
TROPER
HCRAESER

PAIDI

USER INTERFACE DESIGN IN A
JUST-IN-TIME RETRIEVAL SYSTEM FOR

MEETINGS

Andrei Popescu-Belis Peter Poller
Jonathan Kilgour Mike Flynn Sebastian Germesin

Alexandre Nanchen Majid Yazdani

Idiap-RR-38-2009

DECEMBER 2009

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11 F +41 27 721 77 12 info@idiap.ch www.idiap.ch

User Interface Design in a Just-in-time
Retrieval System for Meetings

Andrei Popescu-Belis
Idiap Research Institute

andrei.popescu-
belis@idiap.ch

Peter Poller
DFKI GmbH

peter.poller@dfki.de

Jonathan Kilgour
HCRC, Univ. of Edinburgh

jonathan@inf.ed.ac.uk

Mike Flynn
Idiap Research Institute

mike.flynn@idiap.ch

Sebastian Germesin
DFKI GmbH

sebastian.germesin@dfki.de

Alexandre Nanchen
Idiap Research Institute

alexandre.nanchen@idiap.ch
Majid Yazdani

Idiap Research Institute
majid.yazdani@idiap.ch

ABSTRACT
The Automatic Content Linking Device (ACLD) is a just-in-
time multimedia retrieval system that monitors and supports
the conversation among a small group of people within a
meeting. The ACLD retrieves from a repository, at regular
intervals, information that might be relevant to the group’s
activity, and presents it through a graphical user interface
(GUI). The repository contains documents from past meet-
ings such as slides or reports along with processed meeting
recordings; in parallel, Web searches are run as well. The ac-
ceptance by users of such a system depends considerably on
the GUI, along with the performance of retrieval. The trade-
off between informativeness and unobtrusiveness is studied
here through the design of a series of GUIs. The require-
ments and feedback collected while demonstrating the suc-
cessive versions show that users vary considerably in their
preferences for a given style of interface. After studying two
extreme options, a widget vs. a wide-screen UI, we conclude
that a modular UI, which can be flexibly structured and re-
sized by users, is the most sensible design for a just-in-time
multimedia retrieval system.

Author Keywords
just-in-time retrieval, user interfaces, multimodal meeting
recordings, meeting assistants

INTRODUCTION
This paper explores the trade-off between informativeness
and unobtrusiveness in the design of a just-in-time multime-
dia retrieval system. The principle of such a system, in the
present case the Automatic Content Linking Device (hence-
forth, ACLD), is to monitor the activities of one or more
users, especially their verbal output, and to retrieve from a
given repository, from time to time, documents that might be
relevant to them. Several repositories can be searched, in-
cluding, past meeting recordings, related documents, slides,
minutes, etc., as well as websites.

The ACLD is a meeting support application that provides
just-in-time or query-free access to potentially relevant doc-
uments or past recorded meetings, based on speech from on-
going discussions. As participants in meetings often men-
tion such documents, which contain facts that are currently
discussed, but do not usually have the time to search for
them, the ACLD aims at retrieving and presenting the doc-
uments automatically, hence the idea of content linking be-
tween documents and discussions.

The requirements and feedback that were collected while de-
veloping and demonstrating the successive versions of the
ACLD show that the presentation of results and of the infor-
mation related to them has a crucial importance for the over-
all acceptability of the concept, beyond the retrieval quality
per se. However, user preferences for a given style of presen-
tation interface vary considerably. In this paper, we will an-
alyze the series of interfaces that were implemented for the
ACLD, from the initial design (Section) to the dilemma be-
tween an unobtrusive “Widget UI” vs. an informative “Wide
screen UI” (Section), and its proposed solution under the
form of a modular resizable interface (Section). The paper
starts by summarizing our view of user requirements (Sec-
tion), reviews previous attempts at designing such systems
(Section), and then by describing the main components and
functionalities of the ACLD (Section), before proceeding to
discuss the user interfaces.

