How far is SLAM from a linear least squares problem?
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Abstract—Most people believe SLAM is a complex nonlin- CONVERGENCE OFGAUSS-NEWTON ALGORITHM FORSLAM WITH

ear estimation/optimization problem. However, recent research

shows that some simple iterative methods based on linearization DIFFERENT INITIAL STATES

can sometimes provide surprisingly good solutions to SLAM

without being trapped into a local minimum. This demonstrates data set covanance odometry | zero | random
that hidden structure exists in the SLAM problem that is yet to DLR changed to identity matriy ___ Yes Yes No
be understood. In this paper, we first analyze how far SLAM DLR original Yes No No
is from a convex optimization problem. Then we show that VicPark || changed to identity matri{  Yes Yes Yes
by properly choosing the state vector, SLAM problem can be VicPark original No No No

formulat.ed as a nonllnegr Igast squares problgm with many odometry: initial states from odometry/first observations

quadratic terms in the objective function, thus it is clearer how  _.o- initial states are all zeros

far SLAM is from a linear least squares problem. Furthermore,  random: initial states are randomly given

we explain that how the map joining approaches reduce the For Victoria Park data set, the state contains 6898 pose2@dideatures

nonlinearity/nonconvexity of the SLAM problem. For DLR data set, the state contains 3297 poses and 539dsatur
‘Yes’ means the algorithm converges to the correct solution
I. INTRODUCTION ‘No’ means the algorithm does not converge to the correcttisolu

Simultaneous Localization and Mapping (SLAM) has been
investigated by robotic researchers for more thanyears , .
[1]. Although many SLAM algorithms have been developedCOnverge to the correct solution. On the_other hand_, linear
most of them treated SLAM as a high dimensional nonlinleast squares problems have quadratic objective functiods
ear estimation/optimization problem. The sparseness ef tffan be solved in one step without the need of a good initial
information matrix in different SLAM formulations is now Valué. Thus, the above phenomenon shows that SLAM is a
well understood and exploited thoroughly (e.g. [2][3][4ut  VETY special nonlinear optimization problem that is close t
the underlying structure of nonlinearity has not been fully? linear least squares problem in some way. .
understood yet. This paper tries to explain how far SLAM is from a linear

For point feature based SLAM problem, our initial in-least squares problem. We first perform some analysis on the
vestigation has shown some interesting phenomenon whefnvexity of SLAM problem. Then we show that by using
a simple Gauss-Newton algorithm is applied to solve thi€ relative information as state vector, the quadratic ad
SLAM as an optimization problem. For both the Victorianon-quadratic part are clearly distinguished in the object
Park data set [5] and the DLR-Spatial-Cognition data sdtnction. Moreover, using map joining, the quadratic part i
[6], the algorithm can converge with very poor initial val-more significant as compared with the non-quadratic part.
ued. However, these “magic’ convergence happen when The paper is organized as follows. Section Il provides
the covariances of observations and odometries are setS@Me notations used in this paper and states the feature
be identity matrices but not for the original covariancd?@sed full SLAM problem. Section Il explains the details of
matrices. See Table | for details. Of course, the solution ¢he traditional least squares SLAM formulation. In Section
using identity covariance matrix and that using the origindV, the convexity of the traditional least squares SLAM is
covariance are (slightly) different, as shown in Figure 1. @nalyzed. Section V proposes the new least squares SLAM

It is well known that a high dimensional nonlinear Op_formulation using relative state vector. In Section VI, the
timization problem can have a lot of local minima and sdvantages of using map joining strategy is explained. Sec-

good initial value is critical for an Optimization a|gon"t‘hto tion VIl discusses the related work. F|na”y, Section VIII
concludes the paper.
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€ wof B. Point feature based SLAM problem
50 Suppose there ar& point featuresf,--- , fy that are
ol opserved from a sequencepf-1 rebot poses, 1, -+ ;7
with the total number of observatioms. Figure 2 shows an
-80f example of this scenario withh = 3, p = 4, andm = 5.
100 R S S S S S S In SLAM, there are two kinds of information. Odometry
e ooy e e mo information is the relative pose between two consecutive
- _ poses. Observation information is the relative position of
() The Victoria Park data seti898 vehicle poses and99 the observed feature with respect to the pose where the
feature positions. Circle — feature estimate using iderddy . .
variance, dot — feature estimate using original covariance observation is made.
In this paper, we usé?z to denote the observation made
3op from poser; to featurefj We useO] la<j<pto

denote the odometry information between pose; and
pose r;, PZL and Pp; are the corresponding covariance
matrices of the observation and odometry noises. Here the
noises are assumed to be zero-mean Gaussian.

