
Structured Formal Development with Quotient
Types in Isabelle/HOL

Maksym Bortin1 and Christoph Lüth2

1 Universität Bremen, Department of Mathematics and Computer Science
maxim@informatik.uni-bremen.de

2 Deutsches Forschungszentrum für Künstliche Intelligenz, Bremen
christoph.lueth@dfki.de

Abstract. General purpose theorem provers provide sophisticated proof
methods, but lack some of the advanced structuring mechanisms found
in specification languages. This paper builds on previous work extending
the theorem prover Isabelle with such mechanisms. A way to build the
quotient type over a given base type and an equivalence relation on it,
and a generalised notion of folding over quotiented types is given as a
formalised high-level step called a design tactic. The core of this paper
are four axiomatic theories capturing the design tactic. The applicability
is demonstrated by derivations of implementations for finite multisets
and finite sets from lists in Isabelle.

1 Introduction

Formal development of correct systems requires considerable design and proof
effort in order to establish that an implementation meets the required specifi-
cation. General purpose theorem provers provide powerful proof methods, but
often lack the advanced structuring and design concepts found in specification
languages, such as design tactics [20]. A design tactic represents formalised de-
velopment knowledge. It is an abstract development pattern proven correct once
and for all, saving proof effort when applying it and guiding the development
process. If theorem provers can be extended with similar concepts without loss of
consistency, the development process can be structured within the prover. This
paper is a step in this direction. Building on previous work [2] where an approach
to the extension of the theorem prover Isabelle [15] with theory morphisms has
been described, the contributions of this paper are the representation of the
well-known type quotienting construction and its extension with a generalised
notion of folding over the quotiented type as a design tactic. Two applications
of the tactic are presented, demonstrating the viability of our approach.

The paper is structured as follows: we first give a brief overview of Isabelle
and theory morphisms to keep the paper self-contained. Sect. 3 describes the
four theories which form the design tactic, giving more motivation for it and
sketching the theoretical background. Further, Sect. 4 shows how the design
tactic can be applied in order to derive implementations of finite multisets and
finite sets. Finally, Sect. 5 contains conclusions and sketches future work.

2 Isabelle and Theory Morphisms

Isabelle is a logical framework and LCF-style theorem prover, where the meta-
level inference system implements an intuitionistic fragment of the higher order
logic extended with Hindley-Milner polymorphism and type classes.

Isabelle, and other LCF provers, structure developments in hierarchical theo-
ries. This goes well with the predominant development paradigm of conservative
extension, which assures consistency when developing large theories from a small
set of axioms (such as HOL or ZF). A different approach, going back to Burstall
and Goguen [3], is to use theory morphisms as a structuring device. Instead of
one large theory we have lots of little theories [8], related by theory morphisms.
Structuring operations are given by colimits of diagrams of morphisms [9], of
which (disjoint and non-disjoint) unions and parametrisation are special cases.
Early systems in this spirit include IMPS [8] and Clear [4], later systems the OBJ
family with its most recent offspring CafeOBJ [6], and the SpecWare system [21].
An extension of the early Edinburgh LCF with theory morphisms was described
in [18], but never integrated into later LCF systems. A recent development in
this vein is a calculus for reasoning in such structured developments [13], as used
in the CASL specification languages [14].

The morphism extension package for Isabelle [2] provides implementations of
key concepts such as signature and theory morphisms, and seamlessly extends
Isabelle’s top-level language Isar with the commands necessary to express these
notions; we will use these commands in the following. A crucial property is that
any theory morphism τ : T −→ T ′ from a theory T to a theory T ′ firstly
induces the homomorphic extension στ of the underlying signature morphism
στ to propositions, and secondly the extension τ of τ to proof terms. This allows
the translation of any theorem φ in T to a theorem στ (φ) in T ′, translating the
proof π of φ to τ(π) and replaying it in T ′. It is syntactically represented in Isar
by the command translate-thm φ along τ . 3

Furthermore, the approach gives a simple notion of a parameterised theory,
extending the theory hierarchy: a theory B is parameterised by P (denoted
〈P,B〉) if an inclusion morphism ι : P ↪→ B exists or, in other words, B imports
P; an instantiation of 〈P,B〉 is given by a theory morphism τ : P −→ I as shown
by the following diagram

P ⊂ - B

I

τ

?
⊂ - I]

τ]

?
(1)

3 The current release 0.9.1 for Isabelle2009-1 can be downloaded at http://www.
informatik.uni-bremen.de/~cxl/awe and all theories presented here can be found
in the directory Examples/Quotients.

where the extended theory I] and the dashed morphisms are automatically de-
rived. In other words, the resulting theory I] is the pushout of the diagram, and
is computed via the Isar command instantiate-theory B by-thymorph τ .