1

SCENARIOS OF USE AND USER REQUIREMENTS
Many organizations currently possess the technological com-
petencies to record their most important meetings, and po-
tentially all meetings held in an equipped meeting room, and
store the results in a multimedia archive. The possibility of
searching efficiently through such domain-specific archives
conditions then the intrinsic utility of the archives. Although
there are many times at which one might wish to search the
archive, a particular need for efficient search occurs during
meetings themselves. Often people have a feeling during
meetings that they need some piece of information, but they
can’t lay their hands on it, at least not during the meeting
itself, because search would require more time than partic-
ipants can afford to spend during the discussion. And yet,
producing the right piece of information at the right time
can change the course of a meeting.

The solution proposed here is to have the room not just record
meetings that happen in it, but also “listen” to them and
search quietly in the background for the most relevant doc-
uments and meeting segments from a multimedia reposi-
tory, or from the Web, and have them ready for whenever
someone in the meeting feels the need to consult them. Par-
ticipants thus only need to decide if they want to explore
any further, and possibly introduce in the current discussion,
the meeting fragments or documents retrieved automatically
for them – in the case of past meetings by using a meeting
browser.

Two main distinctions can be made regarding the use of such
a content linking system. The system can be used privately
by each participant, with personalized repositories and search
criteria, or the results of a joint system could be shown to the
entire group on a separate projection screen. Also, the sys-
tem can be used online, as a “meeting assistant” with the
role just described, or it can be used offline to browse a past
discussion or presentation enriched with potentially relevant
documents, as a “meeting browser”.

These two distinctions correspond to four combinations, and
we focus in what follows on the {‘online’, ‘private’} mode,
i.e. an individual meeting assistant that provides content link-
ing in real-time during a real meeting. For development and
demonstration purposes, this can also be demonstrated with
a pre-recorded meeting, and possibly other pre-recorded re-
sults of processing modules such as automatic speech recog-
nition.

To test the validity of the above user requirements, the sce-
narios were described – accompanied by more or less func-
tional graphical interfaces – to potential industrial and aca-
demic partners, about twenty of each, such as representatives
of companies that are active in the field of meeting technol-
ogy. A series of sessions at workshops and other events,
lasting 15-30 minutes each, started with a presentation of the
ACLD and continued with a discussion, during which notes
were taken by one of the ACLD authors. People found that
both online and offline application scenarios were of inter-
est to them, as well as both individual and group uses. The
ACLD received very positive verbal evaluation, as well as

useful feedback and suggestions for future work which are
presented in Section below.

JUST-IN-TIME RETRIEVAL SYSTEMS
The idea of content linking could be traced back as far as the
Memex tool imagined by Vannevar Bush [3], which would
have allowed its users to browse the contents of a library
(microfilmed for convenience) by jumping from one docu-
ment or sequence to another one by using topic-based and
interest-based links created by the same user, or by other,
professional users.

The first “content linking” applications were implemented
however only after the advent of the personal computer, un-
der the names of either query-free search, in the Fixit sys-
tem, or just-in-time retrieval, in the Remembrance Agent.
Fixit [8] is an assistant to an expert diagnostic system for a
given line of products, which monitors the state of a user’s
interaction with the diagnostic system, in terms of positions
in a belief network, and runs searches on a repository of
maintenance manuals to provide additional support informa-
tion, based on the position in the network. The results of the
searches are in fact pre-computed for each node of the belief
network, in order to speed up the process at run time.

The Remembrance Agent [12, 13], which is closer to the
ACLD, is integrated to the Emacs text editor, and runs searches
at regular time intervals (every few seconds) using a query
that is based on the last words typed by the user (e.g. us-
ing a buffer of 20–500 words). Results from a repository of
emails or text notes are displayed in a separate frame, and
can be opened within Emacs as well. In both cases, there is
no need for users to formulate explicit queries, and results
are updated regularly so that users receive them, ideally, ex-
actly when they need them.

The creators of the Remembrance Agent have also designed
Jimminy, a wearable assistant that helps users to take notes
and to access information when they cannot use a standard
computer keyboard [11]. Jimminy uses a number of contex-
tual capture devices, in particular a positioning device and a
device for identifying the user’s interlocutors using badges.
However, the use of speech was not implemented in Jim-
miny, and the detection of the subject of conversation was
only simulated – by entering this topic as real-time notes –
and the focus was mostly on the note-taking function.

