An interesting
aspect of RapidMiner is its support of the PMML (Predic-
tive Model Markup Language) standard. With PMML, it is
straightforward to develop a model on one system using one
application and deploy the model on another system using
another application. Therefore, the results of experiments
performed in RapidMiner can be directly used in other
PMML compliant systems.

Based on the evaluation and the high acceptance in the
community, we decided to use RapidMiner as basis and
integration framework for the PaREn software results. Most
of the software components presented here build on, extend
or integrate RapidMiner software.

IV. SOFTWARE COMPONENTS

A. Comparison of Classifiers over UCI datasets

For the comparison and evaluation of classifiers we created
a so called case base. This central storage contains multiple
datasets, classifiers and performance values.

The datasets were selected mainly from the UCI machine
learning repository [10]. We used 123 real-world datasets
from different domains. Their sizes as well as their number
and type of features differ.

Additionally, we selected a set of classifiers, that contains
very successfully used algorithms (Random Forest, Neural
Network, Support Vector Machine) as well as algorithms
using different approaches (Naive Bayes, Decision Tree, k-
Nearest Neighbor, One-R). Of course, there are many more
classification algorithms, which can be easily added to the
case base.

Every classifier was evaluated on each dataset. We de-
termined the accuracy values of the classifiers by a grid
search of the most important parameters using a ten-fold
cross-validation. The resulting table of datasets, classifiers
and performance values can be easily used for further com-
parisons.

B. Automatic Evaluation of Pattern Recognition Systems

The complete system for automatically evaluating pattern
recognition pipelines was implemented as a RapidMiner
plug-in so that it can benefit from RapidMiner in two ways.
First, the system is easily usable especially for users who
have worked with RapidMiner before. It uses the same
interfaces and GUI elements as the standard RapidMiner
software. Instead of manually writing configuration files in
a format that the user needs to get used to, he can use the
more intuitive graphical interface of RapidMiner.

Second, the system can easily benefit from the existing
functionality of RapidMiner. Different modules of Rapid-
Miner are used within the system and are available for testing
it as well. For example, importing data sets into the system
is very easy and powerful this way because it can already
import any data format that is supported by RapidMiner. It
is also easily possible to integrate the implemented plug-in
into more complex processes.

The PaREn system is able to automatically evaluate a new
classifier on all previously imported datasets. The classifier
can be an arbitrary RapidMiner process that takes a dataset as
input and delivers the learned model as output. Optionally,
the user can specify a preprocessing pipeline that will be
applied on every dataset before invoking the classifier itself.



Fig. 2. Schematic overview of the automatic system evaluation process.

The actual evaluation of the classifier can be done in many
different ways. Currently we use a cross-validation whereas
the number of folds and the seed for the random generator
are fixed parameters of each data set. The fixed seed is used
for better reproducibility of the experimental results.

Additionally, for every classification pipeline, the user can
define a set of parameters that should be optimized during
its evaluation. The optimization methods are performed in-
dependently on each dataset and use a grid search.

If the user wants to evaluate a new classification pipeline
including a preprocessing, the developed system automati-
cally applies it on all datasets and measures the performance
values using a cross-validation. The result is a list with
the performance values of every data set that are stored
in the central database. The overall process is illustrated
in Figure 2. Using the system, it is easily possible to get
an overview of the performance of a classifier over many
different data sets. The comparison with other previously
evaluated classifiers is much simpler as well.

All results are stored within a RapidMiner repository. This
includes all datasets and for every evaluated classifier:

• the classifier process XML file
• the optional preprocessing XML file
• a list of parameters and their optimization intervals
• for every dataset:

– the best parameter values found during optimiza-
tion

– the best performance value found during optimiza-
tion

– the complete automatically generated evaluation
pipeline including preprocessing and parameter op-
timization setup

Since especially parameter optimization with cross-
validation is a very compute intensive task, the software is
able to do the evaluation on the datasets in parallel using
multiple threads. It can also be integrated with the distributed
approaches that we have developed (Section IV-D) to reduce
computation times further.

C. Automatic System Optimization

The possibilities of RapidMiner for parameter optimiza-
tion are rather limited. It offers implementations of a grid
search and an evolutionary approach.

We implemented an operator for RapidMiner that uses
Simulated Annealing for parameter optimization. Simulated
Annealing may work faster than Evolutionary Algorithms
since it does not use multiple solutions in parallel.