3 Folding Quotient Types using Hylomorphisms

A design tactic can be encoded as a parametrisation 〈P,B〉, where P contains
formal parameters and their axiomatic specifications, and B contains deductions
in form of definitions and theorems using the formal parameters and axioms
imported from P. In this section, we introduce a design tactic which performs
two constructions: firstly, it constructs the quotient of a type with respect to
an equivalence relation, and secondly, it gives a generic mechanism to define
‘folding’ functions on the quotient type. The tactic has two parameters: the type
with the equivalence relation, and the parameters of the fold. Thus, the design
tactic comprises two parametrisations in the sense of (1) above:

QuotientType-Param ⊂- QuotientType ⊂- Fold-Param ⊂ - Fold (2)

The first parametrisation 〈QuotientType-Param,QuotientType〉 comprises the ba-
sic machinery regarding equivalence classes, class operations, quotient types
and congruences. The core of the design tactic is the second parametrisation
〈Fold-Param, Fold〉, describing how to construct hylomorphisms on quotient types,
and will be explicitly described in Sect. 3.5 and Sect. 3.6.

3.1 Quotient Types

Roughly, any equivalence relation ' on a type τ induces a partition on Univ(τ),
i.e. on the set containing all elements of this type. Elements of this partition
are predicates and correspond to the '-equivalence classes. This is a well-known
technique. Indeed, the quotient type is a powerful construction, and implemented
in many theorem provers, either axiomatically [16] (for NuPRL) or as a derived
construction. The former always bears the danger of inconsistencies (see [10] for
a model construction; [5] presents an implementation for Coq); the latter is made
easier by the presence of a choice operator and extensionality, allowing quotient
types in HOL [12] or Isabelle [17,19]. However, the main novelty here is the way
in which a fold operator is defined on the quotient types as a hylomorphism in
the abstract setting of parameterised theories, combining the advantages of the
little-theories approach with a construction motivated from type theory.

3.2 The theory QuotientType-Param

This theory declares an unary type constructor T and a relation ' as a poly-
morphic constant, together with axioms specifying ' as an equivalence relation:

typedecl α T
const _ ' _ :: (α T× α T) set
axioms (E1) : s ' s

(E2) : s ' t =⇒ t ' s
(E3) : s ' t =⇒ t ' u =⇒ s ' u

3.3 The theory QuotientType

We are interested in the partition of Univ(αT):Q' ≡ {{v|u ' v}|u ∈ Univ(αT)},
and introduce the new unary quotient type constructor T/'

typedef α T/' = Q'

Further, we define the class operations class-of' :: α T ⇒ α T/' (as usually
denoted by [_]') and repr' :: α T/' ⇒ α T, such that the following familiar
properties, essential for equivalence relations and quotients, can be proven:

([s]' = [t]') = (s ' t) (3)
[repr' (q)]' = q (4)
repr' ([s]') ' s (5)

The crucial observation is that the entire development from now on relies only
on these three basic properties of the class operations, i.e. we essentially abstract
over the particular representation of quotients.

A function f :: α T⇒ β is called a '-congruence if it respects ' [17]; this is
expressed by the predicate congruence' :: (α T⇒ β) set defined as

congruence' ≡ {f | ∀ s t. ¬ s ' t ∨ f s = f t}

Moreover, the higher order function _T/' :: (α T ⇒ β) ⇒ (α T/' ⇒ β), which
factors any '-congruence f :: α T ⇒ β through the projection class-of' , i.e.
such that

f ∈ congruence' =⇒ f T/' [s]' = f s (6)

holds, is defined as f T/' ≡ f ◦repr' . The direction⇐= in (6) can be then shown
as well, emphasising that the congruence condition is also necessary. Further, let
g :: α T⇒ α T be a function. The instantiation of f by class-of' ◦ g in (6) gives

(class-of' ◦ g) ∈ congruence' =⇒ (class-of' ◦ g)
T/' [s]' = [g s]' (7)

All these derived properties are well-known, but note that the complete devel-
opment here is parameterised over the type constructor T and the relation ',
and thus can be re-used in a variety of situations.

3.4 Defining functions over quotient types

In order to define a function f on the quotient type α T/', we have to show
that f agrees with the equivalence relation '. Equation (6) gives us sufficient
conditions for this. The following theory development makes use of this for a
design tactic which axiomatises sufficient conditions to conveniently define linear
recursive functions, or hylomorphisms [7], on the quotient type. We first motivate
the development by sketching the special case of lists, and then generalise to
arbitrary data types.

