
DFKI Technical Report

A Methodology for Emergent Software

September 2010, Daniel SONNTAG

German Research Center for Artificial Intelligence, Stuhlsatzenhausweg 3, D-66123
Saarbruecken, Germany

Abstract. We present a methodology for software components that suggests adap-
tations to specific conditions and situations in which the components are used. The
emergent software should be able to better function in a specific situation. For this
purpose, we survey its background in metacognition and introspection, develop an
augmented data mining cycle, and invent an introspective mechanism, a methodol-
ogy for emergent software. This report is based on emergent software implementa-
tions in adaptive information systems (Sonntag, 2010).

Keywords. Emergent Algorithms, Introspection, Embedded Data Mining, Meta
Architectures, Adaptivity

1. Introduction

When you search for the term “emergent software” on prominent Internet search en-
gines, you realise that the term is not used as expected. It often refers to neural network
software intended for creating complex models of the brain and cognitive processes. The
literal meaning of emergent—arising as a natural or logicalconsequence—however, is
excluded to a great extent. The term “emergent algorithm” exists in Wikipedia and de-
notes an algorithm that (1) achieves predictable global effects, (2) does not require global
visibility, (3) does not assume any kind of centralised control, and (4) is self-stabilising.

Our new methodology for emergent software, which is explained in this report, uses
the first and last of the aforementioned characteristics to form a new, technically and
procedurally driven definition of emergent software. Essentially, this definition relies on
the psychologically motivated field of introspection as a theoretical basis and includes
embedded data mining as the major technical component. Additionally, the procedure
of emergenceshould be understood as the competence to adapt to specific conditions
in specific situations (thereby, we are referring to the technical context, not the physical
environment). This leads us to the following definition:

An emergent software is an embedded software component thatis able to monitor
and introspect the specific condition in which it is used, builds an own model of this con-
dition, and suggests adaptations to this condition to better function in a similar situation.

The adaptation step itself can either be supervised by a human expert, or the system
self-adapts to a specific condition and situation. This report is structured as follows. Be-
fore explaining the new methodology of emergent software according to the above defi-



nition in more detail, we will introduce the background of metacognition and introspec-
tion. Subsequently, the methodology of emergent software should be implemented by
an introspective mechanism. A full implementation and moredetailed description of the
introspective mechanism can be found in Sonntag (2010), where we discuss ontologies
and adaptivity in dialogue for question answering applications.

2. Background of Metacognition and Introspection

Metacognitionis cognition about cognition. Humans usemetacognitionto monitor and
control themselves, to choose goals, to assess their progress, and to adopt new strategies
for achieving goals. Psychological literature emphasisescognitive self-monitoring and
the importance of explicit representations (Yussen, 1985). We base our analysis (also cf.
(Nelson and Narens, 1990)) of metacognition on three principles:

1. The cognitive processes are split into two or more interrelated levels.
2. The meta-level (metacognition) contains a dynamic model ofthe object-level

(cognition).
3. The two dominant relations between the levels are calledcontrol andmonitor-

ing.

The basic conceptual structure for two levels, the object-level and the meta-level, is
shown in figure 1. We will use this two level structure to modelan introspective mech-
anism for emergent software. Generalisations to more than two levels have been devel-
oped in Sonntag (2008).

Information Flow

Meta-Level*

1

2

Object-Level

Monitoring

Control

Figure 1. The introspective mechanism for emergent software is basedon two conceptual levels, (1) the ob-
ject-level, and (2) the meta-level, whereby 1→ 2 is an asymmetric relationmonitoring, and 2 → 1 is an
asymmetric relationcontrol. Both form the information flow between the two levels; monitoring informs the
meta-level and allows the meta-level to be updated. Depending on the meta-level, the object-level is controlled,
i.e., to initiate, maintain, adapt, or terminate object-level (cognitive) task-based activities of the emergent soft-
ware component.