In order to overcome the complexity problem by not
just using more hardware resources, we also implemented
an adaptation of the Evolutionary Optimization operator of
RapidMiner that is able to use defined parameter values as
start population. By defining start points that are already
promising by using the knowledge obtained from previous
system evaluations, we can decrease the iterations, number
of individuals and therewith the time needed for finding
the optimal parameter values. This can be an advantage
especially for users that are no experts and therefore cannot
easily limit the search space of the parameter values. The risk
of missing the optimal parameter set should also be reduced
by this approach.

D. Dispare - Distributed Pattern Recognition

RapidMiner already provides easy to use interfaces for
developing and evaluating Pattern Recognition and Machine
Learning applications. However, it has only limited support
for parallelization and it lacks functionality to spread long-
running computations over multiple machines. A solution to
this is distributed computing with paradigms like MapRe-
duce.

In the PaREn project, we have developed and evaluated a
system called dispare which integrates distributed computing
frameworks into RapidMiner. A special focus is put on
utilizing MapReduce as a programming model. The software
framework of GridGain and Oracle Coherence is reviewed
and evaluated with respect to its suitability to fit into the
context of RapidMiner. The developed system provides ef-
fective means for transparently utilizing this framework and
enabling RapidMiner processes to parallelize their computa-
tions within a distributed environment.

E. Collaborative User Interface

The Collaborative User Interface represents the graphical
front-end to a rich set of software tools and datasets available
as RapidMiner extensions. It allows users to access all major
PaREn functionality easily over the web. This greatly reduces
the required effort for beginners to access and comprehend
pattern recognition technologies. A screen-shot of the user
interface showing predicted accuracies of different classifiers
is shown in Figure 3.

Users are able to upload data with the Collaborative User
Interface for which they would like to have a classification
pipeline. These pattern recognition pipelines are provided
as RapidMiner processes in XML format. The Collaborative
User Interface invokes the PaREn RapidMiner extensions for
analysis of the uploaded data and keeps the user informed
about the status of this process. Depending on the results of
the data analysis accuracies of a pre-defined set of classifiers
are predicted. The predicted accuracies are shown to the
user and then he can pick one or more classifiers to be
evaluated on his dataset to get actual accuracies. The PaREn



Fig. 3. A screen-shot of the collaborative user interface showing predicted accuracies of different classifiers on the user-provided dataset.

system then optimizes the chosen classifiers on the given
dataset and provides a complete pattern recognition pipeline
for download.

F. AutoMLP Classifier

In addition to automatic system evaluation and optimiza-
tion, the PaREn goal of making pattern recognition systems
accessible to non-experts requires development of new statis-
tical methods and algorithms that are essential for reducing
the number of parameters needed by pattern recognition and
machine learning methods.

We started this work by creating a classifier for OCR appli-
cations that is self-configuring and self-tuning. Given training
data (either supplied as a batch, or a sample at a time), the
classifier will automatically select among a range of possible
internal classifiers. The choice is determined by automated
internal cross-validation and complexity measures, as well
as available computational resources and memory. Classifiers
can scale from a few training samples to millions of training
samples.

After thorough testing and evaluation of self-tuning classi-
fiers, we incorporated them in the 0.4 release of the OCRopus
open source OCR system. A particularly promising classifier
is the AutoMLP classifier, which automatically adjusts its
learning rate and number of hidden units with an evolu-
tionary approach. The implementation is done such that
it can automatically cross-validate different samples in the
population in parallel and converges to a good solution

very fast. We are working now on applying it to general
classification tasks and do extensive benchmarking against
other standard classification algorithms. Since the original
implementation was in C++ for performance reasons, we also
provide a Java implementation of the AutoMLP classifier for
RapidMiner.

G. Meta Feature Extraction

Meta-learning is a growing field in Machine Learning.
Classifier recommendation, ranking of learning algorithms,
or automatic classifier selection can be developed based on
meta-features. Landmarking is a recent category of meta-
features, which uses the accuracies of some simple classifiers
as characteristics of a dataset. Considered as the first meta-
learning step in RapidMiner, we have developed a new
operator called landmarking to extract meta-features of a
dataset. These meta-features can then be used to predict the
accuracies of different classifiers on a dataset.