In Isabelle, the parameterised type α list of lists of elements of type α is freely
generated by the constructors Nil :: α list and the infix operator # :: α⇒ α list⇒
α list. Suppose we would like to prove

(∀ys) xs ∼ ys (f, e) ∈ C
foldr f e xs = foldr f e ys

by structural induction on the list xs, where ∼ is an equivalence relation on
lists, and f and e are additionally restricted by some (usually non-trivial) side
condition C. The crucial point would be the induction step, where based on the
assumption x#xs ∼ ys we need to find some list zs satisfying xs ∼ zs and,
moreover allowing us to conclude f x (foldr f e zs) = foldr f e ys. In many cases
such zs can be computed by a function Transform x xs ys constructing a list
which satisfies the desired properties under the premises x#xs ∼ ys and (f, e) ∈
C; thus, we can say the proof is parameterised over the function Transform.

Hylomorphisms are particular kinds of recursive functions which can be ex-
pressed in terms of (co-)algebras for the same type. Consider a parameterised
type α Σ, together with an action Σ on functions (normally called map; the
map on types and functions together form a functor). Then an algebra for Σ is
a type γ and a function A :: γ Σ ⇒ γ, a coalgebra is a type β and a function
B :: β ⇒ β Σ, and the solution of the hylo-equation [7]

φ = A ◦Σφ ◦B (8)

is a function φ :: β ⇒ γ, called the hylomorphism from B to A. Hylomorphisms
correspond to linear recursive functions and can be compiled efficiently; hence,
deriving them via a general design tactic is relevant.

In the case of lists, the list signature is represented by the type (α, β)Σ list
def=

1+α×β (as usual, × denotes the product and + the disjoint sum of two types),
together with the map function Σ list :: (β ⇒ γ) ⇒ (α, β) Σ list ⇒ (α, γ) Σ list
defined by the equations

Σ list f (ιL ∗) = ιL ∗
Σ list f (ιR (u, x)) = ιR (u, f x)

The type α list from above, together with the function in list :: (α, α list) Σ list ⇒
α list, defined in the obvious way sending ιL ∗ to Nil and ιR (u, x) to u#x, forms
the initial Σ list-algebra. Its inverse is the function out list, which forms a Σ list-
coalgebra, i.e. we have the right-inverse property: in list ◦ out list = id list. The

initiality of in list means that any Σ list-algebra A :: (α, β) Σ list ⇒ β determines
the unique algebra homomorphism φA : α list⇒ β, i.e.

φA ◦ in list = A ◦Σ listφA (9)

holds. If we compose both sides of (9) with out list on the right and use the right-
inverse property of out list, we obtain the fact that φA satisfies the hylo-equation
(8), i.e. is the hylomorphism from out list to A.

The unique function φA can be defined using foldr. That foldr determines
hylomorphisms from out list to any Σ list-algebra is an important observation,
because in the following we want to explore the congruence properties of hylo-
morphisms. Taking also into account that many structures can be implemented
via quotients over lists, we obtain the possibility to extend foldr to foldr list/∼

and to calculate with foldr list/∼ based on the numerous properties of foldr.

3.5 The theory Fold-Param

We will now generalise the previous development to an arbitrary type constructor
Σ, and formalise it as a parameterised theory. The parameter theory Fold-Param
is constructed in four steps; the body theory Fold follows in Sect. 3.6.

(1) Representing signatures. First of all, a signature is represented by a declara-
tion of a binary type constructorΣ, together with the two polymorphic constants
representing the action of Σ on relations and mappings, respectively.
typedecl (α, β) Σ
consts ΣRel :: (β × γ) set⇒ ((α, β) Σ× (α, γ) Σ) set

ΣMap :: (β ⇒ γ)⇒ (α, β) Σ⇒ (α, γ) Σ

Using this, the action ΣPred :: β set ⇒ ((α, β) Σ) set of Σ on predicates over β
can be defined by ΣPred ≡ monoP ◦ ΣRel ◦ monoE , where monoE :: α set ⇒
(α × α) set is the embedding of predicates into relations in form of mono-
types, and monoP :: (α × α) set ⇒ α set the corresponding projection. Fur-
thermore, using ΣRel we define the extension 'Σ of our formal parameter '
from QuotientType-Param simply by 'Σ ≡ ΣRel '.