The Watson system [2] monitors the user’s operations in a
text editor, but proposes a more complex mechanism than the
Remembrance Agent for selecting terms for queries, which
are directed to a web search engine. Besides automatic queries,
Watson also allows users to formulate queries and disam-
biguates them using the terms that were selected automati-
cally. Another query-free system was designed for enrich-
ing television news with articles from the Web [9]. The
system annotates TV broadcast news, using queries derived
from closed captioning text, with links to potentially rele-
vant news wire from the Web. More recently, many speech-
based search engines (e.g. [5]) and multimedia information
retrieval systems [10] have been proposed, and inspiration

2

from their technology – which is not per se query free – can
also be used for just-in-time retrieval systems.

STRUCTURE OF THE AUTOMATIC CONTENT LINKING
DEVICE
While borrowing ideas from the other applications described
above, the ACLD is a just-in-time retrieval application that
gives access to multimodal processed data, in a real-time, au-
tonomous fashion. The ACLD is also the first system that is
fully implemented in a multimodal interaction context, giv-
ing access to indexed multimedia recordings, documents and
websites, based on automatic speech recognition and key-
word spotting in an ongoing conversation.

Overview
In a nutshell, the Automatic Content Linking Device per-
forms searches at regular intervals over a database of docu-
ments and meeting recordings with a search criterion that is
constructed based on the words that are recognized automat-
ically from an ongoing discussion. The ACLD is intended to
be used during meetings, but the system can also be demon-
strated or tested even when there is no meeting happening,
by replaying a group’s meeting from an archive such as the
AMI Meeting Corpus [1, 4] as a live meeting, and building
a repository from the group’s previous meetings and asso-
ciated documents. The past meetings are divided into frag-
ments before inclusion in the repository, and the past docu-
ments include reports, emails, and presentations given dur-
ing the past meetings.

The architecture of the ACLD is represented in Figure 1, and
includes the following modules and communication infras-
tructure:

1. Document Bank Creator and Indexer: prepares, and up-
dates before each meeting, a database of documents and
of snippets of previous meetings in which media and an-
notations are aligned.

2. Query Aggregator: at regular and frequent intervals dur-
ing a meeting (e.g. every 30 seconds or upon the user’s de-
mand formulated by clicking a button), prepares a query
to this database, derived from the ongoing conversation
through automatic speech recognition (ASR) or keyword
spotting (KWS), optionally emphasizing certain keywords.
The module then executes the query, retrieves the results,
and integrates them with previous ones, so that their vari-
ation is smoothed in time.

3. User Interface: displays the current search results, as click-
able document links, and provides through these links ac-
cess to past documents and meeting recordings, but also
to web pages.

4. Meeting processing modules: automatic speech recogni-
tion (ASR, e.g. [6]) in the meeting room, keyword spot-
ting (KWS, e.g. [14]), and segmentation into continuous
spurts, possibly separated by speaker, or using speaker lo-
cation from a microphone array.

5. Support infrastructure: the Hub architecture is represented
as an area connecting several modules in Figure 1, as it

allows communication between modules through a sub-
scription-based client/server protocol. Annotation data cir-
culating through the Hub is formatted as timed triples –
i.e. tuples of (time, object, attribute, value) – and is stored
in a relational database. Producers of annotations send
them to the Hub, which forwards them automatically to
the consumers that are subscribed to the respective types.
For development and demonstration, real-time is simu-
lated using data streamers that send data to the Hub from
the files containing the annotations of recorded meetings.
Complementing the Hub, the HMI Media Server can be
used to broadcast the appropriate audio and video, in a
synhronized fashion, to the various media consumers.

Document Bank Creator and Indexer
The Document Bank Creator (DBC) is run offline before a
meeting, to create or update the repository of documents and
pseudo-documents that will be searched during the meet-
ing. Text versions of documents, for indexing, are generated
from heterogeneous file formats (HTML and MS Office). In
the current implementation, documents are gathered semi-
automatically from the distribution server of the corpus [1],
which gives access to the entire AMI Meeting Corpus, in-
cluding media files, documents, metadata and annotations.