The Metacognition in Computation Symposium (Anderson and Oates, 2005)
brought together researchers from many disciplines (computer science, philosophy, psy-
chology) to discuss metacognition in AI systems. Cox (2005)presents an excellently
selected research review about metacognition in computation. He introduces cognition



and metacognition in psychological literature which provides a wide array of influences
on metacognition in computation, for example how cognitivefunctions develop during
childhood. Tash and Russell (1994) use control strategies for a syntactic planner by ap-
plying probabilistic estimations and decision theory to select a strategy with the most
expected utility. Derry (1989) associates metacognitive components with the ability of
a subject (or intelligent agent in general) to orchestrate and monitor knowledge of the
problem solving process. Davidson, Deuser and Sternberg (1994) argue that metacog-
nitive abilities correlate with standard measures of intelligence. Brachman (2002) talks
about systems that know what they are doing.

Based on these explanations of metacognition, its relationship to emergent software
becomes clear. Metacognition provides many features of oursoftware we would like to
include. More precisely, it

1. Provides self-improvement by adaptation and customisation;
2. Offers designs for never-ending learning1; and
3. Integrates a variety of previously isolated findings: meta architectures, supervised

and unsupervised learning, reinforcement learning, interactive learning, and em-
bedded data mining.

Apart from the complexity, the theory highlights an empirically tractable model cre-
ation and verification process. This process has to be embedded into a learning frame-
work for complex software architectures. We used the CRISP Data Mining Cycle and
augmented it with the concept of an emergent software component that is able to change
its configuration over time.

3. Augmented CRISP Data Mining Cycle

According to control theory, we should not only be able to vary parameters of the object
level control in real-time, but augment the object-level (cognitive) reasoning process by
learned meta models. Hence, the emergent software idea includes planning, monitoring,
authoring, integration/adaptation, and evaluation.

The last two steps, integration/adaptation and evaluation, are implemented by aug-
menting the data mining life cycle to support a live integration of obtained models. We
call this additional step the(automatic) operationalisationof learned meta models. Fig-
ure 2 illustrates the Cross Industry Standard Process for Data Mining cycle2 and includes
our augmentation. In themodelling phase, various modelling techniques are selected and
applied. The modelling phase is finished when one or more models, which appear to be
of high quality at least from a data analysis perspective, have been built. These models
then need to be evaluated before their deployment. In theevaluation phasewe use the
models to review the model building process. This evaluation is done by running the
system on unseen supervised data or by performing reinforcement learning experiments.
Finally, at the end of the evaluation stage, a decision has tobe reached as to whether
to use the data mining results obtained. Then a new model is deployed and used in the
domain or business units.

1Find a bug in a program, and fix it, and the program will work today. Show the program how to find and fix
a bug, and the program will work forever.(Oliver Sefridge in Hearst and Hirsh (2000))

2Seehttp://www.crisp-dm.org.



Figure 2. Adapted CRISP data mining cycle. CRISP is characterised by its independence from the application
domain and the algorithms used. This makes it suitable as base data mining cycle where emergent aspects are
included.

Our aim to integrate the introspective mechanism in order toextend the data mining
cycle by a new phase where system introspection is integrated, resulted in a new step of
the data mining life cycle, i.e.,(automatic) operationalisation. The introspective models
are directly used in conjunction with the former decision making models for action taking
(updating the component’s internal reasoning procedure).

It is important to note that empirical machine learning models are pattern matching
systems; we expect the behaviour of the system to be improvedby drawing an analogy
to a past experience which materialises as patterns to be mined. These patterns do not
necessarily follow logical rules in terms of a higher order logic—but instead, they should
follow at least the causal implications of a propositional logic which helps to implement
emergent software aspects based on learned causality. All patterns to be mined can be
regarded asintrospective reportson the application or business domain.