Finally, the rule connecting the actions of Σ is given by axiom (F1), where
R\.S is defined to be {x |∀a. (x, a) 6∈ R ∨ (x, a) ∈ S}, i.e. it is a sort of factoring
of the relation R through the relation S:

axiom (F1) : ΣPred(' \. ker f) ⊆ 'Σ \. ker (ΣMap f)

(2) The parameter coalgebra. Next, we specify the constant cT representing a
Σ-coalgebra with the domain αT satisfying property (F2), where P :: (αT) set is
an arbitrary predicate and f−1〈S〉 denotes the preimage of a function f under
a predicate S, i.e. {x | f x ∈ S}:
const cT :: α T⇒ (α, α T) Σ
axiom (F2) : c−1

T 〈Σ
Pred P 〉 ⊆ P =⇒ Univ(α T) ⊆ P

The axiom (F2) is a slightly adapted characterisation of so-called Σ-reductive
coalgebras, which can be found in [7]. It essentially ensures that the sequence
s0, s1 ◦ s0, s2 ◦ s1 ◦ s0, . . . with s0 = cT and sn+1 = ΣMap sn, is not infinite
and reaches some fixed point sk ◦ . . . ◦ s0 with k ∈ N. Thus, it also captures an
induction principle.

(3) The hylomorphism parameter. The higher-order constant Fold is required to
return a hylomorphism Fold A from cT to A for any A ∈ FoldCond:

const Fold :: ((α, β) Σ⇒ β)⇒ α T⇒ β
axiom (F3) : A ∈ FoldCond =⇒ FoldA = A ◦ ΣMap(FoldA) ◦ cT
The predicate FoldCond on Σ-algebras is completely unspecified at this point,
and therefore can be arbitrarily instantiated whenever the tactic is applied.

(4) Transformation function. Finally, we require a transformation function sat-
isfying the properties (F4) and (F5), where TransformCond is another Σ-algebra
predicate for which merely (F6) is required:

const Transform :: (α, α T) Σ⇒ (α, α T) Σ⇒ (α, α T) Σ
axioms (F4) : s ' t =⇒ cT s 'Σ Transform (cT s) (cT t)

(F5) : A ∈ TransformCond =⇒ s ' t =⇒
A (ΣMap (FoldA) (Transform (cT s) (cT t))) = FoldA t

(F6) : TransformCond ⊆ FoldCond
Transform can be considered as a function transforming its second argument
w.r.t. its first argument. The axiom (F5) essentially requires that if both ar-
guments comprise images of two elements, which are in the ' relation, then
Transform respects the kernel of A ◦ΣMap (FoldA).

3.6 The theory Fold

The operations and conditions, specified in Fold-Param are sufficient in order to
derive the congruence property for Fold A for any Σ-algebra A, satisfying the
transformation condition TransformCond. To this end, the theory Fold proves
the following central property:

Theorem 1. A ∈ TransformCond =⇒ FoldA ∈ congruence'

Proof. The condition Fold A ∈ congruence' can be equivalently restated using
the factoring operator by Univ(αT) ⊆ ' \.ker(Fold A), such that we can proceed
by induction using the reductivity axiom (F2). Further, by monotonicity of the
preimage operator and the axiom (F1) we have then to show

c−1
T 〈'Σ \. ker (ΣMap (FoldA))〉 ⊆ ' \. ker (FoldA)

Unfolding the definitions of the factoring and preimage operators, this yields the
ultimate goal: FoldA s = FoldA t for any s, t of type α T, such that s ' t and

(∀ u) cT s 'Σ u

ΣMap (FoldA) (cT s) = ΣMap (FoldA) u
(10)

QuotientType-Param ⊂- QuotientType ⊂- Fold-Param ⊂ - Fold

T1

τ1

?
⊂ - T]

1

τ]
1

?
⊂ - T2

τ2

?
⊂ - T]

2

τ]
2

?
� τ

TSpec

Fig. 1. Applying the fold quotient design tactic.

hold. This can be shown as follows

Fold A s = A (ΣMap(FoldA) (cT s))
= A (ΣMap (FoldA) (Transform (cT s) (cT t)))
= Fold A t

where the first step follows by axiom (F3), the second by instantiating u in (10)
with Transform (cT s) (cT t) provided by axiom (F4), and the third by axioms
(F5), (F6) and the premise s ' t. ut

As the immediate consequence for the function FoldT/' :: ((α, β) Σ ⇒ β) ⇒
α T/' ⇒ β, we can finally derive from (6) via Theorem 1:

A ∈ TransformCond

FoldT/' A [s]' = FoldA s
(11)

Taking for instance foldr for Fold and a list algebra A, interpreting # by a
function f satisfying TransformCond, this means that foldr list/' A [x#xs]'
can always be replaced by foldr A (x#xs) = f x (foldr A xs), and thus by
f x (foldr list/' A [xs]').

