DFKI Technical Report

A Methodology for Emergent Software

September 2010, Daniel SONNTAG

German Research Center for Artificial Intelligence, Statdenhausweg 3, D-66123
Saarbruecken, Germany

Abstract. We present a methodology for software components that stejgdap-
tations to specific conditions and situations in which theponents are used. The
emergent software should be able to better function in afspstuation. For this
purpose, we survey its background in metacognition andspgction, develop an
augmented data mining cycle, and invent an introspectivehargsm, a methodol-
ogy for emergent software. This report is based on emergémtare implementa-
tions in adaptive information systems (Sonntag, 2010).

Keywords. Emergent Algorithms, Introspection, Embedded Data Minikigta
Architectures, Adaptivity

1. Introduction

When you search for the term “emergent software” on prontih@ernet search en-
gines, you realise that the term is not used as expectedeh oéfers to neural network
software intended for creating complex models of the brath@gnitive processes. The
literal meaning of emergent—arising as a natural or logicaisequence—however, is
excluded to a great extent. The term “emergent algorithnistexn Wikipedia and de-
notes an algorithm that (1) achieves predictable globate&df (2) does not require global
visibility, (3) does not assume any kind of centralised colnind (4) is self-stabilising.

Our new methodology for emergent software, which is exgldiim this report, uses
the first and last of the aforementioned characteristicotmfa new, technically and
procedurally driven definition of emergent software. Efisdly, this definition relies on
the psychologically motivated field of introspection as editetical basis and includes
embedded data mining as the major technical componenttidddily, the procedure
of emergenceshould be understood as the competence to adapt to speaifiditioas
in specific situations (thereby, we are referring to the éedl context, not the physical
environment). This leads us to the following definition:

An emergent software is an embedded software componeristabke to monitor
and introspect the specific condition in which it is used|dsian own model of this con-
dition, and suggests adaptations to this condition to lbdtbection in a similar situation.

The adaptation step itself can either be supervised by a hexert, or the system
self-adapts to a specific condition and situation. This reijgestructured as follows. Be-
fore explaining the new methodology of emergent softwam®eding to the above defi-

nition in more detail, we will introduce the background oftamgnition and introspec-
tion. Subsequently, the methodology of emergent softwhaosilg be implemented by
an introspective mechanism. A full implementation and nu@&iled description of the
introspective mechanism can be found in Sonntag (2010)remve discuss ontologies
and adaptivity in dialogue for question answering appidice.

2. Background of Metacognition and Introspection

Metacognitionis cognition about cognition. Humans usetacognitiorto monitor and
control themselves, to choose goals, to assess their gogned to adopt new strategies
for achieving goals. Psychological literature emphastsgmitive self-monitoring and
the importance of explicit representations (Yussen, 1988)base our analysis (also cf.
(Nelson and Narens, 1990)) of metacognition on three piasi

1. The cognitive processes are split into two or more inteteddevels.
2. The meta-level (metacognition) contains a dynamic mod¢hefobject-level
(cognition).

3. The two dominant relations between the levels are caltdrol and monitor-

ing.

The basic conceptual structure for two levels, the objeetiland the meta-level, is
shown in figure 1. We will use this two level structure to modelintrospective mech-
anism for emergent software. Generalisations to more tivarldvels have been devel-
oped in Sonntag (2008).

2 Meta-Level*

Monitoring

Information Flow

Control

] Object-Level

Figure 1. The introspective mechanism for emergent software is basddio conceptual levels, (1) the ob-
ject-level, and (2) the meta-level, whereby-3 2 is an asymmetric relatiomonitoring and 2— 1 is an
asymmetric relatiortontrol. Both form the information flow between the two levels; moriitg informs the
meta-level and allows the meta-level to be updated. Depgrati the meta-level, the object-level is controlled,
i.e., to initiate, maintain, adapt, or terminate objeeklgcognitive) task-based activities of the emergent-soft
ware component.

