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Abstract. A prerequisite for the practical use of a specification language is the
existence of a set of predefined specifications. Although the Common Algebraic
Specification Language (CASL) has a library with such predefined specifica-
tions, its higher order extension, named HASCASL, still lacks a library with
basic higher order data types and functions. In this paper, we describe the spec-
ification and verification of a library for the HASCASL language. Our library
covers a subset of the Haskell Prelude library, including data types and classes
representing Booleans, lists, characters, strings, equality, and ordering func-
tions. We use the Heterogeneous Tool Set (HETS) for parsing specifications,
generating proof obligations, and translating between the HASCASL and HOL
languages. To discharge the arising proof obligations, we use the Isabelle/HOL
interactive theorem prover.

1. Introduction
In the present work, we address the modeling of a library for the specification language
HASCASL [18]. The HASCASL specification language is an extension of the CASL spec-
ification language [1] by higher order language features. The structure of our library
follows the Prelude library of the Haskell programming language. In order to verify the
new library we use the HETS tool [13] and the Isabelle theorem prover [14].

A prerequisite for the practical use of a specification language is the availability
of a set of predefined standard specifications. The CASL language has such a set of
specifications in the shape of the “CASL Basic Datatypes” library [17]. Currently, the
HASCASL language does not have a library along the lines of the CASL library.

Although HASCASL may import the data types from the CASL library, higher
order properties and data types are not available. Another question involves proof support
for HASCASL specifications that import data types from CASL library. Translating the
imported specifications into the HOL language does not provide all the necessary lemmas
needed by Isabelle theorem prover to write proofs involving those imported specifications.
We have therefore implemented isomorphisms between data types from the CASL library
and native data types from Isabelle/HOL to improve proof support.

A HASCASL library would extend the CASL library with new specifications with
higher order features, such as completeness of partial orders, extended data types and
parametrization change for real type dependencies.



Here, we describe the specification of a library for the HASCASL language based
on the Haskell Prelude library, thus making available the higher order functions and data
types lacking in the CASL Basic Datatypes library while at the same time extending the
support for Haskell that was the original motivation for the design of HASCASL. An
electronical appendix containing the sources of our library can be found at http://
sites.google.com/site/glaubersp/publications/sblp2010.

Our contributions [4; 3] may be summarized as follows:

• Specification and verification of a HASCASL library that covers a subset of the
Prelude library, including the data types representing Booleans, lists, characters
and strings, with related functions.
• Documentation of the specification and verification process, with examples to il-

lustrate the use of the HASCASL framework.
• Specification and partial verification of a refined library to include support for lazy

evaluation.

The paper is organized as follows. Section 2 reviews some specification frame-
works that exemplify the need for predefined data types, and discusses some examples.
Section 3 describes how we specified the library, including examples that illustrate its use.
Section 4 addresses the parsing of the specifications and the generation of proof obliga-
tions. Section 5 addresses the use of the Isabelle theorem prover in the verification process
of the library and the examples. Section 6 concludes, summarizing our contributions and
discussing directions for future work.

2. Related Frameworks
There are other formal specification frameworks available. All of them include predefined
libraries that can serve as a basis for new specifications.

Larch [7] and VSE-2 [9] are two examples of specification languages based on
first-order logic. VDM [10] and Z [19] are model-oriented specification languages, i.e.,
their specifications model a single input-output behavior. HASCASL, by contrast, allows
loose specifications that can model a variety of similar behaviors in an abstract manner,
allowing them to be refined later. CafeOBJ [6] and Maude [5] are specification languages
that are directly executable; the price paid for this property is the reduced expressiveness
of their logic in comparison with HASCASL.