Past meetings are cut into snippets, which are currently one
minute long fragments1. Snippets are prepared from the
ASR transcript [7] of the past meetings, which is available
with the AMI Corpus; in a standalone scenario, ASR can be
obtained with acceptable quality (for human readers) a cou-
ple of hours after the meeting. Real-time ASR, used by the
Query Aggregator, has a significantly lower accuracy. The
trade-off in choosing the length of these snippets is between
the need to have enough content words in each snippet, and
the need for precision when snippets are opened in a meet-
ing browser: if they are too large, then the user cannot easily
find the region of interest.

The text version of all files is indexed by a Document In-
dexer using the Apache Lucene open-source software2, cre-
ating indexes for each meeting in the present demonstration
version. Indexing optimizes word-based search over large
document sets. Here, all words are used as keywords, and
the index is optimized using word stemmers and the TF*IDF
weighting scheme.

Query Aggregator: Query Preparation and Document Re-
trieval
The Query Aggregator (QA) performs document searches at
regular time intervals, using words and terms that are recog-
nized automatically from the meeting discussion. Real-time
large vocabulary speech recognition is still a challenging ob-
jective for the ASR community, but such systems have re-
cently become easily available3. The words from the ASR
are filtered for stopwords (our list has about 80 stopwords),
so that only content words are used for search.
1Approximately, as we avoid interrupting a speech segment.
2From http://lucene.apache.org.
3For development purposes, the offline ASR provided with the
AMI Corpus [7] is also used for simulations.

3

Figure 1. Main components of the ACLD. The two areas labeled as ‘Hub & middleware’ and ‘Media server’ represent the connection between all
modules covering the respective areas. The Hub ensures real-time annotation exchange, while the Media server enables playback of audio and video
from files or capture devices. ASR stands for automatic speech recognition, and KWS for keyword spotting.

A list of pre-specified keywords was defined, and if any
of them is recognized, either by the Keyword Spotting de-
vice, or by matching in the ASR output, then they can be
specifically marked in the query so that their importance is
increased when doing the search (using Lucene’s keyword
boosting mechanism). As the development meeting corpus
(AMI Corpus) is mostly made up of meetings where partici-
pants are working within a group to produce a new television
remote control, the list of keywords for this domain con-
tains words or expressions such as ‘component’, ‘chip’, ‘in-
terface’, ‘button’, ‘L C D’, ‘material’, ‘latex’, ‘wood’, ‘tita-
nium’, and so on, for a total of about 30 words. This list can
be modified online by the users of the ACLD, by adding or
removing words. If no list of keywords is available, then all
words simply receive equal importance in the query.

The words or keywords that were recognized are processed
in batches corresponding to time frames of fixed size, e.g.
every 20-30 seconds – this can be modified when running
the application, and queries can be launched also on demand
when the user presses a button. Queries are addressed to the
Apache Lucene information retrieval engine, over the index
of documents previously created. The QA can also access
the Google search engine via its public API, and it manages
separately a list of the top hits retrieved from a web domain
that is specified by the user (e.g., http://en.wikipedia.org).
Indeed, selecting a specific domain for search ensures that
results are more focused and less subject to noise.

The results returned by the Lucene engine are the meet-
ing fragments and documents that most closely match the
query – in information retrieval terms – in the respective
time frame, accompanied by relevance scores. To avoid in-
consistent results from one time frame to another, due to the
fact that word choice varies considerably in such small sam-
ples (and therefore search results vary as well), a model of
relevance persistence (described in a previous publication)

ensures that items that are often retrieved tend to remain for
a time at the top of the list.

Information Presentation: User Interfaces
The information produced by the modules described above,
and naturally the main results produced by the QA, must be
displayed to the user(s) in an unobtrusive, yet conspicuous
manner. The designs and experiments that were carried out
with the successive versions of the ACLD will be described
in the following sections. Here, we make first some general
observations.

The main requirement for the user interface (henceforth, UI)
is to display results from the QA in an informative way, so
that users can easily grasp their content, and then to offer
upon demand quick access to the full content of past meet-
ings, documents, and websites. The UI should also inform
the user about the “perception” of the ongoing conversation
by the system, so that the users understand the origin of the
results and the potential sources of error. Finally, the UI
should give access to ACLD settings, and, when used in a
demonstration context with a replayed recording of a meet-
ing, render audio and video from the recording. Yet other
functionalities can be thought of, bringing the ACLD closer
to the concept of a general meeting assistant that provides
information about other users, documents, and so on. How-
ever, in what follows, we will avoid stretching the concept
too much.

