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Abstract— Most people believe SLAM is a complex nonlin-
ear estimation/optimization problem. However, recent research
shows that some simple iterative methods based on linearization
can sometimes provide surprisingly good solutions to SLAM
without being trapped into a local minimum. This demonstrates
that hidden structure exists in the SLAM problem that is yet to
be understood. In this paper, we first analyze how far SLAM
is from a convex optimization problem. Then we show that
by properly choosing the state vector, SLAM problem can be
formulated as a nonlinear least squares problem with many
quadratic terms in the objective function, thus it is clearer how
far SLAM is from a linear least squares problem. Furthermore,
we explain that how the map joining approaches reduce the
nonlinearity/nonconvexity of the SLAM problem.

I. I NTRODUCTION

Simultaneous Localization and Mapping (SLAM) has been
investigated by robotic researchers for more than10 years
[1]. Although many SLAM algorithms have been developed,
most of them treated SLAM as a high dimensional nonlin-
ear estimation/optimization problem. The sparseness of the
information matrix in different SLAM formulations is now
well understood and exploited thoroughly (e.g. [2][3][4]), but
the underlying structure of nonlinearity has not been fully
understood yet.

For point feature based SLAM problem, our initial in-
vestigation has shown some interesting phenomenon when
a simple Gauss-Newton algorithm is applied to solve the
SLAM as an optimization problem. For both the Victoria
Park data set [5] and the DLR-Spatial-Cognition data set
[6], the algorithm can converge with very poor initial val-
ues1. However, these “magic” convergence happen when
the covariances of observations and odometries are set to
be identity matrices but not for the original covariance
matrices. See Table I for details. Of course, the solution of
using identity covariance matrix and that using the original
covariance are (slightly) different, as shown in Figure 1.

It is well known that a high dimensional nonlinear op-
timization problem can have a lot of local minima and a
good initial value is critical for an optimization algorithm to
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TABLE I

CONVERGENCE OFGAUSS-NEWTON ALGORITHM FORSLAM WITH

DIFFERENT INITIAL STATES

data set covariance odometry zero random
DLR changed to identity matrix Yes Yes No
DLR original Yes No No

VicPark changed to identity matrix Yes Yes Yes
VicPark original No No No

odometry: initial states from odometry/first observations
zero: initial states are all zeros
random: initial states are randomly given
For Victoria Park data set, the state contains 6898 poses and299 features
For DLR data set, the state contains 3297 poses and 539 features
‘Yes’ means the algorithm converges to the correct solution
‘No’ means the algorithm does not converge to the correct solution

converge to the correct solution. On the other hand, linear
least squares problems have quadratic objective functionsand
can be solved in one step without the need of a good initial
value. Thus, the above phenomenon shows that SLAM is a
very special nonlinear optimization problem that is close to
a linear least squares problem in some way.

This paper tries to explain how far SLAM is from a linear
least squares problem. We first perform some analysis on the
convexity of SLAM problem. Then we show that by using
the relative information as state vector, the quadratic part and
non-quadratic part are clearly distinguished in the objective
function. Moreover, using map joining, the quadratic part is
more significant as compared with the non-quadratic part.

The paper is organized as follows. Section II provides
some notations used in this paper and states the feature
based full SLAM problem. Section III explains the details of
the traditional least squares SLAM formulation. In Section
IV, the convexity of the traditional least squares SLAM is
analyzed. Section V proposes the new least squares SLAM
formulation using relative state vector. In Section VI, the
advantages of using map joining strategy is explained. Sec-
tion VII discusses the related work. Finally, Section VIII
concludes the paper.

II. PRELIMINARIES

In this paper, different coordinate frames need to be clearly
distinguished. So some special notations are used.

A. Notations

Suppose there is a sequence of 2D robot poses
r0, r1, r2, · · · and a number of 2D point featuresf1, f2, · · ·
in the environments. Normally the first robot pose (poser0)
is chosen as the origin of the global coordinate frame.
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(a) The Victoria Park data set:6898 vehicle poses and299
feature positions. Circle – feature estimate using identityco-
variance, dot – feature estimate using original covariance
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(b) The DLR data set:3297 robot poses and539 feature
positions. Circle – feature estimate using identity covariance,
dot – feature estimate using original covariance

Fig. 1. The least squares SLAM results with original and identity
covariance matrix

The following notations are used in this paper to make
clear what coordinate frames are used.