Extended ML [11] creates a higher order specification language on top of the pro-
gramming language ML. This approach results in a language that is hard to manage as its
semantics is intermingled with the intricacies of the ML semantics. A similar approach
was taken in the Programatica framework [8], which provides a specification logic for
Haskell called P-logic. The similarities between HASCASL and P-logic include support
for polymorphism and recursion based on an axiomatic treatment of complete partial or-
ders. Because P-logic is built directly on top of Haskell, it is less general than HASCASL.
I.e., while HASCASL can serve as a generic higher order logic, and in particular allows
for loose specification and development by refinement as already mentioned, P-logic can
only specify objects in the logic of Haskell programs, including all its programming lan-
guage specific features such as laziness. HASCASL also includes support for class-based
overloading and constructor classes, which are needed for the specification of monads,
and a Hoare logic for monad-based functional-imperative programs.

http://sites.google.com/site/glaubersp/publications/sblp2010
http://sites.google.com/site/glaubersp/publications/sblp2010


Other higher order frameworks for software specification include Spectrum [2]
and RAISE [20]. The first is considered a precursor of HASCASL and differs from it in
using a three-valued logic and limiting higher order mechanisms to continuous functions,
i.e., it does not include a proper higher-order specification language. The language of the
RAISE framework differs from HASCASL in the use of a three-valued logic and a lack of
support for polymorphism.

In terms of the logic employed, HASCASL is related in many ways to the HOL lan-
guage employed in the Isabelle theorem prover. [14]. Indeed, Isabelle is used to provide
proof support for HASCASL. Features of HASCASL not directly supported in Isabelle
include higher order type constructors and constructor classes (the latter are needed e.g.
for modeling side-effects via monads), partial functions, loose generated types, and ad-
vanced structured specification constructs. Similar comments apply to other higher-order
theorem provers such as PVS [15].

3. Creating a HASCASL Library
The basic principle of property-oriented specifications as supported by general-purpose
specification languages such as HASCASL is to fix the required operators and predicates,
the specification signature, and basic axioms governing the data semantics. Properties
implied by such a specification are also included in the specification, but explicitly marked
as theorems. Proofs in an external tool, such as Isabelle, often require slight adjustments
to the forms of the axioms and a number of auxiliary lemmas. To preserve such lemmas
across the development process in HETS, some of them are also included as theorems in
the specification. All axioms and theorems in the specification are named to ease reference
to them inside the theorem prover.

There is a basic trade-off between having straightforward and clear higher-order
specifications on the one hand and modeling all details of the Haskell behavior including
laziness and continuity of functions on the other hand. We chose to design our library in
two steps in order to better understand the HASCASL language and tools, before getting
into more advanced features needed to model the Haskell specificities. We started with a
more abstract approach employing standard higher order function types and strict evalu-
ation of types, described in Sections 3.1 and 3.2. Later, we refined the library to include
support for lazy evaluation of functions, as described in Section 3.3.

3.1. Specifying a library with strict evaluation

We start the specification of our library with the Bool specification, representing Boolean
values. Note that the lowercase negation not as well as strong equality = and equivalence
<=> are meta concepts of CASL and HASCASL. As importing Bool from the CASL library
would not allow for the inclusion of laziness, we wrote the specification from scratch, as
follows:

spec Bool = %mono
free type Bool ::= True | False
fun notH__ : Bool -> Bool
fun __&&__, __||__ : Bool * Bool -> Bool
vars x, y : Bool
. notH False = True %(NotFalse)% . notH True = False %(NotTrue)%
. (False && x) = False %(AndFalse)% . (True && x) = x %(AndTrue)%
. (x || y) = notH (notH x && notH y) %(OrDef)%
. notH x = True <=> x = False %(NotFalse1)% %implied



. notH x = False <=> x = True %(NotTrue1)% %implied

. not (x = True) <=> notH x = True %(notNot1)% %implied

. not (x = False) <=> notH x = False %(notNot2)% %implied

A main concept in both HASCASL and Haskell is type class polymorphism, al-
lowing types and operations to depend on type variables. A type class declaration in the
HASCASL language includes a declaration of a type variable of the new class followed by
function and axiom declarations depending on this type variable, serving as an interface
to the declared type class. A type instance declaration then defines a type as being an
instance of a type class, meaning that the type must obey the function declarations in the
class interface, as well as the associated axioms of the class.