The properties of the UI have a large influence on the user’s
perception of the whole system, and it appeared gradually,
through the versions described below, that they could also
have a much stronger influence on overall evaluation scores
than the core search-and-retrieval functionality. Therefore,
instead of concentrating on retrieval quality (which amounts
to evaluating ASR + Lucene), we invested significant effort
in refining the UI based on feedback from users.

4

DESIGN OF THE USER INTERFACE: FIRST VERSION AND
FEEDBACK
Following several initial trials, a first version of the UI in-
tended for demonstration was released, which is represented
in Figure 2 above. As development and demonstration of
the system typically used a pre-recorded meeting in lieu of
an ongoing one – which is harder to setup at will and not re-
peatable in constant conditions – this version devotes some
space to show a video of the “current” (simulated) meeting.

Outline of the UI
The snapshot in Figure 2 shows the first version of the UI
over meeting ES2008d of the AMI Corpus, three minutes
from the beginning of the meeting. On the left, the list of
keywords actually detected in the conversation reassures the
user about the main search terms being used, as they were
recognized from the audio. Every 30 seconds (in this ver-
sion), a set of newly recognized keywords is added at the
top, with the timestamp shown as a horizontal line. The cen-
tral column, which scrolls in the same way as the keywords,
shows the six most relevant documents for that time in the
meeting, with font size chosen to reflect the hypothesized de-
gree of relevance. This list is constantly updated as the meet-
ing proceeds. At the bottom right there is a static display
showing the three previous meetings in the history, giving
access to their contents, metadata and summaries when hov-
ering the mouse over their name, as for ES2008a in Figure 2.
Above that, the room-view video of the ongoing meeting is
displayed, with media controls as well.

This UI offers the users several possibilities for interacting
with the resulting documents from the central frame, de-
pending on each document type. For a meeting fragment,
hovering over its label displays its extractive summary, which
is obtained on-the-fly by the UI from the Hub, while click-
ing on the fragment’s label displays its ASR transcript in an
HTML browser. For documents, clicking on their label dis-
plays their text content in a new window, from where a ver-
sion formatted in HTML can also be obtained. The HTML
format was selected as it preserves a significant part of the
original document’s formatting, and is much quicker to vi-
sualize than opening the source document with its dedicated
program, which becomes quite slow for MS Office docu-
ments as computers grow older.

Received Feedback
The ACLD was submitted, at various gatherings, to about
thirty representatives of companies active in the field of meet-
ing technology, which received the concept very warmly,
and provided feedback. The presentation sessions lasted 30
min. each: they started with a presentation of the ACLD,
which was followed by questions and feedback from the au-
dience.

Many of the comments concerned the graphical layout of
the UI, and suggested that screen real estate should be used
more rationally, for instance by increasing, in proportion,
the size of the frame displaying the results. Users suggested
that access to document contents could be facilitated and that
ideally a quick overview of each document could be pro-

vided. The relation between documents and meetings could
be made clearer, e.g. using colour coding. It was also sug-
gested to include a parallel facility for web search (which
was mentioned above), and to represent keywords in a more
structured way, for instance as a tag-cloud with emphasis
varying with their relevance.

As the ACLD application grew more complex, following the
initial feedback, it was decided to move the ACLD control
functions, and in particular the repository management com-
mands, into a System Controller that is displayed as a sepa-
rate window, shown in Figure 3 above. In addition to docu-
ment conversion and indexing, the controller also allows the
selection of the running mode or “scenario” (live meeting or
demonstration), the selection of the meeting to replay for a
demonstration, and commands for starting and resetting the
various components, and displaying logs.

INFORMATIVENESS VS. UNOBTRUSIVENESS: TWO AL-
TERNATIVE UI’S
User feedback as well as our own intuitions appeared to send
contradictory messages about the screen’s real estate: on the
one hand, several types of information are considered useful
to show, in addition to the results of the QA, mainly to justify
or to enrich these results. On the other hand, as users might
perform other operations on their computers during a meet-
ing, the ACLD UI should occupy as little space as possible,
and its results should be viewable in a large window only
if they are considered of interest by the user, and if enough
attention is available for them.