The Metacognition in Computation Symposium (Anderson arate§ 2005)
brought together researchers from many disciplines (coengaience, philosophy, psy-
chology) to discuss metacognition in Al systems. Cox (20@&sents an excellently
selected research review about metacognition in computatie introduces cognition

and metacognition in psychological literature which pd®s a wide array of influences
on metacognition in computation, for example how cognifivections develop during
childhood. Tash and Russell (1994) use control strategiea $yntactic planner by ap-
plying probabilistic estimations and decision theory tesea strategy with the most
expected utility. Derry (1989) associates metacognitivagonents with the ability of
a subject (or intelligent agent in general) to orchestraté monitor knowledge of the
problem solving process. Davidson, Deuser and Sternb&@jlargue that metacog-
nitive abilities correlate with standard measures of ligehce. Brachman (2002) talks
about systems that know what they are doing.

Based on these explanations of metacognition, its relshiiprto emergent software
becomes clear. Metacognition provides many features ofoftware we would like to
include. More precisely, it

1. Provides self-improvement by adaptation and custoiisat

2. Offers designs for never-ending learningnd

3. Integrates a variety of previously isolated findings:arathitectures, supervised
and unsupervised learning, reinforcement learning, &utare learning, and em-
bedded data mining.

Apart from the complexity, the theory highlights an empitig tractable model cre-
ation and verification process. This process has to be ereblddtb a learning frame-
work for complex software architectures. We used the CRISERaMining Cycle and
augmented it with the concept of an emergent software coemdhat is able to change
its configuration over time.

3. Augmented CRISP Data Mining Cycle

According to control theory, we should not only be able ton@arameters of the object
level control in real-time, but augment the object-levelduitive) reasoning process by
learned meta models. Hence, the emergent software idealggplanning, monitoring,
authoring, integration/adaptation, and evaluation.

The last two steps, integration/adaptation and evaluatimmimplemented by aug-
menting the data mining life cycle to support a live integmatof obtained models. We
call this additional step th@utomatic) operationalisationf learned meta models. Fig-
ure 2 illustrates the Cross Industry Standard Process ftar Maning cyclé and includes
our augmentation. In th@odelling phasgvarious modelling techniques are selected and
applied. The modelling phase is finished when one or more tepdhich appear to be
of high quality at least from a data analysis perspectiveelimeen built. These models
then need to be evaluated before their deployment. Iretiaduation phaseve use the
models to review the model building process. This evalmaisodone by running the
system on unseen supervised data or by performing reinfentlearning experiments.
Finally, at the end of the evaluation stage, a decision hdseteeached as to whether
to use the data mining results obtained. Then a new modepieykd and used in the
domain or business units.

1Find a bug in a program, and fix it, and the program will work &yd Show the program how to find and fix
a bug, and the program will work foreveOliver Sefridge in Hearst and Hirsh (2000))
2Seehttp://www.crisp-dm.org

Business

..... y| Understanding \

Data
(Automatic) Understanding
Operationalisation
«
\\ Data
Preparation
DATA
Deployment Modeling
Evaluation

Figure 2. Adapted CRISP data mining cycle. CRISP is characterisetstiydependence from the application
domain and the algorithms used. This makes it suitable asdstsa mining cycle where emergent aspects are
included.

Our aim to integrate the introspective mechanism in ordextend the data mining
cycle by a new phase where system introspection is intedjregsulted in a new step of
the data mining life cycle, i.e(automatic) operationalisatiarThe introspective models
are directly used in conjunction with the former decisiorking models for action taking
(updating the component’s internal reasoning procedure).

It is important to note that empirical machine learning medee pattern matching
systems; we expect the behaviour of the system to be impioyeldawing an analogy
to a past experience which materialises as patterns to bedmirhese patterns do not
necessarily follow logical rules in terms of a higher ordegit—but instead, they should
follow at least the causal implications of a propositiomajit which helps to implement
emergent software aspects based on learned causalityaidirps to be mined can be
regarded amtrospective reporten the application or business domain.