The specification Eq of user-declared equality makes use of type class polymor-
phism. The class Eq includes equality (==) and difference functions (/=) and axioms for
symmetry, reflexivity and transitivity. Our equality function is not mapped to the strong
HASCASL builtin equality (=), because this is considered too restrictive. The definition
of the difference function is given in terms of the equality function. The types Bool and
Unit are then declared to be instances of the class Eq. From the definition of a free type,
some implicit axioms are automatically created stating that all constructors are pairwise
disjoint. Since user-defined equality may however be coarser than strong equality, we
nevertheless need to state explicitly that the constructors of a type we have defined are not
equal with respect to the user-defined equality. In case of the Bool type, such a statement
is made by the axiom %(IBE3)% below. Because the type Unit has only one constructor,
the axiom %(EqualTDef)% already defines equality over this type. The specification
can be written as follows:

spec Eq = Bool then
class Eq {
var a : Eq
fun __==__, __/=__ : a * a -> Bool
vars x, y, z : a
. x = y => (x == y) = True %(EqualTDef)%
. (x == y) = (y == x) %(EqualSymDef)%
. (x == x) = True %(EqualReflex)%
. (x == y) = True /\ (y == z) = True => (x == z) = True %(EqualTransT)%
. (x /= y) = notH (x == y) %(DiffDef)%
. (x /= y) = (y /= x) %(DiffSymDef)% %implied
. (x /= y) = True <=> notH (x == y) = True %(DiffTDef)% %implied
. (x /= y) = False <=> (x == y) = True %(DiffFDef)% %implied
. (x == y) = False => not (x = y) %(TE1)% %implied
. notH (x == y) = True <=> (x == y) = False %(TE2)% %implied
. notH (x == y) = False <=> (x == y) = True %(TE3)% %implied
. not ((x == y) = True) <=> (x == y) = False %(TE4)% %implied
}
type instance Bool : Eq
. (True == True) = True %(IBE1)% %implied
. (False == False) = True %(IBE2)% %implied
. (False == True) = False %(IBE3)%
. (True == False) = False %(IBE4)% %implied
. (True /= False) = True %(IBE5)% %implied
. (False /= True) = True %(IBE6)% %implied
. notH (True == False) = True %(IBE7)% %implied
. notH notH (True == False) = False %(IBE8)% %implied
type instance Unit : Eq
. (() == ()) = True %(IUE1)% %implied
. (() /= ()) = False %(IUE2)% %implied

Similar use of the class polymorphism is made in the specification Ord of total
order relation. The specification includes a data type Ordering, which just enumerates



the conditions of an element being greater than, equal to, or less than another. This type is
made into an instance of the class Eq by declaring all its constructors to be distinct of each
other. As in Haskell, the class Ord is made a subclass of the class Eq. Its interface includes
a predicate __<__ with axioms for irreflexivity, transitivity, and totality and a theorem for
asymmetry. The other ordering functions are defined in terms of the functions __<__,
__==__ and notH__. The types Ord, Bool, Unit, and Nat are declared to be instances
of Ord and equipped with axioms defining the predicate __<__ in each case. Several
theorems capture the fact that the ordering functions operate as expected over those types.

Isabelle/HOL fails to support constructor classes and specifications that use them,
such as Functor and Monad, cannot be translated to HOL. To allow verification using
the Isabelle tool, the data types Maybe a and Either a b, which are instances of the
classes Functor and Monad, are developed in two phases. In a first specification step,
the data types themselves are declared, along with associated map functions and instance
declarations for the classes Eq and Ord. In a second step, suitable instance declarations
for constructor classes are added. Specifically, the constructor class Functor has, e.g., the
type constructors Maybe and Either a as instances, the latter being obtained by partial
evaluation of the binary type constructor Either, and the constructor class Monad has the
type constructor Maybe as an instance.

Two more specifications deal with generalities about functions. The specification
Composition contains the declaration of the function composition operator. The specifi-
cation Function extends Composition by defining some standard functions including id

and curry.

The NumericClasses specification consists of numeric data types and numeric
classes, similar to the Prelude library. Numeric functions that are not part of any class in
the Prelude library are condensed in the specification NumericFunctions.