In Figure 2, there ard odometries and observations.
Using the notations in Section 1I-A, odometries are the
measurements of
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Observations are the measurements of:

K @5 i) @) @ yg), (v (g g (7)

(b) The DLR data set3297 robot poses and39 feature
positions. Circle — feature estimate using identity covaréa
dot — feature estimate using original covariance

Fig. 1.  The least squares SLAM results with original and fdgn ¥
covariance matrix
Vo
The following notations are used in this paper to make " - \\‘zﬂ

clear what coordinate frames are used.

X}”f = ( ,y ) — thez, y position of featuref; in the
(coordlnate) frame defined by posg

Xy=(z 7n)_,y,qj) — thez, y position of robot pose; in ~
the (coordinate) frame defined by pose

¢;i — the orientation of pose; in the (coordinate) frame
defined by pose;.

R — the rotation matrix of the posg in the (coordinate)

frame defined by pose;.

Note thatX ' and X+ are both two dimensional vectors.  The full least squares SLAM formulation [3] is to use
¢y isa scalar and?;: is a two by two orthogonal matrix. tne odomety and observation information to estimate all the

Some basic equations describing the relationship amoRghot poses and all the feature positions.
the above variables are given below.

For anyi, j, k, [1l. TRADITIONAL LEAST SQUARESSLAM

Fig. 2. The SLAM problem withs poses3 features and observations

A. State vector
1)

Traditional least squares SLAM uses the robot poses and
X=X+ REX. (2) the feature positions with respect to robot pesgas the state

Xp =X+ REXY.

k



(a) The absolute state vector used in traditional leastregua
SLAM

(b) The relative state vector proposed in this paper

Fig. 3. Different state vectors can be used in SLAM

C. Odometry information functioff 7 (X)
From the basic equations (2), (4), and (5), the odometry in-

formation function is a function of two poséXy° . ¢° )
and (X0, ¢70) and is given by '
Tji—1
HOI(X) = {Xﬁl
: (10)

_ DT (XD —X70)
To

o
Tj—1

p%m

D. Observation information functiofl %; (X (X)

The observation is a function of one pasE,?, ¢;°) and
one feature positiorX’ ”j and is given by
HZ (X)

= X} = (R(op)" (X0

IV. How FAR ISSLAM FROM BEING CONVEX?

A. Definition of convex function
A function f : R™ — R is convex, if for anyz,y € R",

e+ (1=Ny) < Af(z)+(1=A)[(y), YA e (0,1). (12)

It is important that a convex function cannot have local
minima, since otherwise the connection between two of them
would be even smaller by (12).

The surprising convergence result in Table | motivates us
to investigate the convexity of the SLAM problem. Figure
4 illustrates the functio(AX + (1 — A)Y) in (9) for five
random pairs of state¥, Y with A ranging from0 to 1. The
figures indicate that the functioR(X) in (9) is not far from
being convex for both the Victoria Park data set and DLR
data set.

- X;0). (11)

B. Convexity analysis of a single feature observation

vector. Using the notations in Section II-A, the state vecto We consider a single feature observaticii and the

is 2

X:(XT07¢ 7X:Sa¢:gaX;?a (8)

T1?

X7,

An example of the state vector is illustrated in Figure 3(a).

B. Least squares formulation

The full SLAM formulation is to minimize [3]

p
= 0] - HOPRHO) - HOU X))

Jz
9)

where the state variabl¥ is given in (8), OJ ta<j<p
are odometriesZ} are observations, anﬂoj and Py are
the correspondlng covariance matrices. '

In the above least squares SLAM formulatiafiZ: (X)
and H%7 (X) are the corresponding functions relatiﬁg and

~H%(X — H% (X))

X)) P, (2]

05—1 to the stateX, most of them are nonlinear functions.