4. Introspective Mechanism—The methodology for emergentaftware

One of the basic questions of an introspective mechanisrhdrcontext of emergent
software is how to monitor the system and update the reaggmotedure based on the
learned models. Automatic operationalisation allows usdamn adaptation models online
and in an incremental way. This corresponds to the defintioemergent algorithms
and emergent software—suggesting adaptations in spexiditons to better function
in similar situations. Likewise, some of the experimen&lps may involve direct user
feedback as a reinforcement signal in order to select atiapsgproposed by the system.
The introspective mechanism is an introspective learnystesn that uses learning
methods in order to build models during the emergent softizsgrerformance task.

4.1. Methodology

The methodology consists of

1. metadata management theory;
2. an introspective control model; and
3. asuitable learning environment and learner pool.

By implementing the introspective mechanism, we will emgibathe design of ma-
chine learning systems that monitor themselves, selfrdiag, and self-repair in terms
of self-adaptation to changing conditions. The introspeainechanism functions as a
means to monitor the complete software system to (1) makasieeto discover the
errors in processing; and (2) understand the cause of fitoré or success.

4.2. Metadata Management Theory

Metadata can be understood as data about data. The distilbgtiween data and meta-
data depends on the specific application in mind and the rdstheed for extracting,
annotating, or representing metadata. Many of the compéexsibns to be made for
emergent algorithmic behaviour can be based on metadd¢ateal during the workflow
of processing the software inputs and outputs or the higiblgst software component
invocations.

Metadata are then used as attributes for machine learnppgriexents. Witten and
Frank (2000) point out the existence of basically three &iofirelations between two
attributes they namedemantidindicates that two attributes only make sense when used
together) causal(occurs when one attribute causes another, making a pieeditthe
latter, only meaningful if the first is included), afithctional(the functional dependency
of one attribute on another means that if the latter is usgd,ia an association rule, the
former becomes superfluous). Instances of these thremredare empirically generated
by machine learning algorithms in the learning environm&heir applicability for an
emergent behaviour of the software must then be clarifiedrbintrospective control
model.

4.3. Introspective Control Model

Introspective controis the application of the introspective knowledge gainearfithe
metadata. We use the introspective mechanism to generakelsrtbat can be manually

or (semi-)automatically operationalised. This meansweaput an introspective control
into effect by exploiting an information state (system moring of the emergent soft-
ware) from which we can extract useful features for modekgeation (e.g., generating
association rules or inducing decision classifiers). Th@iegtion of the learned models
is the control we exert on the emergent software’s task level

1. Manual Operationalisationln manual operationalisation, the system expert is
confronted with the machine learning models derived froedhploratory data
mining analysis. The system expert thereby inspects thenaittcally derived
models and authors their operationalisation manually, he adjusts the emer-
gent system according to the expert knowledge he gets bydtisg the data
mining results.

2. Semi-Automatic Operationalisatio®perationalisation can also be used in an
online learning process in which the expert user authorgdjpubts the system by
using an interactive evaluation environment to sort outjrietance, non-causal
from causal rules that the emergent software componentgiusautomatically.

3. Automatic Operationalisatiarm he objective of automatic operationalisation is to
automatically apply model changes to prevent failurestitkaame apparent after
deployment. Such failures are prevented from recurringweheew CRISP cycle
is started and evaluated (instead of “only” providing siuggigas to the dialogue
experts).

4.4. Learning Environment

Jafar-Shaghaghi (1996) distinguishes between two cdtesgaf data mining tech-
niques: statistical and machine learning. While sta@tiechniques revolves around
(non)parametric statistical data analysis, examples fachime learning techniques are
neural networks, genetic algorithms, and symbolic leaytéichniques. Special data min-
ing techniques are decision trees, production rules, atidctive logic programming.
When humans interpret the results of data mining (which isradly the case), the in-
duced models are a kind of expert advice. When agents imetetipe models automati-
cally, agents become experts themselves.

4.5. Abstract Implementation

As mentioned before, by implementing the methodologydspective mechanism, we
will emphasise the design of machine learning systems tloalitor themselves, self-

diagnose, and self-repair in terms of self-adaptation smging conditions. The abstract
implementation declares the data structures of the commalel and the algorithmic

interface which can then be implemented by concrete seatipiediction algorithms

in the learning environment.