We create the NumericClasses specification by importing the types Nat (for nat-
ural numbers), Int (for integer numbers) and Rat(for rational numbers) from the CASL
library. We declare all of them to be instances of the classes Eq and Ord. We create
the class Num, subclass of the class Eq, as the generic numeric class, comprising all the
numeric types as its instances and generic axioms for defining numeric data types. Two
subclasses of the class Num, named Integral and Fractional, are specified with their
corresponding axioms and type instances. The class Integral has types Nat, Int and
Rat as instances, and the class Fractional has types Int and Rat as instances.

The list data type depends on numeric data types. As numeric data types cannot
be fully translated to HOL (more on this in Section 5) we separate numeric functions
and classes in two specifications so as to allow for partial verification in Isabelle/HOL.
Functions that express counting properties over lists, making them dependent on numeric
data types, are aggregated in a separate specification named ListWithNumbers. The main
specification, named ListNoNumbers, is organized in six parts in order to collect related
functions in common blocks, largely following the structure of the Haskell prelude.

In the first part, the polymorphic type List a is defined as a free type, along with
some basic functions including foldr, foldl, map, and filter. Two of these functions,
head and tail, are inherently partial and are undefined on the empty list. The second
part of the specification declares List a as an instance of the classes Eq and Ord and



defines how the functions __==__ and __<__ operate on lists. The third part contains a
number of theorems over the first part of the specification which clarify how the functions
specified there interact. The fourth part contains five more list operations functions from
the Haskell Prelude, some of them partial, being undefined on empty lists. The fifth part
aggregates some special folding functions or functions that create sub-lists. The last part
of this specification brings in some list functions which are not defined in the Haskell
Prelude library, but given in the standard module Data.List from the Haskell hierarchical
libraries.

The specification Char imports the type Char from the CASL Basic Datatypes
library and declares this type as an instance of the classes Eq and Ord. The String spec-
ification imports the specifications Char and ListNoNumbers, defines the type String as
List Char, and declares this type as an instance of the classes Eq and Ord, with the def-
initions of the relevant operations determined by the corresponding definitions for Char
and List. A number of theorems proved over the specification confirm that the definitions
have the expected behavior.

3.2. Specification Examples

To exemplify the use of our library, we create two example specifications involving or-
dering algorithms. In the first specification we use two sorting algorithms: Quick Sort
and Insertion Sort. They are defined using functions from our library (filter, __++__
and insert) and λ-abstraction as parameter for the filter function. (A λ-dot followed
by an exclamation mark constructs a total function.) These λ-abstractions are needed to
accommodate curried functions when uncurried ones are expected. As minor correctness
indication of the specification, we created two small example theorems for sorting, as
shown below:

spec ExamplePrograms = ListNoNumbers then
var a : Ord; x : a; xs : List a
fun quickSort : List a -> List a
. quickSort (Nil : List a) = Nil %(QuickSortNil)%
. quickSort (Cons x xs)

= quickSort (filter (\ y:a .! y < x) xs) ++ Cons x Nil
++ quickSort (filter (\ y:a .! notH (y < x)) xs) %(QuickSortCons)%

fun insertionSort : List a -> List a
. insertionSort (Nil : List a) = Nil %(InsertionSortNil)%
. insertionSort (Cons x xs) = insert x (insertionSort xs) %(InsertionSortConsCons)%
then %implies
. quickSort (Cons True (Cons False Nil)) = Cons False (Cons True Nil) %(Program02)%
. insertionSort (Cons True (Cons False Nil)) = Cons False (Cons True Nil) %(Program03)%

The second specification uses a new data type (Split a b) for general sorting.
The idea is to split a list into parts with at least one shorter list (given as List (List a))
plus a possible fixed part (of type b) and then rejoin the recursively sorted parts (using map)
plus the unchanged fixed part. Splitting and joining is specific for each sorting algorithm.
The general sorting function is genSort using function parameters split and join.