2To simplify the notation, sometimes the transpose is omitted.

corresponding term in (9). We assurﬁ’gl =1 and define

0= X'? - X0 (13)
and omit the indices for brevity. From (11), one term of the

Objective function related to observatighis

f(6,6) = [Z—R()"6]"[Z—-R($)"0] (14)
= |Z-R(¢)"6|? (15)
|R(¢)Z — 6] (16)

This form is remarkable, because unlike the original form
it contains no product of state variables and the only non-
linearity comes from the sines and cosinesA(). This
simplification works only for spherical covariance, which
explains, why these apparently help convergence in Table
| and TORO [7].

Now we denote

¢=co+¢

where ¢, is the estimated value o (e.g. obtained from
odometry) and¢ is the error on the estimation. Then we
have

f(9,9)

7

|R(9)R(¢0)Z — 6° = |R(9)Z — 6

(18)



(a) The Victoria Park data witlib) The Victoria Park data with
identity covariance matrix (state deriginal covariance matrix (state di-
mension21292) mension21292)

x10* x10"

\

(c) The DLR data with identityd) The DLR data with original
covariance matrix (state dimensi@movariance matrix (state dimension
10969 10969)

Fig. 4. Near convexity of the SLAM problenf' (AX + (1 — \)Y
for five random pairs of stateX, Y with A\ ranging fromo0 to 1.

) in (9)

with Z =

defined byrg. A
Further denoteZ = [z,, z,]7,
a function of three variables

£(6,6:,0,) = [R($)Z -] (19)
= (2,086 — z,5md—4,)%  (20)
+(2z8in ¢ + 2, cos g — §,)%  (21)

It is easy to prove that the functioﬁ(q@@m,éy) is not
convex. But it can be seen clearly that wheifthe error of

R(¢o)Z. Note here thatZ is the relative posi-
tion (approximately) transferred into the coordinate eyst

§ = [64,0,]", then we get

A. Least squares formulation

Using the new state vector, the least squares problem
becomes to minimize

P
Z(O] - H:)e]l(X'rel))TP (O - H:'jel (Xrel))
j=1
7 z} — i A
+Z<ZJ o Hre]l (XTGZ))TPZ;(ZJ' - H,-e]l(Xrel»
,J

(23)
where X,..; is defined in (22). For this formulation, all the
functions H%%(X,.;) and part of the functionﬂijl(X,,Ael)

rel
are simple linear functions. Using this new formulation,
the quadratic part and non-quadratic part of the objective

function are clearly distinguished.

B. Odometry information functlorﬁ{rel (Xrel)
Since relative pos€ X’ ', ¢,7 ') is part of the state
vector, the odometry function is a very simple linear fuoiti
HO] (Xrel) -

’I‘jfl)
rel Tj .

(X7, (24)

C. Observation functlorH

rel
When the feature is observed first time, the observation

function is also a very simple linear function. In fact, for

observation made from,,; to f;, the observation function

( re1) for first observations

—
zZ. 7 Tm

HZ (Xpa) = X[ (25)

D. Observation funcuorHTel( X,er) for subsequent obser-
vations

When the feature is observed second (or more) time, the
observation function depends on when the same feature was
observed first time. It is a function of a number of odometry
and its first observation given by

Zi r Tm; T

H,o(Xpet) = X3 = (R(¢r; ))T(Xf-

J

— X, (26)

robot orientation) is close to zero, the function is close@to \ynere

guadratic thus convex function.

Moreover, when considering the sum of the terms, the ¢rm 2

T - T +1
J J
¢T7‘n,j+1 + (bT’mj +2

non-convexity of the feature observations can probably be
compensated by convexity in other terms of (9) in particular T i o _—
in the linear orientation part of odometry (10). More work Pri’ = Praga T et O+ O

is necessary to further investigate the near-convexityhef t

objective function (9).

V. A NEW STATE VECTOR FOR LEAST SQUARESLAM

In this paper, we propose to use a state vector as “relative”

as possible in SLAM. The new state vector is given by

Tp— Tp—
Xrel = A()?g:m?; QS:??);;%mNTI ,Xr;) 17 'ri 1, (22)
o0 fn )

Herer,, (1 < j < p) is the robot pose when the featufie
is first observed Note here that it is possible that = r,,,

for somei # j. An example of the state vector is |Ilustrated

in Figure 3(b).