Therefore, a Wide-screen UI (shown in Figure 4) was devel-
oped from the initial UI, to display simultaneously, in several
frames, all the information related to content linking. This
was also accompanied by a major change in software tech-
nology, from Flash to Java. At the same time a Widget UI
(shown in Figures 5 and 6) was designed to minimize the use
of the screen’s real estate through the use of tabs in the UI,
with documents and meeting snippets opening in separate
viewers, upon request only. The display of document names
was also nuanced, to help users decide whether a document
is worth opening or not.

Figure 4 shows a snapshot of the Wide-screen UI over meet-
ing ES2008d. On the top left, the same list of keywords
recognized from the audio is displayed. Every 30 seconds
or on demand (by pressing the ‘update’ button at the bot-
tom left), a newly recognized keyword set is added in the
top left frame; this also triggers an immediate query in the
QA, and the update of results (documents/snippets, and web-
sites). The bottom left frame, which scrolls in the same
way as the keywords, shows the five most relevant document
names for that time in the meeting, as well the five most rele-
vant web pages, ordered by relevance. Document relevance,
available from the Lucene engine and modulated by the per-
sistence model, is coded using asterisks (‘*’) in front of the
document names. The frame can also display all past results
as well, appended to the current one, if the user wishes so
(by checking the ‘show all’ checkbox at the bottom left).

5

Figure 2. Snapshot of the first version of the user interface.

Figure 3. Snapshot of the System Controller, separated from the main UI.

6

Figure 4. Second version of the user interface: Wide-screen UI.

Figure 5. The Widget UI, showing the tab with the list of relevant doc-
uments at a given moment, with explicit labels. Hovering over a label
displays the metadata associated with the document, as well as excerpts
where the keywords were found. The transcript tab is closed in this
snapshot.

At the bottom right of the Wide-screen UI is again a static
display showing the past meetings in the group’s history, giv-
ing access to their contents, metadata and summaries. Above
that, the interface displays a room-view video of the ongoing
meeting, with the audio in the case of past meetings. The UI
displays in the large central frame a text or HTML version
of the selected document, or the selected web page.

At the opposite side of the UI-dimension spectrum, Figure 5
shows a snapshot of the Widget UI, taken at some time dur-
ing replay of meeting ES2008d. This version of the UI is
a deliberately simplified window frame reduced to show ex-
clusively content that is actually delivered by the ACLD at
runtime, split into four optional tabs, which contain respec-
tively:

1. Labels of the relevant documents and past meeting snip-
pets found in the meeting index, preceded by an appropri-
ate icon corresponding to the document type, to support
faster identification by the user.

2. Relevant web links found within the pre-specified web do-
main.

3. Keywords recognized in the respective time interval.

4. All words recognized by ASR with highlighted keywords
(this tab is only activated in Figure 6).

The rank of a label in the document result list, as well as
its font size, indicate its relevance within the query result;
however, for web search results, the only indicator of rele-
vance is the rank. Hovering over a result link (document,
meeting snippet, web link) provides metadata about it in a
pop-up window, including most importantly the match con-
text shown in Figure 5. The match contexts shows excerpts
of the document that match keywords and words detected
from speech, with surrounding words. Clicking on a label
(link) opens the respective document using an appropriate
viewing program – respectively, a native editor, a meeting
browser (such as JFerret, a successor to Ferret [15]), or a
web browser. Similarly, the website tab shown in Figure 6
displays the results of the Google search over a given do-
main.

EXPERIMENTS WITH TASK-BASED EVALUATION
Two pilot experiments were conducted with the Widget UI,
following a task-based scenario: four subjects were given
the task to complete the design of a remote control that was
started in a series of three past meetings (ES2008a through
c from the AMI Corpus), and their success is evaluated in
terms of satisfied constraints, overall efficiency and satisfac-
tion. The two experiments have led to the following obser-
vations.

7

Figure 6. Widget UI with the website results, hovering over one result.