4 Applying the Design Tactic

In this section, the presented design tactic for quotients and hylomorphism ex-
tension will be applied in order to derive implementations of bags and finite sets
from lists. Recall the structure of the design tactic from (2); to apply it to a
given type, we proceed in the following steps (see Fig. 1):

(i) we first provide a theory T1 and a morphism τ1 : QuotientType-Param −→
T1 which instantiates the type constructor and equivalence relation;

(ii) by instantiating QuotientType, we obtain T]1 with the quotient type;
(iii) we now extend T]1 into a theory T2, such that we can provide a theory

morphism τ2 : Fold-Param −→ T2 instantiating the parameters for Fold;
(iv) by instantiating Fold, we obtain the theory T]2 with the desired function

over the quotient type and the instantiated of the fold equation (11);
(v) finally, the correctness w.r.t. some axiomatic specification TSpec is estab-

lished by constructing a theory morphism τ : TSpec −→ T]2 .

Note that in Isabelle the theories T1, T]1 , T2, T
]
2 are constructed as intermediate

development steps of a single theory extending some base theory (in the following
examples this will be the theory List).

4.1 Specifying finite sets and bags

The rôle of theory TSpec from step (v) above will be played by the axiomatic
theories FiniteSet-Spec and Bag-Spec.

The theory FiniteSet-Spec. It specifies finite sets parameterised over the type of
its elements as follows. The unary type constructor finite-set is declared, together
with the following polymorphic operations on it satisfying axioms (S1)– (S6):

typedecl α finite-set
consts {#} :: α finite-set - empty set

_ l _ :: α⇒ α finite-set⇒ bool - membership test
⊕ :: α⇒ α finite-set⇒ α finite-set - insertion
_	_ :: α finite-set⇒ α⇒ α finite-set - deletion
foldSet :: (α⇒ β ⇒ β)⇒ β ⇒ α finite-set⇒ β - fold

axioms (S1) : ¬ al {#}
(S2) : (al b ⊕ S) = (a = b ∨ al S)
(S3) : (al S 	 b) = (a 6= b ∧ al S)
(S4) : (∀a. (al S) = (al T)) =⇒ S = T
(S5) : foldSet f e {#} = e
(S6) : f ∈ LeftCommuting =⇒ ¬ xl S =⇒

foldSet f e (x⊕ S) = f x (foldSet f e S)
where LeftCommuting ≡ {f | ∀ a b c. f a (f b c) = f b (f a c)}. In this
specification only the last axiom ultimately eliminates arbitrary sets from the
class of possible implementations of FiniteSet-Spec. In other words, without the
last axiom the theory morphism, sending α finite-set to α set as well as {#} to ∅,
l to ∈ and so on, is constructible.

On the other hand, foldSet allows us to define all the basic operations on finite
sets, e.g. the cardinality of any finite set S is given by foldSet (λxN.N +1) 0 S,
and the union S t T by foldSet (λ x Y. x⊕ Y) S T . Moreover, we can define the
translation function toPred :: α finite-set ⇒ α set by foldSet (λ x P. {x} ∪ P) ∅,
such that for any S :: α finite-set and x :: α, x l S holds iff x ∈ toPred S does.
Further, we can prove that the translation is also injective, and so the range of
toPred, which is of type (α set)set, defines exactly the subset of finite predicates,
isomorphic to α finite-set.

The theory Bag-Spec. It specifies finite multisets in the similar manner. Here,
we introduce an unary type constructor α bag together with basically the same
operations on it, except that the membership function has the type α⇒ αbag⇒
nat and thus counts the occurrences of an element in a bag. For the insertion
operation this means that we have the rules a l a ⊕ M = (a l M) + 1 and

a 6= b =⇒ al b ⊕ M = alM . The folding function is now consequently called
foldBag, and has to satisfy the rule

f ∈ LeftCommuting =⇒ foldBag f e (x⊕M) = f x (foldBag f e M)

Similarly to finite sets, cardinality, union, intersection etc. are definable via
foldBag in Bag-Spec.

4.2 Implementing Bags

The implementation of bags is on the type of α list from the Isabelle/HOL li-
braries. The central rôle will be played by the function count :: α⇒ α list⇒ nat,
defined recursively as
count a Nil = 0

count a (b#xs) =
{

1 + count xs if a = b
count xs otherwise

Now, let xs ∼ ys ≡ (∀a. count a xs = count a ys), be the equivalence rela-
tion on α list comprising the intersection of kernels of the family of functions
〈count a〉a∈Univ(α). We can then define the following theory morphism (step (i)
above)

thymorph bag1 : QuotientType-Param −→ Bag
type-map : [α T 7→ α list]
op-map : [' 7→ ∼]

and instantiate the parameterised theory 〈QuotientType-Param,QuotientType〉
instantiate-theory QuotientType by-thymorph bag1
renames : [T/' 7→ bag]

This extends the theory Bag (step (ii) above), introducing the new quotient
type constructor list/∼ as bag, together with the corresponding congruence
predicate congruence∼ :: (α list ⇒ β) set and extension function _ bag, cor-
responding to step (ii) above. This step also gives us the theory morphism
bag1] : QuotientType −→ Bag, i.e. τ]1 in Fig. 1. Using this morphism, the cor-
responding instances of the properties (3) – (7) can now be translated to Bag
along bag1] via the translate-thm command. It is then routine to prove