(27)
and
""WL]- Tm, ' Tm ; Tm,j +1
Xri, ’ = XT"m 1 +R(¢1‘m +1)X7"m,j+2
Tm T'm 2
((;srm +2) Tm IS (28)
+ -
+R(¢n DX
Using the fact tha?(6; + 62) = R(61)R(62), we have
X:Tnj
T}rn,j T Tmj+1 m+1
= XTm‘+1 + R(¢ij+1)[XTm 42 +R(¢Tm +z) (29)

m;+2

.(XT77L;+3 + tee + R( :Z—?)X:: 1)],



E. Pros and cons of the new state vector and w; is the zero-mean Gaussian “observation noise”

H iv i@L s _
The only nonlinear part of the objective function in (23)whosTe covanance)matrlx & (whenj =1, X0 =
70 j—

is the subsequent observations to features as shown in (2@).0] s Oy, =0
The two major advantages by using relative state vector SO the problem of fusing local magsto k is to estimate
as comparing to using absolute state vector are: (i) tHBe global stateX;.;, using all the local map information
odometry information function is completely linear; (ipe (31) for j =1,--- k. This problem can be formulated as a
nonlinearity of the observation function now depends on th€ast squares problem. That is, findig,;, to minimize
accumulated robot orientation error from the robot posenwhe .
the feature is first obseryed to the current pose, instead OE(X]L _ Hj(onm))T(PjL)*l(XjL — Hj(Xjoin)). (32)
the accumulated robot orientation error form the first pose t =
the current pose. So the accumulated error and the potential o ] )
nonlinearity/nonconvexity is reduced. C. Map joining using relative state vector

The side effect of this new state vector is that the in- Relative state vector can also be used in the map joining
formation matrix is not as sparse as that of the originatep. The state vector is given by
formulation, especially when there are a lot of loop closure

H i H H H X'oin rel — (XTO ) 70 aXTlev Tley T 7X77:;£k_1)67
in the robot trajectory. This may increase the computationa “"7°"™ POLe) e The gy e T2 e
cost of solving the least squares problem (23). Pric Xy Xy ) (33)

VI. WHAT IS THE ADVANTAGE OF USING MAP JOINING? ~ Wherer,, . is the robot end pose of local map; if f; is
. I first observed in local map:; + 1.
Recently we have shown in [11] that map joining problem Supposef;1,--- , f, are first observed in some previous

can be formulated as an optimization problem where eagh ., maps whilef, 1), - . f; are first observed in local

local map is reggrded as an mte_:gratgd _observatl_o n. We w apj, then the local map information can be expressed as
show that by doing so, the nonlinearity involved is reduce

Signiﬁcantly' XJL - ijrel(onin,rel) + wy (34)
A. Reduced nonlinearity in local map building where
When small local maps are built by least squares approach, X:;g*“f'
the nonlinearity involved is less than that of building agkar :5-";_1)6
map. This is due to the smaller accumulated error of the R(on™" )X — X" )
robot poses as shows(? in (11) andg,,” in (26). G=he R 0 (e
B. Map joining using absolute state vector Hj ret(Xjoin,ret) = Tmjy e Ty Tm e
Pl 9 g ! ! R((b"(jll)e)(Xfﬂ — X'r'(jjl)e)
Suppose there ark local maps. The state vector of Iter- G-
ative Sparse Local Submap Joining (I-SLSJF) [11] contains fj(_l“)
all the feature positions and robot end poses of each local :
map: Jomne
X' . _ (X’ro ¢T0 .. X’I“U 70 X’l‘o .. XTO ) (30) ) i ‘ . . (35)
Join = A Trier " Prge Tryer S f10 7T 0 N andw; is the zero-mean Gaussian “observation noise” whose

covariance matrix i/
So the problem of fusing local magsto k is to find the
Fptate Xjoin,rer t0 minimize

wherer;. is the robot end pose of local mgp(1 < j < k).
Suppose local mag is given by (X[, P") as in a
traditional EKF SLAM. Also suppose the features involve