H. PaREn Automatic Classifier Selection Wizard

The wizard for automatic classifier selection guides the
user in three simple steps to the best classifier for his dataset.
The three steps are:

• Selection of the dataset
• Selection of the classifiers for evaluation
• Selection of the classifier for system construction

After the user selected the dataset he wants to get a pattern
recognition system for, the data is analyzed and meta-features



(a) Second step: the user can select which classifiers should be evaluated
based on the predicted accuracies.

(b) Third step: the user can select a classifier for the automatically
constructed pattern recognition system.

Fig. 4. Screen-shots of the second and third step of the wizard for automatic classifier selection.

of it are calculated. Based on these features, the classification
accuracy is predicted for every classifier of the wizard.
Along with the accuracy values, the root mean squared errors
(RMSE) for each classifier is shown. The RMSE indicates
the confidence of the prediction.

Next, the user selects the classifiers, which should be
optimized on the dataset. The decision is typically based
on the predicted accuracy values. Classifiers with low pre-
dictions could be omitted in order to save computation
time. For every selected classifier, a pattern recognition
system including preprocessing is constructed automatically
and important parameters are optimized. The optimization
currently uses a grid search but can be easily replaced with a
more sophisticated approach. The results of the optimizations
are shown to the user.

As last step, the user can select the classifier for the pattern
recognition system, that will be constructed automatically
and loaded. Typically, this will be the system with the best
performance, obtained by the previous optimization step.

The constructed system also includes preprocessing. For
instance, it converts nominal to numerical features for al-
gorithms that do not support nominal features. Since the
optimal parameters found during optimization are already
set, the constructed pattern recognition system can be used
immediately.

V. CONCLUSION

In this paper, we presented several software results of
the PaREn project. The RapidMiner based implementations
support the user in developing, testing and comparing ma-
chine learning modules. Non-experts are able to use pattern
recognition techniques much easier. The classifier selection
wizard as well as the collaborative user interface reduces the
amount of required expert knowledge. The performance of
classification algorithms are predicted and complete pattern
recognition system are constructed and optimized automat-
ically. The AutoMLP classifier is a self-configuring multi-
layer-perceptron and therefore increases the usability of this
classifier especially for beginners. Its self-tuning approach
also reduces the time needed for training and optimization.

Additionally, the automatic system evaluation and the
collaborative user interface make it much easier to compare
different pattern recognition systems. Using the Dispare
extension for distributed computations can reduce the time
of development and evaluation of such systems dramatically.
The landmarking operator introduces the first meta-learning
functionality to RapidMiner.

REFERENCES

[1] Robert P. W. Duin, Fabio Roli, and Dick de Ridder. A note on core
research issues for statistical pattern recognition. Pattern Recognition
Letters, 23(4):493–499, February 2002.

[2] Theo Pavlidis. 36 years on the pattern recognition front: Lecture given
at icpr’2000 in barcelona, spain on the occasion of receiving the k.s.
fu prize. ttern Recognition Letters, 24(1-3):1–7, January 2003.

[3] R. King, C. Feng, and A. Shutherland. Statlog: comparison of clas-
sification algorithms on large real-world problems. Applied Artificial
Intelligence, 9(3):259–287, May/June 1995.

[4] Donald Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine
Learning, Neural and Statistical Classification. Ellis Horwood, 1994.

[5] Esprit project METAL (#26.357). A meta-learning assistant for
providing user support in data mining and machine learning, 1999-
2002. http://www.ofai.at/research/impml/metal/.

[6] Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier.
Meta-learning by landmarking various learning algorithms. In In
Proceedings of the Seventeenth International Conference on Machine
Learning, pages 743–750. Morgan Kaufmann, 2000.

[7] Isabelle Guyon, editor. Model Selection Workshop and Performance
Prediction Challenge, Vancouver, British Columbia, Canada, July
2006.

[8] Isabelle Guyon, Amir Reza Saffari Azar Alamdari, Gideon Dror, and
Joachim M. Buhmann. Performance prediction challenge. In Interna-
tional Joint Conference on Neural Networks Sheraton Vancouver Wall
Centre, 2006.

[9] Gregory Piatetsky-Shapiro. Data mining tools used poll, 2009.
http://www.kdnuggets.com/polls/2009/data-mining-tools-used.htm.

[10] C. J. Merz, P. M. Murphy, and D. W. Aha. UCI repository
of machine learning databases. University of California, Depart-
ment of Information and Computer Science, Irvine CA, 1997.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.