1. count x ∈ congruence∼ for any x (this is in fact trivial);
2. (class-of∼ ◦ (x# _)) ∈ congruence∼ for any x;
3. (class-of∼ ◦ (remove1 x)) ∈ congruence∼ for any x, where remove1 x xs

removes the first occurrence of x from the list xs, if any;

such that the extensions of these functions from α list to α bag give us the imple-
mentations for the operations _l_, _⊕_, and _	_ from Bag-Spec, respectively;
for example the insertion x⊕M is implemented by (class-of∼ ◦ (x# _)) bag M .
It remains to give an implementation for foldBag.

Deriving foldBag. In order to proceed with step (iii), i.e. to instantiate the
parameterised theory 〈Fold-Param, Fold〉, we need to supply actual parameters for
the formal parameters in Fold-Param. This corresponds to construction of τ2 in
Fig. 1. First of all, the formal type parameter (α, β) Σ, representing a signature,
is mapped to 1 + α × β (the list signature). Then the parameter constants are
mapped as follows:

1. the action of 1 + α× β on relations is defined in the standard way by

ΣRel R ≡ {ιL ∗, ιL ∗} ∪ {(ιR(u, x), ιR(u, y)) | (x, y) ∈ R, u ∈ Univ(α)}

where ΣMap is exactly the same as Σ list, defined in Sect. 3.5;
2. the coalgebra parameter cT is instantiated by the coalgebra out list;
3. the hylomorphism is essentially the foldr-function:

Fold A ≡ foldr (λv x. A(ιR(v, x))) A(ιL∗)
FoldCond ≡ Univ(1 + α× β ⇒ β) i.e. the same as True

4. Finally, the transformation and the transformation condition are defined by

Transform u v ≡

 ιR(x, remove1 x (y#ys)) if u = ιR(x, xs)
and v = ιR(y, ys)

v otherwise

TransformCond ≡ {A | ∀ x y z. Â(x, Â(y, z)) = Â(y, Â(x, z))}

where Â def= A ◦ ιR. That is, TransformCond specifies the subset of algebras
having the left-commutative property, i.e. LeftCommuting specified above.

We now need to show the proof obligations arising as instances of axioms (F1) –
(F6). For instance, the reductivity property (F2) is proven by structural induc-
tion on lists, and the proof of (F5) (which is the most complicated) is based on
an auxiliary lemma showing

A ∈ TransformCond xmem xs

FoldA (x#(remove1 x xs)) = FoldA xs

where mem denotes the membership test on lists and which can be shown by in-
duction as well. All other proofs mainly comprise unfolding of definitions and case
distinctions. Ultimately, we obtain the theory morphism bag2 : Fold-Param −→
Bag and the instantiation

instantiate-theory Fold by-thymorph bag2

which gives us the theory morphism bag2] : Fold −→ Bag. Then, the central
congruence property (11) for Fold bag can be translated from Fold along bag2].
Based on this, we define the function foldBag:

foldBag f e ≡ Fold bag A where A x def=
{
f u v if x = ιR(u, v)
e otherwise

Altogether, we complete the development with a step constructing a theory
morphism from Bag-Spec to the current development, corresponding to step (v)
above. The emerging proof obligations, i.e. instances of bag axioms, can be now
simply shown by unfolding the definitions (e.g. foldBag), and applying the con-
gruence properties (e.g. (11)).

4.3 Implementing Finite Sets

Although the implementation of finite sets is considerably more complicated, it
follows the same principle. The following development makes an intermediate
step deriving the type of distinct lists, where any element occurs at most once.

Distinct lists. The theory DList of distinct lists starts with the definition of the
function Norm :: α list⇒ α list by
Norm Nil = Nil
Norm (x#xs) = x#(removeAll x (Norm xs))

where removeAll x xs removes all occurrences of x from the list xs. Let ∼Norm

abbreviate ker Norm, i.e. the kernel relation of Norm. Then, the instantiation
of QuotientType by the theory morphism, sending α T to α list and ' to ∼Norm,
introduces the quotient type constructor dlist (using renaming T/' 7→ dlist), the
corresponding extension function _ dlist :: (α list ⇒ β) ⇒ α dlist ⇒ β and the
congruence predicate congruence∼Norm

:: (α list ⇒ β) set. It is now not difficult
to show that for any x :: α the functions