4.6. Control Model

With the help of ontological assertions (Fensel, Hendleberman and Wabhlster, 2003;
McGuinness, 2004; Hitzler, Krétzsch and Rudolph, 2009, (iin RDF, OWL4, or

Shttp://www.w3.0rg/RDF/
4http:/Avww.w3.0rg/2004/OWL/

OWL-2%) about the specific domain, e.g., implicit ordering in &tiite values, machine
learning schemes could use process metadata as essdatialkition for model creation;
the solution we propose is to use metadata attributes ofogitipnal logic, with special

relationships among them.

Using ontological metadata repositories, the semantatiogiships between at-
tributes obtain a clear formalisation. In addition, we @btagood representational basis
for causal attribute relationships. One of the main tasksffefctive metadata manage-
ment is to provide the relevant input spaces derived fronology instances to build
causal attributes to be introduced in the “informationestaif the emergent software.
These attributes serve as rule items of classification mlgse causal direction. In addi-
tion, learning models often reveal causal and functionpkdéencies the system expert
was already aware of. This implies using input spaces wiaicdly contain functional de-
pendencies so that interesting patterns are not obscuyechrBfully labelling proposi-
tional information state features, the extracted data ootytains features obtained from
ontological representations with easily-understandpl@ositions for directing emer-
gent behaviour.

4.7. Learning Environment

All algorithms should be based on the assumption that anytmgsis found to ap-
proximate the target function well over a sufficiently latg&ining set will also do the
same over a set of unobserved instances. This assumptitso isreown aghe inductive
learning hypothesi@Mitchell, 1997), which, roughly speaking, ensures thatrachine
learning models we create can be used for future decisiotheisame subject domain.
This means that the emergent behaviour of the software coemdnas a theoretically
grounded optimisation criterion: the adaptation accaydinempirically found learning
models of the environment.

We suggest algorithms such as Naive Bayes, decision treegakest neighbour,
and support vector machines for supervised classificatisggciation rules are for un-
supervised association pattern analysis. All these dlguos are based on the statistical
maximum likelihood principlevhich corresponds to the decision of a rational emergent
software agent, where the decision is based upon (i.e.,sa daassigned to) the class
with the the greatest probability of occurrence. Each opibssible classes € Cis con-
sidered and the corresponding class-conditional deagitie|c;) are estimated for the
finite attribute vectox of a training instance. The adaptation of the emergent soéw
component to specific conditions corresponds to the clasditonal densities after the
learning step.

4.8. Workflow

Figure 3 outlines the main ingredients of the introspecthechanism / emergent al-
gorithm and the workflow that we aim to achieve, i.e., the falation of practical in-
trospective methods and their verification by practical nirae learning and embedded
data mining experiments toward the implementation of mhand (semi-) automatic
operationalisation of introspective machine learning eiedh the context of emergent

5http://WWW.W3.org/TR/owIZ-profiIes/

\ Metadata Management Theory

. Infrospective Control Model
Introspective
Q , Mechanism / Leaming Environment
Emergent
Algorithm
Workflow /

Procedural Steps

Extract, annotate, and represent metadata

¢

]') Define metadata providers

Exploit metadata

Manually operationalise Rule / PMML model
generation
3 Semi-automatically operationalise))
{92 Online learning,

Embedded DM,
Automatically operationalise Emergent behaviour

Figure 3. Workflow of implementing steps for emergent software

software systems. The workflow has two steps and finishesawitle / PMML model
generation step.

PMML allows users to develop models within one vendor’s aapion, and use
other vendors’ applications to analyse and apply the molth PMML, the exchange
of models between compliant applications is possible. Phizvides a straightforward
way to use machine learning models in an embedded envirarsueim as emergent soft-
ware applications. One or more mining models can be cordama PMML document.
We propose the usage of association rules PMML models, vehgeeof items is associ-
ated with another set of items. The model consists of modigbates, items, item sets,
and the association rules. Lavrac (2006) describes PMMhastandard for integrating
data mining and decision support technology with informagystems.

