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Abstract

The paper focuses on how a model could be learnt for de-
termining at runtime how much of spoken input needs to be
understood, and what configuration of processes can be ex-
pected to yield that result. Typically, a dialogue system ap-
plies a fixed configuration of shallow and deep forms of pro-
cessing to its input. The configuration tries to balance robust-
ness with depth of understanding, creating a system that al-
ways tries to understand as well as it can. The paper adopts a
different view, assuming that what needs to be understood can
vary per context. To facilitate this any-depth processing, the
paper proposes an approach based on learnable controllers.
The paper illustrates the main ideas of the approach on ex-
amples from a robot acquiring situated dialogue competence,
and a robot working with users on a task.

Introduction
When talking with other humans, we sometimes listen more
carefully, sometimes less. We figure out how much we need
to understand, and adjust on the fly how much we process
while still keeping on interacting in a contextually appropri-
ate way. We have ways of balancing our resources given
noise, uncertainty, cost – as language users we are, in many
sense of the word, rather pragmatic.

We take inspiration from this observation to outline here
an approach to “any-depth” processing of situated dialogue
in human-robot interaction. The aim of the approach is to
enable a system to decide online, what processes need to be
applied to the input given an (expected) state to be reached,
while trying to achieve that as fast as possible. The system
dynamically establishes an optimal process configuration to
be executed, for part or all of the input.

Why could that be potentially beneficial for situated di-
alogue processing? True, there is a certain appeal to pro-
cessing input to as deep a level of understanding as possible.
The general idea is that the more the system understands, the
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more it can figure out what is being talked about, and the bet-
ter it can act upon that (perceived) understanding. But this is
difficult to achieve for spoken dialogue. Input is incomplete,
noisy, the system is typically uncertain how to understand it,
and how to act upon it. And at the same time we need to
maintain a natural flow of conversation: Asking for clarifi-
cation after each utterance is not helpful.

Technically, the field has tried to address these problems
by applying more robust forms of processing, to deal with
interpretation and decision making under uncertainty. We
are able to deal with missing or wrong input, and still pro-
vide an analysis to act upon. A wide variety of approaches
exists for how processes and their outputs can be combined,
e.g. using fixed configurations (cf. (McTear 2002)) or more
flexible divide-and-conquer strategies (Wahlster 2000), in
which the same input is provided to different kinds of pro-
cesses in the expectation that at least one succeeds. Up to a
“fixed” depth, the system tries to understand as much as it
can. We propose to take these ideas a step further, to decide
at runtime what configuration of processes to apply to (parts
of) the input to construct analyses that provide that as much
as depth as necessary, where necessary.

Intuitively, the approach works as follows. We start from
an input stream, say a sequence of words. We assume that
the system is able to assign “signs” to some or all of these
words. These available signs build up a state space, fac-
tored by the possible levels of interpretation. We use this
state space as a common control state space between dif-
ferent processes that act on signs. The goal is now for a
controller to select a configuration of one or more processes
that run on some or all of these signs. Process selection is
guided by two factors. The first factor is the expected value
of running a process on specific signs, hopefully yielding
partial analyses. The expected value is based on how use-
ful these analyses are in relation to a goal state we need to
achieve. In the examples below we give two illustrations
of such goals, and the reward feedback they yield. One ex-
ample comes from language acquisition, and concerns the
issue of learning to establish enough structure in linguistic
analyses to help determine how to interpret a visual obser-
vation. The other example comes from task-driven dialogue,
and concerns the detection of enough content to determine
whether a user indeed made the dialogue move the system
expected her to make. The other factor in process selection



is the potential cost of running a process (typically, time).
Formally, the approach employs ideas from reinforcement

learning (Sutton and Barto 1998), including factored mod-
els for Markov Decision Processes (Boutilier, Dean, and
Hanks 1999; Strehl, Diuk, and Littman 2007), planning with
finite receding horizons (Barto, Bradtke, and Singh 1995;
Morisset and Ghallab 2008), and self-aware learning (Li,
Littman, and Walsh 2008). The novelty of the approach is
in use of learnable controllers for managing what processes
are invoked to interpret an utterance, and the flexibility in
selecting processes to run over subsets of signs.

Examples
Acquiring language competence Picture we have a robot
which develops its visual and linguistic competence by inter-
acting with the environment, and a human tutor. Initially, the
robots visual resolution is low. It can only see colored blobs,
which it recognizes in terms of assigning a blob a distribu-
tion over possible color values. Linguistically, we assume
that the robot can process audio to words, but that’s all.

We start off by showing the robot a blue object, saying
“this is blue.” The robot lacks a model of how to link these
words to what it sees. All it can do is build grounded lin-
guistic sign structures for each of them. A sign structure
links a word on the one hand to a structural context (i.e. a
part of a factored state), and on the other hand to a meaning
that relates it to a situated use. The links in the resulting tri-
adic structure are all weighted. For example, in the presence
of “this is” the word “blue” might predict the distribution
over possible values the robot has just seen. The expected
“strenght” of the prediction is reflected by the weight it has
in the context of this sign. We continue this for a while, il-
lustrating different colors to the robot, telling it what it sees.
During this time, the robot builds up a space of possible
signs. Each time it matches linguistic expressions to their
ability to predict a color distribution. A prediction that pro-
vides a good match (statistically) to an observation results
in an improved weighting of prediction in the sign, while
different expressions help establish an extensional represen-
tation of the structural contexts the word appears in. (This
sets this idea of sign apart from accounts like (Steels 2006).)

As the space of signs grows, so do the number of possible
signs that the robot can assign to an input sequence. Pro-
cessing at this point is, in its simplest form, a matter of sign
selection. The task for the controller is thus to select that
combination of signs and processes that can be expected to
yield the best match to an observation. The feedback result-
ing from matching the selected sign(s) with the observations
is then used both to drive learning with the controller, and
the adaptation of the signs itself.

There is little or no need for genuine structure if all the
robot hears is color terms. This changes once we start vary-
ing the ways we use words, and what we talk about. A
nice example of this is a type of experiment discussed for
child language acquisition in (Waxman and Gelman 2009):
Do children distinguish between ”this is a dax” and ”this is
dax”? Here we see the impact of taking structural aspects of
state into account in a sign. The signs for “dax” are differ-
ent, and accordingly their predictions will be different. But

to bring this difference about, we need to do more than se-
lect a (single) sign. Differentiating requires the possibility to
form more complex signs – i.e. building up a simple struc-
ture over “a dax” should those two words be present. Using a
mechanism for self-aware learning (Li, Littman, and Walsh
2008) the controller can first of all raise the explicit need for
such additional structure (as an aspect of the factored state),
to subsequently learn what processes to apply to meaning-
fully distinguish uses like ”this is a dax” from ”this is dax.”

Varying depth in task-driven interaction Human-robot
interaction often deals with a setting in which a human and
the robot communicate, to work on some shared task. Con-
firmations are frequent in such dialogues. “Yes,” “okay,” –
their occurrence can be predicted in a dialogue, forming a
natural part of a (predictive) dialogue model. Given this ex-
pectation of a confirmation, the controller can opt to select
a shallow process that provides just as enough information
that the human confirmed, as a deep analysis would. At the
same time, the determination of the actual sign space for an
input sequence enables the controller to trade this possibility
off against the need to process additional signs – e.g. if the
human replies with “yes, but ...” which necessitates a deeper
interpretation of the “but...” condition (alike “a dax”).
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