Firstly, in spite of the small size of the Widget UI, some
users still minimized it, and then ignored its results. Af-
ter improvements were made to the interface and to the pre-
meeting training procedure, the second experiment showed
improved levels of UI use over the first, but there remain
questions about the appropriateness of the ACLD technol-
ogy in this particular setting – viz., four-person meetings
where all the participants are co-present. There are social
and practical reasons why participants might feel too rushed
or uncomfortable to open the linked content displayed in the
UI very often. For example, participants did express appre-
ciation of the full meeting browser technology for meeting
preparation (by exploring the past three meetings), but dur-
ing a meeting this kind of UI is generally too complex to
use. Even in the case of linked web pages and documents, it
is only during certain parts of a meeting that these were ap-
preciated: some participants suggested that content should
only be linked on-demand rather than constantly during the
meeting.

These initial observations have led to consideration of re-
mote participation scenarios, and also e-learning areas as
potentially more promising application area for this technol-
ogy. There are also arguments that in larger, laptop-open
style meetings, users could more freely examine the linked
content presented than in four-person meetings.

Further participant comments concern the visualisation of
results, with some participants even suggesting replacing doc-
ument names with the keywords they contain. This would
offer a direct view to the relevance of documents with no
need of mouse actions. In a similar vein, it was suggested
that some context for each linked document should be pre-
sented without the need for mouse-over, so that less user
action is required to allow judgement of relevance. Using
tag-clouds of keywords with related documents could be an
even more useful visualization, and these are all approaches
to be invesigated.

It was considered important to demonstrate the link between

the meeting and the results presented, but nonetheless some
users thought that showing the full transcript as recognized
by the ASR could be a bit confusing, especially when word
error rates are quite high.

These comments echo those received from professionals to
which the ACLD was demonstrated at various events. Some
persons prefer a small, unobtrusive device, while others seem
to consider a UI occupying their entire laptop screen. The
synthesis of the received feedback reveals a number of di-
rections for improvement along the following themes: make
UI more user-friendly; make the document repository more
customizable by the user; and allow users to play a more ac-
tive role in search when they wish (and have time to do so),
e.g. to run a specific search, or to send relevance feedback to
the Query Aggregator in order to refine the results.

TOWARDS A MODULAR UI
As an intermediate conclusion of the evaluations and experi-
ences made with the versions above we are now moving to-
wards a user configurable and modifiable version following
a modular approach. The core idea behind that is to provide
the user maximal flexibility by offering a complete repertoire
of UI “widgets” that may be configured at runtime accord-
ing to individual user preferences. This would allow users to
select the widgets they would like to see, to scale and posi-
tion them at will, and resize the entire window as well. Fur-
thermore, the approach is using standard UI elements such
as option menus to select visible widgets, as well as mouse
drag&drop facilities for realizing UI modifications interac-
tively.

The list of foreseen UI widgets includs first those mentioned
in previous sections, i.e. for showing transcript words (with
keyword highlighting), matching keywords, document brows-
ing, snippet visualisation, and web browsing. In addition,
appropriate widgets for visual representation of timeline, meet-
ing participants, past meetings as a whole, and video signals
are currently being explored. Orthogonally to the contents
of the widgets, we also experiment with alternative content
visualizations such as list presentations as opposed to tag-
clouds or speaker-segmented ASR.

Figure 7 shows the current implementation of the Modular
UI. It contains the same elements as the Widget UI (see 6),
but now each of them is realized as a separate tabbed pane.
The ‘options’ menu allows to interactively activate or deac-
tivate each pane and the panes themselves can be arranged
as desired simply by dragging and dropping them with the
mouse. For example, dragging one tab on top of a specific
pane adds this tab to the pane and inversely dragging a tab
out of a pane opens a new pane containg this tab only. In
this way, the Widget UI and the Modular UI can even be
smoothly transformed into each other or every intermediate
representation could be chosen at runtime. This includes of
course changing the size of the individual panes and also the
UI frame itself, which may now range from a small win-
dow running as a secondary meeting assistance tool (like the
Widget UI) to a wide screen UI running as the primary ap-
plication (like the Wide-screen UI).

8

Figure 7. First implemented version of the Modular UI.