Xri

fj
= (xri

fj
, yri

fj
)T – thex, y position of featurefj in the

(coordinate) frame defined by poseri.
Xri

rj
= (xri

rj
, yri

rj
)T – thex, y position of robot poserj in

the (coordinate) frame defined by poseri.
φri

rj
– the orientation of poserj in the (coordinate) frame

defined by poseri.
Rri

rj
– the rotation matrix of the poserj in the (coordinate)

frame defined by poseri.
Note thatXri

fj
andXri

rj
are both two dimensional vectors.

φri
rj

is a scalar andRri
rj

is a two by two orthogonal matrix.
Some basic equations describing the relationship among

the above variables are given below.
For anyi, j, k,

Xri

fk
= Xri

rj
+ Rri

rj
X

rj

fk
. (1)

Xri
rk

= Xri
rj

+ Rri
rj

Xrj
rk

. (2)

Rri
rk

= Rri
rj

Rrj
rk

. (3)

φri
rk

= φri
rj

+ φrj
rk

. (4)

Rri
rj

= R(φri
rj

) =

[

cos φri
rj

− sin φri
rj

sinφri
rj

cos φri
rj

]

. (5)

B. Point feature based SLAM problem

Suppose there areN point featuresf1, · · · , fN that are
observed from a sequence ofp+1 robot posesr0, r1, · · · , rp

with the total number of observationsm. Figure 2 shows an
example of this scenario withN = 3, p = 4, andm = 5.

In SLAM, there are two kinds of information. Odometry
information is the relative pose between two consecutive
poses. Observation information is the relative position of
the observed feature with respect to the pose where the
observation is made.

In this paper, we useZi
j to denote the observation made

from poseri to featurefj . We useO
j−1
j (1 ≤ j ≤ p) to

denote the odometry information between poserj−1 and
pose rj , PZi

j
and POj are the corresponding covariance

matrices of the observation and odometry noises. Here the
noises are assumed to be zero-mean Gaussian.

In Figure 2, there are4 odometries and5 observations.
Using the notations in Section II-A, odometries are the
measurements of

(xr0
r1

, yr0
r1

, φr0
r1

), (xr1
r2

, yr1
r2

, φr1
r2

), (xr2
r3

, yr2
r3

, φr2
r3

), (xr3
r4

, yr3
r4

, φr3
r4

)
(6)

Observations are the measurements of:

(xr0

f1
, yr0

f1
), (xr1

f2
, yr1

f2
), (xr2

f2
, yr2

f2
), (xr3

f3
, yr3

f3
), (xr4

f1
, yr4

f1
) (7)
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Fig. 2. The SLAM problem with5 poses,3 features and5 observations

The full least squares SLAM formulation [3] is to use
the odomety and observation information to estimate all the
robot poses and all the feature positions.

III. T RADITIONAL LEAST SQUARESSLAM

A. State vector

Traditional least squares SLAM uses the robot poses and
the feature positions with respect to robot poser0 as the state
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(b) The relative state vector proposed in this paper

Fig. 3. Different state vectors can be used in SLAM

vector. Using the notations in Section II-A, the state vector
is 2

X = (Xr0
r1

, φr0
r1

, · · · ,Xr0
rp

, φr0
rp

,Xr0

f1
, · · · ,Xr0

fN
). (8)

An example of the state vector is illustrated in Figure 3(a).

B. Least squares formulation

The full SLAM formulation is to minimize [3]

F (X) =

p
∑

j=1

(Oj−1
j − HOj(X))T P−1

Oj (Oj−1
j − HOj(X))

+
∑

i,j

(Zi
j − HZi

j (X))T P−1
Zi

j

(Zi
j − HZi

j (X))

(9)
where the state variableX is given in (8),Oj−1

j (1 ≤ j ≤ p)
are odometries,Zi

j are observations, andPOj and PZi
j

are
the corresponding covariance matrices.

In the above least squares SLAM formulation,HZi
j (X)

andHOj(X) are the corresponding functions relatingZi
j and

O
j−1
j to the stateX, most of them are nonlinear functions.

2To simplify the notation, sometimes the transpose is omitted.

C. Odometry information functionHOj(X)

From the basic equations (2), (4), and (5), the odometry in-
formation function is a function of two poses(Xr0

rj−1
, φr0

rj−1
)

and (Xr0
rj

, φr0
rj

) and is given by

HOj(X) =

[

X
rj−1
rj

φ
rj−1
rj

]

=

[

(R(φr0
rj−1

))T (Xr0
rj

− Xr0
rj−1

)

φr0
rj

− φr0
rj−1

]

.