Below we present the generic sorting functions for the merge sort algorithm only,
with splitMergeSort and joinMergeSort being the arguments for genSort. It splits
the initial list in the middle and then merges the recursively sorted sublists. Approriate
splitting and joining functions have been also defined for quick sort, insertion sort, and
selection sort but are omitted here. (Selection sort splits off the minimum from a list and
joining is done by Cons.)



Furthermore, you see two predicates to assert properties about our function def-
initions. First, isOrdered guarantees that a list is correctly ordered after sorting; then
permutation, based on elem, delete and equality, guarantees that sorting does not
change the list’s elements. We created theorems to verify that all four sorting algorithms
produce equal results and that a result list is ordered and a permutation of the input list
(as given below for merge sort only).

spec SortingPrograms = ListWithNumbers then
var a, b : Ord;
free type Split a b ::= Split b (List (List a))
var x, y : a;

xs, ys, zs : List a;
r : b; xxs : List (List a);
split : List a -> Split a b;
join : Split a b -> List a;

fun genSort : (List a -> Split a b) -> (Split a b -> List a) -> List a -> List a
. length xs < 2 = True => genSort split join xs = xs %(GenSortF)%
. split xs = Split r xxs => genSort split join xs

= join (Split r (map (genSort split join) xxs)) %(GenSortT)%
fun splitMergeSort : List b -> Split b Unit
. splitMergeSort xs =

let (ys, zs) = splitAt (length xs div 2) xs
in Split () (Cons ys (Cons zs Nil)) %(SplitMergeSort)%

fun merge : List a -> List a -> List a
. merge Nil ys = ys %(MergeNil)%
. merge xs Nil = xs %(MergeConsNil)%
. x < y = True =>

merge (Cons x xs) (Cons y ys) = Cons x (merge xs (Cons y ys)) %(MergeConsConsT)%
. x < y = False =>

merge (Cons x xs) (Cons y ys) = Cons y (merge (Cons x xs) ys) %(MergeConsConsF)%
fun joinMergeSort : Split a Unit -> List a
. joinMergeSort (Split () (Cons ys (Cons zs Nil))) = merge ys zs %(JoinMergeSort)%
fun mergeSort : List a -> List a
. mergeSort xs = genSort splitMergeSort joinMergeSort xs %(MergeSort)%
pred isOrdered : List a
. length xs < 2 = True => isOrdered xs %(IsOrderedNil)%
. isOrdered (Cons x (Cons y ys)) <=>

y < x = False /\ isOrdered (Cons y ys) %(IsOrderedConsCons)%
pred permutation : List a * List a
. permutation (Nil : List a, Nil) %(PermutationNil)%
. permutation (Cons x xs, Cons y ys) <=> (x = y /\ permutation (xs, ys))

\/ (x elem ys /\ permutation (xs, Cons y (delete x ys))) %(PermutationConsCons)%
then %implies
var a : Ord; xs : List a;
. isOrdered (mergeSort xs) %(Theorem09)%
. permutation (xs, mergeSort xs) %(Theorem13)%

3.3. Refining the library to support lazy evaluation

In HASCASL, as in the partial λ-calculus, function application is strict. In contrast, func-
tion application in Haskell is lazy, allowing function arguments to be unevaluated and,
thus, yielding defined results on undefined arguments. Non-strict functions may be emu-
lated in a strict setting by replacing a (strict) argument type s with a partial function type
Unit →?s. For the latter type, HASCASL provides the syntactic shorthand ?s. Thus,
non-strict function types such as ?s→?t are obtained [18].

