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Abstract. With the range of services that can be accessed inside a car
constantly increasing, so are the opportunities for personalizing the ex-
perience for both driver and other passengers. A main challenge however
is to find out who is sitting where without asking explicitly. The solution
presented in this paper combines two sources of information in a novel
way: Ambient speech and mobile personal devices. The approach offers
improved privacy by putting the user in control, and it does not require
specialized positioning technologies such as RFID. In a data-driven eval-
uation, we confirm that the accuracy is sufficient to support a ten-speaker
scenario in practice.
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1 Introduction

[5] introduces a scheme of positioning systems, which distinguishes exocentric
and egocentric approaches. With exocentric approaches, a device carried on the
user sends a unique signal to the environment that is used to calculate the cur-
rent position of the device. The result is then sent back to the user like it is the
case with cell-phone positioning based on cell-id. GPS is an example of the other
category, egocentric: the device receives data from the environment and calcu-
lates the position by itself, which has clear advantages with respect to privacy,
since the users can control if they want to share their position information with
a third-party. The system described in this paper is a hybrid approach, since
sensors – in this case microphones – are installed in the car and pick up signals
generated by the user, e.g. casual conversations or voice commands. With this
information the car’s system can determine which seats are taken, but it cannot
identify who is sitting there. The information that enables this identification is
stored on the user’s personal device. Thus, the device is the link between the
location information (provided by the car) and the user information (stored on
the device) (see Fig. 2 (left)). By combining an ambient information source with
existing technology, positioning can occur in a fully automated and non-intrusive
way.



Fig. 1. The In-Car Positioning Architecture. Components are running either in the
vehicle or mobile device context.

Knowing what seat a passenger occupies enables a multitude of possibilities
for personalization. One safety-related application are adaptive driver warnings
[1]. Other features such as controlling car comfort functions benefit as well from
knowing who sits where (e.g. temperature being configured to the user’s preferred
setting).

In the remainder of this paper, the in-car positioning approach based on
ambient speech is described from a technical point of view. Since the reliability
of such a system strongly depends on the accuracy of the speaker recognition
process, empirical data is provided in Section 3. The major question is: how
much speech do we need to reliably make that decision? As we will show, the
system needs approximately one second of speech.

2 The Proposed In-Car Positioning Approach

The actual architecture of the proposed system consists of several hardware
and software components that have all been installed into a real demonstration
vehicle (Mercedes R-Class). The hardware set-up consists of two 7” screens (front
seats located, center console) as well as two 10” screens (rear seats, head rest).
All seats are equipped with hi-fidelity directional microphones (Sennheiser ME
105-NI ). A Wireless LAN allows nomadic devices to easily join the car network.
In our case, several Windows Mobile-based smartphones and PDAs represent
the drivers’ personal devices running the mobile client software.

Fig. 1 illustrates the software architecture. The central component that links
together the other modules is the Knowledge, Adaptation and Personalization
component (KAPcom). It is a multi-purpose service maintaining a knowledge
base with an automotive-domain ontology. Different applications can retrieve and
store knowledge, e.g. user preferences or traffic information. In the positioning
scenario, KAPcom is used as a “blackboard” – a design pattern for problem
solving often applied in Artificial Intelligence [2]). On the data acquisition side,
an Audio Manager obtains raw audio data from the microphones. It then streams
the data to a Speech Processing Service responsible for detecting speech and
– if speech is present – for computing a set of characteristic high-level audio
features, the so-called voiceprint (see also Section 3). This evidence is stored in
the knowledge base together with the information on which seat it was recorded.



Fig. 2. Left: In-Car positioning. Sensor data in the environment (car) is transmitted
to the user device(s). There, it is used as a key in order to find out what value belongs
to the respective user. Middle: The system has identified its owner as the passenger on
the rear left seat. Right: After positioning, the system asks if the user wants to share
their data with the car.

When a mobile phone or PDA connects to the car’s network, it automatically
starts receiving notifications using a mobile client application when new data be-
come available. Given the user profile that is stored on the personal device, it
can then locally perform the detection step with the sensor data from any seat,
i.e. determine in how far a given voiceprint matches the signature stored in the
user profile. Data is aggregated until a match can be confirmed with reason-
able confidence. Afterwards, the device owner’s location inside the car is known
and the client can use this knowledge to perform device-side adaptation, such as
changing the phone’s ringing scheme and other notifications when the user is the
driver. The current UI on the device (Fig. 2 (middle)) provides a visualization of
the match likelihood for the evidence coming from each seat. The device owner
can additionally decide to share his identity with the car, thereby allowing appli-
cations running on its system to also take advantage of personalization. Another
component running in the car: the User Manager manages the association of
user profiles to seats based on evidence and authentication data.