in local mapj are f;i,---, fin, then the local map state x
estln_]aterL. can be regarded as an observation of the trUE(XjL—Hj,rez(onm,rez))T(Pf)_l(Xf—Hj(onm,rez))-
relative positions from the robot start po&ge | ¢y =1
to the featuresX}°,---,X[° and the robot end pose (36)
Xro ¢ . Thatis,’ "
rjer Orie atis, D. Advantages of map joining
X]L = H;(Xjoin) +w; (31) Using map joining, not only the number of poses but
h also the degree of nonlinearity are significantly reduced.
where Especially when the relative state vector is used, it can be
R( :?j,l)e)(X:fe — X;’fjfl)e) seen from (35) that the non-quadratic part is very smally(onl
ro :?_ N for f;, to f;,). This significantly reduce the nonconvexity of
Jje j—1)e . .
Hy(Xj0mm) = R(g70 | (X} — X0 ) the problem. Moreover, the density of non-zero elements in

fi T(j—1)e

the information matrix is small as compared with that of a
! single map SLAM using relative state vector, because the
R, X — X0 ) loop closing only take place at the local map level.

T(i—1)e T(G—1e



VIl. RELATED WORK AND DISCUSSIONS

The results in this paper clearly show that SLAM is a

A few years back, the work by Olson et. al [8] Surprisedspecial o.ptimi.zation problem. T.he analysis of_the conyexit
many SLAM researchers including us. How come stochast@Nd nonlinearity helps to explain some unbelievable result
gradient approach works so well for SLAM? The Tree-baself SLAM. Further more rigorous investigation of the un-
network optimizer (TORO) algorithm by Grisetti et. al [7] derlining special structure in SLAM is necessary and will
further demonstrated very promising results where veyelar Penefit SLAM community significantly. For example, more
scale problems can be solved very efficiently without thgfflCle.nt and rehab}e SLAM algorithms could be develope.d
need of good initial values. Especially when the covarianc®y Using the special structure of the problem. The work in
matrix of the relative pose is close to spherical [9]. Thisima these directions is underway.

us more curious about the special underlining structure of
SLAM. SLAM must be a very special optimization problem! 1]

Rizzini is probably another researcher who has noticed thié
fact and investigated into it [12]. In his work, he focused on
the trajectory based SLAM and aimed at finding closed-form2!
solutions of stationary points (local minima). In our work,
we are trying to prove the near convexity of feature baseds3]
SLAM problem, which we believe to be more general than
the trajectory based SLAM problem.

The initial analysis on the convexity in this paper confirms[4]
that the accumulated orientation error is a key factor that
governing the nonlinearity and nonconvexity of the SLAM g
problem. This is coincide with some recent research [13][14
where robot orientation error is shown to be the main cause
of SLAM inconsistency. The benefit of having spherical [6]
covariances is due to the cancellation of highly nonlinear
terms introduced byR(¢) as shown in (16). This explains
why TORO can only performs well and why both the 7
Victoria Park data and the DLR data set have the “magic”
convergence property, all with spherical covariances.

The use of relative state vector in SLAM is not new. g
For example, it is shown in [9] that using a relative state
vector makes the proposed constraint network optimizating]
algorithm perform extremely well. Relative state vectos ha
also been used in D-SLAM [16]. In [17], relative robot pose
estimate is proposed to be used as a performance meirlig]
to compare different trajectory based SLAM algorithm. S
why not directly using relative poses as state vector in thig1]
estimation/optimization?

In [10], SLAM was described as “Certainty of relations
despite uncertainty in positions”. If relative state vecto
(relation) is used, then the SLAM problem becomes morg?2!
“certain”. After a good and consistent estimate of the “rela
tions” is obtained, to compute the “positions” is trivial.

Map joining has already been demonstrated to be an effi-3]
cient strategy for large-scale SLAM [4]. It is also commehte
that map joining can reduce linearization error [15]. This
paper further confirms this by showing how the nonlinearity14!
and nonconvexity is reduced by using map joining.

15
VIIl. CONCLUSIONS ANDFUTURE WORKS [15]

This paper provides some evidence of the underlining spe-
cial structure of feature based SLAM problems. Some initighg;
analysis on the convexity of SLAM problem is performed.
The non-quadratic terms of SLAM optimization problem is
further clearly distinguished by using a relative statetoec [17]
Moreover, how map joining can reduce the nonconvexity and
nonlinearity is clearly explained.
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