In order to convert to lazy function types, we change each type s in variable dec-
larations and arguments of corresponding function types to ?s. This applies in particular
to constructors of datatypes. For example, the List type, originally declared as:

free type List a ::= Nil | Cons a (List a)

when using strict types, should be modified to:
free type List a ::= Nil | Cons (?a) (?List a)



Although not a requisite for supporting lazy function types, we decided to move
our specifications to classical logic, in which the formula p \/ not p is provable, in
contrast to the default intuitionistic logic used by HASCASL, in which that formula is not
provable. Classical logic inherits mechanized proof support from Isabelle/HOL and may
thus simplify the verification process of our library. To use classical logic, the Bool type
was redefined to type Bool := ?Unit. As partial functions into Unit can be regarded
as predicates, with definedness corresponding to satisfaction [18], all functions over Bool
could be regarded as predicates and we could remove from our axioms and theorems
comparisons with Bool type constructors. The new specification for the Bool type, using
classical logic and lazy function types now reads:
spec Bool = %mono
type Bool := ?Unit
fun notH__ : ?Bool -> ?Bool
fun __&&__, __||__ : ?Bool * ?Bool -> ?Bool
vars x, y : ?Bool
. notH false %(NotFalse)% . not (notH true) %(NotTrue)%
. not (false && x) %(AndFalse)% . (true && x) = x %(AndTrue)%
. (x || y) = notH (notH x && notH y) %(OrDef)%
. notH x <=> not x %(NotFalse1)% %implied
. not (notH x) <=> x %(NotTrue1)% %implied
. not x <=> notH x %(notNot1)% %implied
. not (not x) <=> not (notH x) %(notNot2)% %implied

Besides supporting non-strict functions, HASCASL has a notion of executable
specification that includes general recursion and, hence, the possibility of non-
termination, in the style of a strict functional programming language. This is achieved
by changing the domain semantics of the specifications[18].

In practical terms, one must import the specification named RECURSION and use
types that are instances of the classes Cpo and Cppo, standing for complete partial order
and complete partial pointed order types, respectively. As an example, the lazy list type
(including finite lazy lists and infinite lists) can be specified as:

var a: Cpo
free domain LList a ::= Nil | Cons a ?(LList a)

General recursive function definitions using this domain semantics may be writ-
ten in HASCASL as recursive equations in the standard functional programming style,
by means of syntactic shorthands provided by HASCASL [18]. One thus obtains a strict
functional programming language, in which non-strict functions can be emulated as pre-
viously detailed.

4. Parsing Specifications and Generating Theorems with HETS

Both the HETS tool and the Isabelle theorem prover are easy to use as plugins to the emacs
text editor. Using this integration, we can write specifications with syntax highlighting
inside emacs and, then, call the HETS tool to parse the specifications and generate the
so-called development graph (showing the specification structure). From the development
graph we are able to start the Isabelle theorem prover to verify a specific node and visually
manage the proof status for all the specifications. Parsing our specifications resulted in
the graph shown in Figure 1.

As can be seen, all the dark gray nodes indicate specifications that have one or
more unproved theorems. The light gray ones either do not have theorems or all proofs are
already done. The rectangular nodes indicate imported specifications, and the elliptical



Figure 1. Initial state of the development graph.

ones indicate specifications we have written. Some nodes, such as ExamplePrograms

and SortingPrograms, are marked light gray because their proof obligations have been
moved into the preceding small circular dark gray nodes.

Verification in HETS typically starts with the automatic proof method over
the specification structure. This method analyzes the theories and directives (%mono,
%implies, etc.), calculating dependencies between proof nodes and then revealing the
hidden nodes from sub-specifications that contain proof obligations.

The next step is to verify each dark gray node. To do so, we select a dark gray
node and choose the option Prove from the HETS node menu. This allows us to select the
theorem prover to be used. At the moment, Isabelle is the only prover option for HAS-
CASL specifications. After executing the proof inside the Isabelle interface for emacs, as
described in Section 5, the status of the proof is sent back to the HETS tool. If a node



Figure 2. Later state of the development graph.

is fully proven, its color changes to light gray (and small nodes may be hidden); other-
wise, it keeps the dark gray color. There can be nodes that are proved but they lack the
consistency verification [16; 12] called for in the specification by %cons, %mono, or %def
annotations that we do not elaborate here.

In Figure 2, the nodes highlighted with black rectangles represent the specifica-
tions we verified completely.