(10)

D. Observation information functionHZi
j (X)

The observation is a function of one pose(Xr0
ri

, φr0
ri

) and
one feature positionXr0

fj
and is given by

HZi
j (X) = Xri

fj
= (R(φr0

ri
))T (Xr0

fj
− Xr0

ri
). (11)

IV. H OW FAR IS SLAM FROM BEING CONVEX?

A. Definition of convex function

A function f : R
n → R is convex, if for anyx, y ∈ R

n,

f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y), ∀λ ∈ (0, 1). (12)

It is important that a convex function cannot have local
minima, since otherwise the connection between two of them
would be even smaller by (12).

The surprising convergence result in Table I motivates us
to investigate the convexity of the SLAM problem. Figure
4 illustrates the functionF (λX + (1 − λ)Y ) in (9) for five
random pairs of statesX,Y with λ ranging from0 to 1. The
figures indicate that the functionF (X) in (9) is not far from
being convex for both the Victoria Park data set and DLR
data set.

B. Convexity analysis of a single feature observation

We consider a single feature observationZ
j
i and the

corresponding term in (9). We assumePZi
j

= I and define

δ = Xr0

fj
− Xr0

ri
(13)

and omit the indices for brevity. From (11), one term of the
objective function related to observationZ is

f(φ, δ) = [Z − R(φ)T δ]T [Z − R(φ)T δ] (14)

= |Z − R(φ)T δ|2 (15)

= |R(φ)Z − δ|2 (16)

This form is remarkable, because unlike the original form
it contains no product of state variables and the only non-
linearity comes from the sines and cosines inR(φ). This
simplification works only for spherical covariance, which
explains, why these apparently help convergence in Table
I and TORO [7].

Now we denote
φ = φ0 + φ̃ (17)

where φ0 is the estimated value ofφ (e.g. obtained from
odometry) andφ̃ is the error on the estimation. Then we
have

f(φ̃, δ) = |R(φ̃)R(φ0)Z − δ|2 = |R(φ̃)Ẑ − δ|2 (18)
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(a) The Victoria Park data with
identity covariance matrix (state di-
mension21292)
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(b) The Victoria Park data with
original covariance matrix (state di-
mension21292)

0 0.2 0.4 0.6 0.8 1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

6

c
h

i 
s
q

u
a

re
 e

rr
o

r

lambda

(c) The DLR data with identity
covariance matrix (state dimension
10969
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(d) The DLR data with original
covariance matrix (state dimension
10969)

Fig. 4. Near convexity of the SLAM problem:F (λX +(1−λ)Y ) in (9)
for five random pairs of statesX, Y with λ ranging from0 to 1.

with Ẑ = R(φ0)Z. Note here thatẐ is the relative posi-
tion (approximately) transferred into the coordinate system
defined byr0.

Further denotêZ = [zx, zy]T , δ = [δx, δy]T , then we get
a function of three variables

f(φ̃, δx, δy) = |R(φ̃)Ẑ − δ|2 (19)

= (zx cos φ̃ − zy sin φ̃ − δx)2 (20)

+(zx sin φ̃ + zy cos φ̃ − δy)2 (21)

It is easy to prove that the functionf(φ̃, δx, δy) is not
convex. But it can be seen clearly that whenφ̃ (the error of
robot orientation) is close to zero, the function is close toa
quadratic thus convex function.

Moreover, when considering the sum of the terms, the
non-convexity of the feature observations can probably be
compensated by convexity in other terms of (9) in particular
in the linear orientation part of odometry (10). More work
is necessary to further investigate the near-convexity of the
objective function (9).

V. A NEW STATE VECTOR FOR LEAST SQUARESSLAM

In this paper, we propose to use a state vector as “relative”
as possible in SLAM. The new state vector is given by

Xrel = (Xr0
r1

, φr0
r1

,Xr1
r2

, φr1
r2

, · · · ,X
rp−1
rp , φ

rp−1
rp ,

X
rm1

f1
, · · · ,X

rmN

fN
).

(22)

Herermj
(1 ≤ j ≤ p) is the robot pose when the featurefj

is first observed. Note here that it is possible thatrmi
= rmj

for somei 6= j. An example of the state vector is illustrated
in Figure 3(b).