The rules can then be used to adapt the emergent softwareocemifs behaviour
by applying them, i.e., updating the component’s interaakpbning procedure based on
the learned models.

5. Conclusion

We presented a new methodology for developing emergemtaidt Based on one possi-
ble technically and procedurally driven definition of emargsoftware, we provided the
design of an introspective mechanism which includes a nagdadanagement theory, an
introspective control model, and a learning environmeldiionally, we provided an
abstract implementation of the workflow. A full implemeiriat for a specific applica-
tion, i.e., self-adaptive behaviour of a dialogue-basesktjan answering system, can be
found in (Sonntag, 2010).

Future work should investigate the suitability of diffetenachine learning model
languages such as PMML for the reasoning process of embextdetyent software
components. The automatic update of the reasoning proeessns a critical problem in
terms of reliability, trust, and security issues. Additdly, other definitions of emergent
software might focus on the mutation aspect of emergenceaybgy., genetic algorithms
without pre-specified optimisation criteria should be eogpH.

Acknowledgments.Daniel Sonntag is supported by the THESEUS Programme funded
by the German Federal Ministry of Economics and Technol@dyVQ07016).

References

Anderson, M. and Oates, T. (Eds.) (2002005 AAAI Spring Symposium on Metacog-
nition in Computation, March 21-23 2005, Stanford, Califiar, USA Volume SS-
05-04 of AAAI Technical ReporAAAI Press.

Brachman, R. J. (2002). Systems That Know What They're DoilitEE Intelligent
Systems 1(B), 67—-71.

Cox, M. T. (2005, December). Metacognition in computatirselected research re-
view. Artificial Intelligence 1692), 104-141.

Davidson, J., Deuser, R., and Sternberg, R. (1988tacognition Chapter The role of
metacognition in problem solving., pp. 207—226. The MITd3re

Derry, S. (1989).Cognitive strategy research: From basic research to edoocal ap-
plications Chapter Strategy and expertise in solving word probleqs269-302.
Springer-Verlag, NY.

Fensel, D., Hendler, J. A., Lieberman, H., and Wabhlster,Btis() (2003).Spinning the
Semantic Web: Bringing the World Wide Web to Its Full PosniIT Press.

Hearst, M. A. and Hirsh, H. (2000). Al's Greatest Trends arwhitoversies. |[EEE
Intelligent Systems 15), 8-17.

Hitzler, P., Krétzsch, M., and Rudolph, S. (2009, AuguBfundations of Semantic Web
TechnologiesChapman & Hall/CRC.

Jafar-Shaghaghi, F. (1996)laschinelles Lernen, Neuronal Netze und Statistische-Lern
verfahren zur Klassifikation und Prognosghaker, Aachen, Germany.

Lavrac, N. (2006). From Data and Information Analysis to Knowledge Enginegyrin
Chapter SolEuNet: Selected Data Mining Techniques andigaipns, pp. 32—39.
Springer.

McGuinness, D. L. (2004, January). Question answering ersémantic weblEEE
Intelligent Systems 19), 82—85.

Mitchell, T. M. (1997).Machine Learning McGraw-Hill International Edit.

Nelson, T. O. and Narens, L. (199@. H. Bower (Ed.) The Psychology of Learning and
Motivation: Advances in Research and Thedfglume 26, Chapter Metamemory:
A theoretical framework and new findings, pp. 125-169. Acsidd ress.

Sonntag, D. (2008). On introspection, metacognitive adaind augmented data mining
live cycles.CoRRabs/0807.4417

Sonntag, D. (2010).0Ontologies and Adaptivity in Dialogue for Question Answegri
AKA and IOS Press, Heidelberg.

Tash, J. and Russell, S. (1994). Control strategies forchastic planner. IRroceedings
of the Twelfth National Conference on Atrtificial Intelligen(AAAI-94) Volume 2,
Seattle, Washington, USA, pp. 1079-1085. AAAI Press/MI&<Br

Witten, I. H. and Frank, E. (2000Ppata Mining Morgan Kaufman, San Mateo, CA.

Yussen, S. R. (1985 he Growth of Reflection in Childrecademic Press Inc.,U.S.