4. Introspective Mechanism—The methodology for emergent software

One of the basic questions of an introspective mechanism in the context of emergent
software is how to monitor the system and update the reasoning procedure based on the
learned models. Automatic operationalisation allows us tolearn adaptation models online
and in an incremental way. This corresponds to the definitionof emergent algorithms
and emergent software—suggesting adaptations in special conditions to better function
in similar situations. Likewise, some of the experimental setups may involve direct user
feedback as a reinforcement signal in order to select adaptations proposed by the system.

The introspective mechanism is an introspective learning system that uses learning
methods in order to build models during the emergent software’s performance task.

4.1. Methodology

The methodology consists of

1. metadata management theory;
2. an introspective control model; and
3. a suitable learning environment and learner pool.

By implementing the introspective mechanism, we will emphasise the design of ma-
chine learning systems that monitor themselves, self-diagnose, and self-repair in terms
of self-adaptation to changing conditions. The introspective mechanism functions as a
means to monitor the complete software system to (1) make it easier to discover the
errors in processing; and (2) understand the cause of error/failure or success.

4.2. Metadata Management Theory

Metadata can be understood as data about data. The distinction between data and meta-
data depends on the specific application in mind and the methods used for extracting,
annotating, or representing metadata. Many of the complex decisions to be made for
emergent algorithmic behaviour can be based on metadata collected during the workflow
of processing the software inputs and outputs or the historyof last software component
invocations.

Metadata are then used as attributes for machine learning experiments. Witten and
Frank (2000) point out the existence of basically three kinds of relations between two
attributes they named:semantic(indicates that two attributes only make sense when used
together),causal(occurs when one attribute causes another, making a prediction of the
latter, only meaningful if the first is included), andfunctional(the functional dependency
of one attribute on another means that if the latter is used, e.g., in an association rule, the
former becomes superfluous). Instances of these three relations are empirically generated
by machine learning algorithms in the learning environment. Their applicability for an
emergent behaviour of the software must then be clarified by an introspective control
model.

4.3. Introspective Control Model

Introspective controlis the application of the introspective knowledge gained from the
metadata. We use the introspective mechanism to generate models that can be manually



or (semi-)automatically operationalised. This means thatwe put an introspective control
into effect by exploiting an information state (system monitoring of the emergent soft-
ware) from which we can extract useful features for model generation (e.g., generating
association rules or inducing decision classifiers). The application of the learned models
is the control we exert on the emergent software’s task level.

1. Manual Operationalisation: In manual operationalisation, the system expert is
confronted with the machine learning models derived from the exploratory data
mining analysis. The system expert thereby inspects the automatically derived
models and authors their operationalisation manually, i.e., he adjusts the emer-
gent system according to the expert knowledge he gets by inspecting the data
mining results.

2. Semi-Automatic Operationalisation: Operationalisation can also be used in an
online learning process in which the expert user authors andadjusts the system by
using an interactive evaluation environment to sort out, for instance, non-causal
from causal rules that the emergent software component generated automatically.

3. Automatic Operationalisation: The objective of automatic operationalisation is to
automatically apply model changes to prevent failures thatbecame apparent after
deployment. Such failures are prevented from recurring when a new CRISP cycle
is started and evaluated (instead of “only” providing suggestions to the dialogue
experts).

4.4. Learning Environment

Jafar-Shaghaghi (1996) distinguishes between two categories of data mining tech-
niques: statistical and machine learning. While statistical techniques revolves around
(non)parametric statistical data analysis, examples for machine learning techniques are
neural networks, genetic algorithms, and symbolic learning techniques. Special data min-
ing techniques are decision trees, production rules, and inductive logic programming.
When humans interpret the results of data mining (which is normally the case), the in-
duced models are a kind of expert advice. When agents interpret the models automati-
cally, agents become experts themselves.