A. Least squares formulation

Using the new state vector, the least squares problem
becomes to minimize

p
∑

j=1

(Oj−1
j − H

Oj
rel(Xrel))

T P−1
Oj (Oj−1

j − H
Oj
rel(Xrel))

+
∑

i,j

(Zi
j − H

Zi
j

rel(Xrel))
T P−1

Zi
j

(Zi
j − H

Zi
j

rel(Xrel))

(23)
whereXrel is defined in (22). For this formulation, all the

functionsH
Oj
rel(Xrel) and part of the functionsH

Zi
j

rel(Xrel)
are simple linear functions. Using this new formulation,
the quadratic part and non-quadratic part of the objective
function are clearly distinguished.

B. Odometry information functionHOj
rel(Xrel)

Since relative pose(Xrj−1
rj , φ

rj−1
rj ) is part of the state

vector, the odometry function is a very simple linear function

H
Oj
rel(Xrel) = (Xrj−1

rj
, φrj−1

rj
). (24)

C. Observation functionH
Zi

j

rel(Xrel) for first observations

When the feature is observed first time, the observation
function is also a very simple linear function. In fact, for
observation made fromrmj

to fj , the observation function
is

H
Z

mj

j

rel (Xrel) = X
rmj

fj
. (25)

D. Observation functionH
Zi

j

rel(Xrel) for subsequent obser-
vations

When the feature is observed second (or more) time, the
observation function depends on when the same feature was
observed first time. It is a function of a number of odometry
and its first observation given by

H
Zi

j

rel(Xrel) = Xri

fj
= (R(φ

rmj
ri ))T (X

rmj

fj
− X

rmj
ri ) (26)

where

φ
rmj
rmj+2 = φ

rmj
rmj+1 + φ

rmj+1

rmj+2

...
φ

rmj
ri = φ

rmj
rmj+1 + φ

rmj+1

rmj+2 + · · · + φ
ri−2
ri−1 + φ

ri−1
ri

(27)
and

X
rmj
ri = X

rmj
rmj+1 + R(φ

rmj
rmj+1)X

rmj+1

rmj+2

+R(φ
rmj
rmj+2)X

rmj+2

rmj+3

+ · · ·

+R(φ
rmj
ri−1)X

ri−1
ri .

(28)

Using the fact thatR(θ1 + θ2) = R(θ1)R(θ2), we have

X
rmj
ri

= X
rmj
rmj+1 + R(φ

rmj
rmj+1)[X

rmj+1

rmj+2 + R(φ
rmj+1

rmj+2)

·(X
rmj+2

rmj+3 + · · · + R(φ
ri−2
ri−1)X

ri−1
ri )].

(29)



E. Pros and cons of the new state vector

The only nonlinear part of the objective function in (23)
is the subsequent observations to features as shown in (26).
The two major advantages by using relative state vector
as comparing to using absolute state vector are: (i) the
odometry information function is completely linear; (ii) the
nonlinearity of the observation function now depends on the
accumulated robot orientation error from the robot pose when
the feature is first observed to the current pose, instead of
the accumulated robot orientation error form the first pose to
the current pose. So the accumulated error and the potential
nonlinearity/nonconvexity is reduced.

The side effect of this new state vector is that the in-
formation matrix is not as sparse as that of the original
formulation, especially when there are a lot of loop closure
in the robot trajectory. This may increase the computational
cost of solving the least squares problem (23).

VI. W HAT IS THE ADVANTAGE OF USING MAP JOINING?

Recently we have shown in [11] that map joining problem
can be formulated as an optimization problem where each
local map is regarded as an integrated observation. We will
show that by doing so, the nonlinearity involved is reduced
significantly.

A. Reduced nonlinearity in local map building

When small local maps are built by least squares approach,
the nonlinearity involved is less than that of building a large
map. This is due to the smaller accumulated error of the
robot poses as shownφr0

ri
in (11) andφ

rmj
ri in (26).