5. Verifying Specifications with ISABELLE

The task of proving the theorems generated by our specification was a major undertaking.
We started by verifying the strict version of the library and, from a total of 17 specifica-
tions, 9 of them were completely verified and 8 of them were partially verified. Unfin-
ished proofs are usually related to the lack of support for translating constructor classes
to the HOL language or to the lack of implemented isomorphisms between types from
the CASL library and types from the HOL language. Such isomorphisms are needed to
efficiently write proofs for specifications that import types from the CASL library, such
as the numeric ones, using the extensive specific proof mechanisms already implemented



for these types in the theorem prover. The implementation of a set of type isomorphisms
is currently under way as part of the development of the HASCASL proof support.

As the support for verification of lazy specifications with the Isabelle tool is work
in progress, some specifications from the lazy version of the library, especially those ones
that make use of partiality, cannot yet be translated to the HOL language. But from the
existing 17 specifications, it was possible to fully verify the specifications for Bool, Eq,
Ord, Either and Maybe in the lazy version of the library.

Next, we indicate how we constructed proofs for theorems of the strict version of
our library using excerpts from the most interesting ones. Below, we show the proof for a
theorem from the specification Bool:

theorem NotFalse1 : "ALL (x :: Bool).
notH x = True’ = (x = False’)"
apply(auto)

apply(case_tac x)
apply(auto)
done

Next, we explain the proof script commands:

• apply (auto):
This command simplifies the actual goal automatically, and goes as deep as it
can in reductions. In this case, the command could only eliminate the universal
quantifier, and produced the result:
goal (1 subgoal):
1. !!x. notH x = True’ ==> x = False’

• apply (case tac x):
The case tac method executes a case distinction over all constructors of the data
type of the variable x. In this case, because the type of x is Bool, x was instantiated
to True and False:
goal (2 subgoals):
1. !!x. [| notH x = True’; x = False’ |] ==> x = False’
2. !!x. [| notH x = True’; x = True’ |] ==> x = False’

• apply (auto):
This time, this command was able to complete the proof automatically.
goal:
No subgoals!

One example of a proof for an Eq theorem follows. In this proof, we used the
Isabelle command simp with the modifier add, which expects a list of axioms and previ-
ously proven theorems as parameters to be used in an attempt to simplify the current goal,
in addition to a default set of axioms from the theory that the prover collects automati-
cally. If the goal cannot be reduced, the command produces an error; otherwise, a new
goal is obtained. In the case at hand, we need to add the definition of an operator; defi-
nitions are usually not included in the default simplification set to maintain encapsulation
of definitions.

theorem DiffTDef :
"ALL (x :: ’a). ALL (y :: ’a).
x /= y = True’ = (notH (x ==’ y) = True’)"

apply(auto)
apply(simp add: DiffDef)

apply(case_tac "x ==’ y")
apply(auto)
apply(simp add: DiffDef)
done

Sometimes, Isabelle required us to rewrite axioms to match goals because it cannot
change the axioms into all its equivalent forms. Such a case occurred with the theorem
%(LeTAsymmetry)%. To prove this theorem, we applied the command rule ccontr.
The command rule uses the specified rule to simplify the goal. The rule ccontr starts



a proof by contradiction. After some simplification, Isabelle stopped at a point where
application of the axiom %(LeIrreflexivity)% was needed but the original form of
the axiom did not quite fit; specifically, we arrived at:

goal (1 subgoal):
1. !!x y. [| x <’ y = True’; y <’ x = True’ |] ==> False

We needed to define an auxiliary lemma, LeIrreflContra, which Isabelle auto-
matically proved, namely:

?x <’ ?x = True’ ==> False

We applied this lemma manually, instantiating the unification variable ?x with x

using the command rule_tac x="x" in LeIrreflContra. The same tactic was used to
force the application of the axiom %(LeTTransitive)%. The command by auto was
used to finalize the proof.

lemma LeIrreflContra :
" x <’ x = True’ ==> False"

by auto

theorem LeTAsymmetry :
"ALL x. ALL y. x <’ y = True’

--> y <’ x = False’"

apply(auto)
apply(rule ccontr)
apply(simp add: notNot2 NotTrue1)
apply(rule_tac x="x" in LeIrreflContra)
apply(rule_tac y="y" in LeTTransitive)
by auto

Application of the command apply(auto) may sometimes loop. An example
of a loop occurred when proving theorems from the Maybe and Either specifications.
To avoid the loop, we applied the universal quantifier rule directly, using the command
apply(rule allI). If there were more than one quantified variable, we could use the +

sign after the rule in order to tell Isabelle to apply the command as many times as it could.
After removing the quantifiers, we manualy applied simplification again, this time – in
order to avoid the loop – using the modifier only to limit the set of axioms applied in the
reduction.