CONCLUSION
This paper has put forward the diversity of user preferences
concerning the design of a user interface for a multimedia
just-in-time retrieval system, the ACLD. As suggested by
the pilot studies that were conducted, a whole range of data
visualisations seem to be supported at least by subsets of
user preferences. Therefore, adopting a modular approach is
potentially the best way to increase user satisfaction with the
UI, and hence user uptake of the ACLD. Such an approach
allows us to simply plug in and study new visualisations as
alternatives, which is especially useful if new modes of us-
age are explored, for instance with remote meeting partici-
pants as suggested by some pilot experiments.

ADDITIONAL AUTHORS

REFERENCES
1. AMI Consortium. The AMI Meeting Corpus,

http://corpus.amiproject.org, accessed 15 September
2009.

2. J. Budzik and K. J. Hammond. User interactions with
everyday applications as context for just-in-time
information access. In IUI 2000 (5th International
Conference on Intelligent User Interfaces), New
Orleans, LA, 2000.

3. V. Bush. As we may think. The Atlantic Monthly, July,
1945.

4. J. Carletta, S. Ashby, S. Bourban, M. Flynn,
M. Guillemot, T. Hain, J. Kadlec, V. Karaiskos,
W. Kraaij, M. Kronenthal, G. Lathoud, M. Lincoln,
A. Lisowska, I. McCowan, W. Post, D. Reidsma, and
P. Wellner. The AMI Meeting Corpus: A
pre-announcement. In S. Renals and S. Bengio, editors,
Machine Learning for Multimodal Interaction II,
LNCS 3869, pages 28–39. Springer-Verlag,
Berlin/Heidelberg, 2006.

5. A. Franz and B. Milch. Searching the Web by voice. In
Coling 2002 (19th International Conference on
Computational Linguistics), pages 11–15, Taipei, 2002.

6. P. N. Garner, J. Dines, T. Hain, A. El Hannani,
M. Karafiat, D. Korchagin, M. Lincoln, V. Wan, and
L. Zhang. Real-time ASR from meetings. In in press,
2009.

7. T. Hain, L. Burget, J. Dines, G. Garau, M. Karafiat,
M. Lincoln, J. Vepa, and V. Wan. The AMI system for
the transcription of speech in meetings. In ICASSP
2007 (32nd International Conference on Acoustics,
Speech, and Signal Processing), pages 357–360,
Honolulu, 2007.

8. P. E. Hart and J. Graham. Query-free information
retrieval. IEEE Expert: Intelligent Systems and Their
Applications, 12(5):32–37, 1997.

9. M. Henziker, B.-W. Chang, B. Milch, and S. Brin.
Query-free news search. World Wide Web: Internet and
Web Information Systems, 8:101–126, 2005.

10. M. Lew, N. Sebe, C. Djeraba, and R. Jain.
Content-based multimedia information retrieval: State
of the art and challenges. ACM Transactions on
Multimedia Computing, Communications, and
Applications (TOMCCAP), 2(1):1–19, 2006.

11. B. J. Rhodes. The Wearable Remembrance Agent: A
system for augmented memory. Personal Technologies:
Special Issue on Wearable Computing, 1:218–224,
1997.

12. B. J. Rhodes and P. Maes. Just-in-time information
retrieval agents. IBM Systems Journal,
39(3-4):685–704, 2000.

13. B. J. Rhodes and T. Starner. The Remembrance Agent:
A continuously running information retrieval system. In

9

PAAM 1996 (1st International Conference on Practical
Applications of Intelligent Agents and Multi-Agent
Technology), pages 486–495, London, 1996.

14. I. Szoke, P. Schwarz, P. Matejka, L. Burget,
M. Karafiat, M. Fapso, and J. Cernocky. Comparison of
keyword spotting approaches for informal continuous
speech. In Eurospeech 2005 (9th European Conference
on Speech Communication and Technology), pages
633–636, Lisbon, 2005.

15. P. Wellner, M. Flynn, and M. Guillemot. Browsing
recorded meetings with Ferret. In S. Bengio and
H. Bourlard, editors, Machine Learning for Multimodal
Interaction I, LNCS 3361, pages 12–21.
Springer-Verlag, Berlin/Heidelberg, 2004.

10