4.5. Abstract Implementation

As mentioned before, by implementing the methodology/introspective mechanism, we
will emphasise the design of machine learning systems that monitor themselves, self-
diagnose, and self-repair in terms of self-adaptation to changing conditions. The abstract
implementation declares the data structures of the controlmodel and the algorithmic
interface which can then be implemented by concrete search and prediction algorithms
in the learning environment.

4.6. Control Model

With the help of ontological assertions (Fensel, Hendler, Lieberman and Wahlster, 2003;
McGuinness, 2004; Hitzler, Krötzsch and Rudolph, 2009) (i.e., in RDF3, OWL4, or

3http://www.w3.org/RDF/
4http://www.w3.org/2004/OWL/



OWL-25) about the specific domain, e.g., implicit ordering in attribute values, machine
learning schemes could use process metadata as essential information for model creation;
the solution we propose is to use metadata attributes of propositional logic, with special
relationships among them.

Using ontological metadata repositories, the semantic relationships between at-
tributes obtain a clear formalisation. In addition, we obtain a good representational basis
for causal attribute relationships. One of the main tasks ofeffective metadata manage-
ment is to provide the relevant input spaces derived from ontology instances to build
causal attributes to be introduced in the “information state” of the emergent software.
These attributes serve as rule items of classification rulesin the causal direction. In addi-
tion, learning models often reveal causal and functional dependencies the system expert
was already aware of. This implies using input spaces which rarely contain functional de-
pendencies so that interesting patterns are not obscured. By carefully labelling proposi-
tional information state features, the extracted data onlycontains features obtained from
ontological representations with easily-understandablepropositions for directing emer-
gent behaviour.

4.7. Learning Environment

All algorithms should be based on the assumption that any hypothesis found to ap-
proximate the target function well over a sufficiently largetraining set will also do the
same over a set of unobserved instances. This assumption is also known asthe inductive
learning hypothesis(Mitchell, 1997), which, roughly speaking, ensures that the machine
learning models we create can be used for future decisions inthe same subject domain.
This means that the emergent behaviour of the software component has a theoretically
grounded optimisation criterion: the adaptation according to empirically found learning
models of the environment.

We suggest algorithms such as Naive Bayes, decision trees, K-nearest neighbour,
and support vector machines for supervised classification;association rules are for un-
supervised association pattern analysis. All these algorithms are based on the statistical
maximum likelihood principle, which corresponds to the decision of a rational emergent
software agent, where the decision is based upon (i.e., a class is assigned to) the class
with the the greatest probability of occurrence. Each of thepossible classesci ∈ C is con-
sidered and the corresponding class-conditional densities p(x|ci ) are estimated for the
finite attribute vectorx of a training instance. The adaptation of the emergent software
component to specific conditions corresponds to the class-conditional densities after the
learning step.

4.8. Workflow

Figure 3 outlines the main ingredients of the introspectivemechanism / emergent al-
gorithm and the workflow that we aim to achieve, i.e., the formulation of practical in-
trospective methods and their verification by practical machine learning and embedded
data mining experiments toward the implementation of manual and (semi-) automatic
operationalisation of introspective machine learning models in the context of emergent

5http://www.w3.org/TR/owl2-profiles/



Figure 3. Workflow of implementing steps for emergent software

software systems. The workflow has two steps and finishes witha rule / PMML model
generation step.

PMML allows users to develop models within one vendor’s application, and use
other vendors’ applications to analyse and apply the models. With PMML, the exchange
of models between compliant applications is possible. Thisprovides a straightforward
way to use machine learning models in an embedded environment such as emergent soft-
ware applications. One or more mining models can be contained in a PMML document.
We propose the usage of association rules PMML models, wherea set of items is associ-
ated with another set of items. The model consists of model attributes, items, item sets,
and the association rules. Lavrac (2006) describes PMML as the standard for integrating
data mining and decision support technology with information systems.

The rules can then be used to adapt the emergent software component’s behaviour
by applying them, i.e., updating the component’s internal reasoning procedure based on
the learned models.