Here is a theorem from the Maybe specification exemplifying the use of some of
the mentioned commands:

theorem IMO03 : "ALL (x :: ’o).
Nothing >=’ Just(x) = False’"

apply(rule allI)
apply(simp only: GeqDef GeDef OrDef)

apply(case_tac "Just(x) <’ Nothing")
apply(auto)
done

The ListNoNumber specification has many recursive axioms and, thus, needs in-
duction rules to prove the theorems. Isabelle executes induction over a specified variable
using the command induct_tac. It expects as parameter an expression or a variable over
which to execute the induction. Below, we show an example of a proof by induction for a
theorem in ListNoNumbers.

theorem FilterProm :
"ALL f. ALL p. ALL xs.
X_filter p (X_map f xs) =

X_map f (X_filter
(X__o__X (p, f)) xs)"

apply(auto)
apply(induct_tac xs)
apply(auto)

apply(case_tac "p(f a)")
apply(auto)
apply(simp add: MapCons)
apply(simp add: FilterConsT)
apply(simp add: MapCons)
apply(simp add: FilterConsT)
done

The theorems from the specification SortingPrograms were left unproven al-
though we could prove some subgoals. We present a proof example indicating the cases
that were verified. The command prefer is used to choose which goal to prove when
operating in the Isabelle interactive mode. The command oops indicates that the proof is



to be left open and Isabelle should try the next theorem.
theorem Theorem06 : "ALL xs.
mergeSort(xs) = selectionSort(xs)"

apply(auto)
apply(case_tac xs)
apply(case_tac List)
apply(auto)
(* Proof for goal 3 *)
prefer 3
apply(simp add: MergeSort SelectionSort)
apply(simp add: GenSortF)

(* Proof for goal 2 *)
prefer 2
apply(simp add: MergeSort SelectionSort)
apply(simp add: GenSortF)
apply(simp add: MergeSort SelectionSort)
apply(case_tac "X_splitSelectionSort
(X_Cons a (X_Cons aa Lista))")
apply(case_tac "X_splitMergeSort
(X_Cons a (X_Cons aa Lista))")
oops

6. Conclusions and Future Work
In this paper, we discussed how to specify a HASCASL library based on the Prelude
library and described some application examples. We also verified the library using the
HETS tool as the parser and the Isabelle theorem prover as the verification tool. We
commented on some of the more involved aspects of the process.

We wrote two versions of a library which covers a subset of the Prelude library:
one version supporting strict types and another one supporting lazy types. Each version
is composed of 17 specifications, including data types – such as Booleans, lists, charac-
ters, string –, classes – covering almost all classes present in the Prelude library – and
functions related to these data types and classes. From the library supporting strict types
we verified 9 specifications completely and 8 of them partially. As support for translating
lazy types from HASCASL to HOL is limited at the moment, we were able to fully verify
5 specifications from the library supporting lazy types.

The specified subset can already be used to write larger specifications. We in-
cluded some example specifications involving lists and Booleans to illustrate the library
application. Our specification can serve as an example for the specification of other li-
braries and, also, as documentation about the process of writing specifications in the HAS-
CASL framework.

Our library can be extended in several ways. One can write new maps between
CASL data types and their equivalent versions in the HOL language, allowing verification
of numeric functions from the Prelude library. Another extension could be the specifica-
tion of other data types accepted by some Haskell compilers that are not specified in the
Prelude library, such as more sophisticated data structures. With more data types spec-
ified, more realistic examples could be created to serve as examples of more practical
verifications.
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