1. xmem _,
2. class-of∼Norm

◦ (x# _), and
3. class-of∼Norm

◦ (removeAll x)

are in congruence∼Norm
. Let memD, putD and getD denote their respective ex-

tensions to α dlist. Moreover, let emptyD ≡ [Nil]∼Norm
. The definition of Norm

provides also another useful property:

xs 6= Nil =⇒ xs ∼Norm ys =⇒ head xs = head ys

where head is a function satisfying the equation head (x#xs) = x. So, we can
extend head to headD :: α dlist⇒ α such that the proposition

xs 6= Nil =⇒ headD [xs]∼Norm
= head xs

is derivable. Based on this, we further have the following central decompositional
property of distinct lists:

ds 6= emptyD =⇒ ds = putD h (getD h ds) where h def= headD ds

To derive a fold-hylomorphism for distinct lists from foldr, an application of the
〈Fold-Param, Fold〉 parametrisation is unnecessary. Instead, we can directly define

foldD f e ≡ (foldr f e ◦ Norm) list/∼Norm

and subsequently show

foldD f e emptyD = e (12)

¬ xmemD ds
foldD f e (putD x ds) = f x (foldD f e ds)

(13)

f ∈ LeftCommuting xmemD ds
foldD f e (putD x (getD x ds)) = foldD f e ds

(14)

These are the essential properties for the implementation of finite sets below.

The theory FiniteSet. The theory FiniteSet imports DList and defines the equiv-
alence relation ∼ on distinct lists by ds ∼ ds ′ ≡ (∀x.xmemD ds = xmemD ds ′).
Thus, the theory morphism fset1 : QuotientType-Param −→ FiniteSet, sending α T
to α dlist and ' to ∼, provides the instantiation:
instantiate-theory QuotientType by-thymorph fset1
renames : [T/' 7→ finite-set]

which gives us the new quotient type constructor dlist/∼ as finite-set together
with the extension function _ finite-set :: (α dlist⇒ β)⇒ α finite-set⇒ β and the
congruence predicate congruence∼ :: (αdlist⇒ β)set. Regarding the specification
of finite sets, we can then prove the ∼-congruence properties of memD, putD,
and getD:

1. xmemD _ ∈ congruence∼ for any x;
2. (class-of∼ ◦ (putD x)) ∈ congruence∼ for any x;
3. (class-of∼ ◦ (getD x)) ∈ congruence∼ for any x;

such that (memD) finite-set, (putD) finite-set, and (getD) finite-set give us the im-
plementations for the operations _ l _, _⊕_, and _	_ from FiniteSet-Spec,
respectively.

We now turn to a derivation of foldSet from foldD using the parametrisation
〈Fold-Param, Fold〉. The formal type parameter (α, β) Σ is mapped to 1 + α × β.
The parameter constants are mapped as follows:

1. Since the signature instantiation is the same as in Bag, the corresponding
actions on relations and mappings do not change;

2. The coalgebra parameter cT is instantiated by the function cdlist, defined by

cdlist ds ≡
{
ιL ∗ if ds = emptyD

ιR(headD ds, getD (headD ds) ds) otherwise

3. The hylomorphism Fold is given by the foldD-function:

Fold A ≡ foldD (λx v. A(ιR(x, v))) A(ιL ∗)

4. The transformation is defined by

Transform u v ≡
{
ιR(x, getD x (putD y ds ′)) if u = ιR(x, ds), v = ιR(y, ds ′)
v otherwise

5. Both conditions FoldCond and TransformCond are defined as in Bag.

The proofs of the emerging proof obligations are also similar to those for bags in
Sect. 4.2. The proof of (F5) is again the most complicated and uses the properties
(12), (13), and (14). Finally, the subsequent instantiation of the theory Fold gives
the corresponding ∼-instance of the congruence property (11) for the extended
function Fold finite-set: for any A ∈ TransformCond, i.e. for any algebra having
the left commutative property, the identity Fold finite-set A [s]∼ = Fold A s
holds. Thus, we define the function foldSet:

foldSet f e ≡ Fold finite-set A where A x def=
{
f u v if x = ιR(u, v)
e otherwise

As the final step, the development is completed by constructing a theory mor-
phism from the specification FiniteSet-Spec to the current development. The re-
sulting proof obligations are now straightforward.

5 Conclusions

This paper has presented the formalisation of an abstract design tactic in Is-
abelle, which provides a way to define hylomorphisms on a quotient type. The
design tactic has two parameter theories: first, the type and equivalence relation
for the quotient, and second a functor representing a signature, a coalgebra and
a transformation function, which providing the setting for a class of ‘extensible’
hylomorphisms, justified by Theorem 1. To apply the design tactic, concrete
instantiations of the parameter theories have to be provided by giving instan-
tiating theories and a morphism mapping the parameter theories. In our case,
we have shown how to apply the design tactic for a systematical derivation of
correct implementations of finite multisets and finite sets.