The proposed approach differs from other positioning methods in that it
does not require the user’s device to broadcast information, hence adopting the
privacy advantage of egocentric positioning. However, when the positioning data
is used to adapt car functions, information sharing concepts are needed to deal
with the potential issues. Most critically, users have the option to block all data
sharing in the first place on their device. When information should be shared, the
situation may depend on whether the user is the owner of or a regular passenger
in the car, or not. If so, the user profile can either be automatically transmitted
by default without user interaction, or it can be stored on the car or even an
off-board service and be only activated by a token on a device.



3 Generating and Testing Speaker Models

This work employs a speaker detection method that is motivated by creating a
resource-efficient detection scheme for the mobile device implementation and an
interchangeable model / voiceprint representation.

A basic GMM-UBM approach [4] makes the core of the recognizer. In this
approach, speaker models are represented by Gaussian Mixture Models (GMMs),
each model consisting of a fixed number of Gaussian probability distributions
(in our case 1024) for each feature. The features are 12 coefficients of the mel-
frequency cepstrum (MFCCs) indicating the short-term power spectrum of the
voice. The GMMs are trained on pre-recorded speech and stored on the device
in a compact binary format of approx. 200 KB each. In addition, a “background
model” is trained from the speech of all speakers. The tool used to facilitate the
training process is the speaker classification framework [3].

For any given audio stream from a live system and user model, a likelihood
score can be computed that indicates to what extent the speech, which is seg-
mented into frames, matches the model. The final acceptance of a speaker model
occurs when a predefined minimum amount of material matches the speaker
model more than the background model. In order to reduce sensitivity to noise
and silence, a filter for voiced frames has been applied to all audio.

For training and evaluation, a corpus was recorded inside the standing vehicle
described earlier. The corpus consists of ten adult speakers (7 male, 3 female) and
a total of 76 minutes of material categorized by different conditions (seat, read
vs. spontaneous, overlapping, doors closed vs. open). The training set consists of
30 minutes of speech, while the evaluation corpus uses 20 seconds (2000 frames)
per speaker. There are two types of performance measures applied in this task:
accuracy and error rates. The accuracy describes what percentage of test samples
are assigned to the correct speaker, i.e. it measures how well the system can
identify the correct speaker out of the full set of (in this case) ten speakers. The
second category quantifies the errors a system can make when it tries to detect if
a test sample is from a given target speaker, which are misses and false alarms.
A mobile device as in our scenario only has a single user profile stored and hence
performs the detection task. The false alarm rate is possibly the most critical
measure here because it tells in how many cases the device will incorrectly report
a match. Our evaluation therefore takes into account different numbers of frames
over which scores were averaged.

Fig. 3 illustrates the results. In a single-frame scenario (10 ms of speech),
already 62.7% of frames are classified correctly at a chance level of 10%. However,
it is clearly evident that recognition rates improve significantly when more speech
becomes available. At 64 frames, which corresponds to 640ms of pitched voice
(roughly a second of ordinary speech), almost 100% accuracy are achieved in this
test. The corresponding chance of a false alarm is still 2.8%. It can be lowered
to 1.6% when using approx. one fourth of the eval material for averaging.



Fig. 3. Results of the in-car speaker recognition on a test corpus. The error rate Perr

is defined as the mean of Pmiss and Pfa.

4 Conclusion and Future Work

As documented in the previous section, the approach presented herein can in-
deed be used to rather quickly and reliably determine speakers’ positions in a set-
ting with a manageable number of speakers. Yet, since positioning/identification
solely on voiceprints has some drawbacks, e.g. the passengers have to speak in
order to be positioned, we will expand the presented system with weight sensors.
Here, the basic idea is, that the users’ profiles will be enriched by their body
weight data. This value will of course change, even throughout the day, so appro-
priate estimation models will have to be found and evaluated. Both approaches,
speaker recognition and weight measurements, will then be combined according
to the “Always Best Positioned” paradigm, which was proposed in [5].
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