5. Conclusion

We presented a new methodology for developing emergent software. Based on one possi-
ble technically and procedurally driven definition of emergent software, we provided the
design of an introspective mechanism which includes a metadata management theory, an
introspective control model, and a learning environment. Additionally, we provided an
abstract implementation of the workflow. A full implementation for a specific applica-
tion, i.e., self-adaptive behaviour of a dialogue-based question answering system, can be
found in (Sonntag, 2010).

Future work should investigate the suitability of different machine learning model
languages such as PMML for the reasoning process of embeddedemergent software
components. The automatic update of the reasoning process remains a critical problem in
terms of reliability, trust, and security issues. Additionally, other definitions of emergent
software might focus on the mutation aspect of emergence where, e.g., genetic algorithms
without pre-specified optimisation criteria should be employed.

Acknowledgments.Daniel Sonntag is supported by the THESEUS Programme funded
by the German Federal Ministry of Economics and Technology (01MQ07016).

References

Anderson, M. and Oates, T. (Eds.) (2005).2005 AAAI Spring Symposium on Metacog-
nition in Computation, March 21-23 2005, Stanford, California, USA, Volume SS-
05-04 ofAAAI Technical Report. AAAI Press.

Brachman, R. J. (2002). Systems That Know What They’re Doing. IEEE Intelligent
Systems 17(6), 67–71.

Cox, M. T. (2005, December). Metacognition in computation:A selected research re-
view. Artificial Intelligence 169(2), 104–141.

Davidson, J., Deuser, R., and Sternberg, R. (1994).Metacognition, Chapter The role of
metacognition in problem solving., pp. 207–226. The MIT Press.

Derry, S. (1989).Cognitive strategy research: From basic research to educational ap-
plications, Chapter Strategy and expertise in solving word problems, pp. 269–302.
Springer-Verlag, NY.

Fensel, D., Hendler, J. A., Lieberman, H., and Wahlster, W. (Eds.) (2003).Spinning the
Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press.

Hearst, M. A. and Hirsh, H. (2000). AI’s Greatest Trends and Controversies. IEEE
Intelligent Systems 15(1), 8–17.

Hitzler, P., Krötzsch, M., and Rudolph, S. (2009, August).Foundations of Semantic Web
Technologies. Chapman & Hall/CRC.

Jafar-Shaghaghi, F. (1996).Maschinelles Lernen, Neuronal Netze und Statistische Lern-
verfahren zur Klassifikation und Prognose. Shaker, Aachen, Germany.

Lavrac, N. (2006). From Data and Information Analysis to Knowledge Engineering,
Chapter SolEuNet: Selected Data Mining Techniques and Applications, pp. 32–39.
Springer.

McGuinness, D. L. (2004, January). Question answering on the semantic web.IEEE
Intelligent Systems 19(1), 82–85.



Mitchell, T. M. (1997).Machine Learning. McGraw-Hill International Edit.
Nelson, T. O. and Narens, L. (1990).G. H. Bower (Ed.) The Psychology of Learning and

Motivation: Advances in Research and Theory, Volume 26, Chapter Metamemory:
A theoretical framework and new findings, pp. 125–169. Academic Press.

Sonntag, D. (2008). On introspection, metacognitive control and augmented data mining
live cycles.CoRRabs/0807.4417.

Sonntag, D. (2010).Ontologies and Adaptivity in Dialogue for Question Answering.
AKA and IOS Press, Heidelberg.

Tash, J. and Russell, S. (1994). Control strategies for a stochastic planner. InProceedings
of the Twelfth National Conference on Artificial Intelligence (AAAI-94), Volume 2,
Seattle, Washington, USA, pp. 1079–1085. AAAI Press/MIT Press.

Witten, I. H. and Frank, E. (2000).Data Mining. Morgan Kaufman, San Mateo, CA.
Yussen, S. R. (1985).The Growth of Reflection in Children. Academic Press Inc.,U.S.