The formalisation presented here has used Isabelle; however, the development
knowledge represented in the design tactic could be formalised in other theorem
provers too, since it formalises conditions for folding over a quotiented type on
an abstract level, and the constructions used in the formalisation can be found
in most other theorem provers as well.

For future work, the tactic might be also further generalised: for example, we
can capitalise on the fact that the type constructorΣ and two actions ΣRel , ΣMap

on relations and mappings form a relator [1], pointing to a possible formalisation
already at the level of allegories, increasing the application area.

Further, [11] considers behavioural equivalence on algebras over the same sig-
nature w.r.t. a set OBS of observable types. From this point of view, the theories
Bag-Spec and FiniteSet-Spec are data abstractions, since both specify classes of al-
gebras, each closed under the behavioural equivalence where OBSbags

def= {nat}
and OBSsets

def= {bool}. Then the quotient tactic allows us to construct from
algebras with lists as carrier, Bag-Spec and FiniteSet-Spec instances where the ex-
tensionality principle (axiom (S4)) additionally holds, introducing new quotient

type. Future work includes examining further connections to the constructions
in [11], like abstract and behaviour.

Acknowledgements. This research was supported by the German Research
Foundation (DFG) under grants LU-707/2-1 and 2-2, and by the German Federal
Ministry of Education and Research (BMBF) under grant 01 IM F02 A.

References

1. Bird, R., de Moor, O.: Algebra of Programing. Prentice Hall (1997)
2. Bortin, M., Johnsen, E.B., Lüth, C.: Structured formal development in Isabelle.

Nordic Journal of Computing 13, 2–21 (2006)
3. Burstall, R.M., Goguen, J.A.: Putting theories together to make specifications. In:

Proc. Fifth International Joint Conference on Artificial Intelligence IJCAI’77. pp.
1045–1058 (1977)

4. Burstall, R.M., Goguen, J.A.: The semantics of CLEAR, a specification language.
In: Proc. Advanced Course in Abstract Software Specification. pp. 292– 332. LNCS
86, Springer (1980)

5. Chicli, L., Pottier, L., Simpson, C.: Mathematical quotients and quotient types in
Coq. In: TYPES 2002. LNCS 2646, pp. 95–107. Springer (2002)

6. Diaconescu, R., Futatsugi, K.: CafeOBJ Report. World Scientific (1998)
7. Doornbos, H., Backhouse, R.C.: Induction and recursion on datatypes. In: Mathe-

matics of Program Construction, MPC’95. LNCS 947, pp. 242–256. Springer (1995)
8. Farmer, W.M., Guttman, J.D., Thayer, F.J.: Little theories. In: Automated De-

duction — CADE-11. LNCS 607, pp. 567–581. Springer (1992)
9. Goguen, J.A.: A categorical manifesto. Tech. Rep. PRG-72, Oxford University

Computing Laboratory, Programming Research Group, Oxford, England (1989)
10. Hofmann, M.: A simple model for quotient types. In: Typed Lambda Calculi and

Applications, TLCA’95. LNCS 902, pp. 216–234. Springer (1995)
11. Hofmann, M., Sannella, D.: On behavioural abstraction and behavioural satisfac-

tion in higher-order logic. Theoretical Computer Science 167, 3–45 (1996)
12. Homeier, P.V.: A design structure for higher order quotients. In: TPHOLs 2005.

LNCS 3603, pp. 130–146. Springer (2005)
13. Mossakowski, T., Autexier, S., Hutter, D.: Development graphs — proof manage-

ment for structured specifications. Journal of Logic and Algebraic Programming
67(1-2), 114–145 (2006)

14. Mosses, P.D. (ed.): CASL Reference Manual, LNCS 2960. Springer (2004)
15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, LNCS 2283. Springer (2002)
16. Nogin, A.: Quotient types: A modular approach. In: TPHOLs 2002, LNCS 2410,

pp. 263–280. Springer (2002)
17. Paulson, L.C.: Defining functions on equivalence classes. ACM Trans. Comput.

Log. 7(4), 658–675 (2006)
18. Sannella, D., Burstall, R.: Structured theories in LCF. In: Proc. 8th Colloq. on

Trees in Algebra and Programming. LNCS 159, pp. 377–391. Springer (1983)
19. Slotosch, O.: Higher order quotients and their implementation in Isabelle/HOL.

In: TPHOLs’97. LNCS 1275, pp. 291–306. Springer (1997)
20. Smith, D.R., Lowry, M.R.: Algorithm theories and design tactics. Science of Com-

puter Programming 14, 305–321 (1990)
21. Srinivas, Y.V., Jullig, R.: Specware: Formal support for composing software. In:

Proc. Conf. Mathematics of Program Construction. LNCS 947. Springer (1995)