B. Map joining using absolute state vector

Suppose there arek local maps. The state vector of Iter-
ative Sparse Local Submap Joining (I-SLSJF) [11] contains
all the feature positions and robot end poses of each local
map:

Xjoin = (Xr0
r1e

, φr0
r1e

, · · · ,Xr0
rke

, φr0
rke

,Xr0

f1
, · · · ,Xr0

fN
) (30)

whererje is the robot end pose of local mapj (1 ≤ j ≤ k).
Suppose local mapj is given by (X̂L

j , PL
j ) as in a

traditional EKF SLAM. Also suppose the features involved
in local map j are fj1, · · · , fjn, then the local map state
estimateX̂L

j can be regarded as an observation of the true
relative positions from the robot start poseXr0

r(j−1)e
, φr0

r(j−1)e

to the featuresXr0

fj1
, · · · ,Xr0

fjn
and the robot end pose

Xr0
rje

, φr0
rje

. That is,

X̂L
j = Hj(Xjoin) + wj (31)

where

Hj(Xjoin) =

















R(φr0
r(j−1)e

)(Xr0
rje

− Xr0
r(j−1)e

)

φr0
rje

− φr0
r(j−1)e

R(φr0
r(j−1)e

)(Xr0

fj1
− Xr0

r(j−1)e
)

...
R(φr0

r(j−1)e
)(Xr0

fjn
− Xr0

r(j−1)e
)

















and wj is the zero-mean Gaussian “observation noise”
whose covariance matrix isPL

j (when j = 1, Xr0
r(j−1)e

=

[0, 0]T , φr0
r(j−1)e

= 0).
So the problem of fusing local maps1 to k is to estimate

the global stateXjoin using all the local map information
(31) for j = 1, · · · , k. This problem can be formulated as a
least squares problem. That is, findingXjoin to minimize

k
∑

j=1

(X̂L
j − Hj(Xjoin))T (PL

j )−1(X̂L
j − Hj(Xjoin)). (32)

C. Map joining using relative state vector

Relative state vector can also be used in the map joining
step. The state vector is given by

Xjoin,rel = (Xr0
r1e

, φr0
r1e

,Xr1e
r2e

, φr1e
r2e

, · · · ,X
r(k−1)e

rke ,

φ
r(k−1)e

rke ,X
rm1e

f1
, · · · ,X

rmN e

fN
)

(33)
wherermje is the robot end pose of local mapmj if fj is
first observed in local mapmj + 1.

Supposefj1, · · · , fjl are first observed in some previous
local maps whilefj(l+1), · · · , fjn are first observed in local
map j, then the local map information can be expressed as

X̂L
j = Hj,rel(Xjoin,rel) + wj (34)

where

Hj,rel(Xjoin,rel) =

































X
r(j−1)e

rje

φ
r(j−1)e

rje

R(φ
rmj1

e

r(j−1)e
)(X

rmj1
e

fj1
− X

rmj1
e

r(j−1)e
)

...

R(φ
rmjl

e

r(j−1)e
)(X

rmjl
e

fjl
− X

rmjl
e

r(j−1)e
)

X
r(j−1)e

fj(l+1)

...
X

r(j−1)e

fjn

































(35)
andwj is the zero-mean Gaussian “observation noise” whose
covariance matrix isPL

j .
So the problem of fusing local maps1 to k is to find the

stateXjoin,rel to minimize

k
∑

j=1

(X̂L
j −Hj,rel(Xjoin,rel))

T (PL
j )−1(X̂L

j −Hj(Xjoin,rel)).

(36)

D. Advantages of map joining

Using map joining, not only the number of poses but
also the degree of nonlinearity are significantly reduced.
Especially when the relative state vector is used, it can be
seen from (35) that the non-quadratic part is very small (only
for fj1 to fjl

). This significantly reduce the nonconvexity of
the problem. Moreover, the density of non-zero elements in
the information matrix is small as compared with that of a
single map SLAM using relative state vector, because the
loop closing only take place at the local map level.



VII. R ELATED WORK AND DISCUSSIONS

A few years back, the work by Olson et. al [8] surprised
many SLAM researchers including us. How come stochastic
gradient approach works so well for SLAM? The Tree-based
network optimizer (TORO) algorithm by Grisetti et. al [7]
further demonstrated very promising results where very large
scale problems can be solved very efficiently without the
need of good initial values. Especially when the covariance
matrix of the relative pose is close to spherical [9]. This made
us more curious about the special underlining structure of
SLAM. SLAM must be a very special optimization problem!

Rizzini is probably another researcher who has noticed this
fact and investigated into it [12]. In his work, he focused on
the trajectory based SLAM and aimed at finding closed-form
solutions of stationary points (local minima). In our work,
we are trying to prove the near convexity of feature based
SLAM problem, which we believe to be more general than
the trajectory based SLAM problem.

The initial analysis on the convexity in this paper confirms
that the accumulated orientation error is a key factor that
governing the nonlinearity and nonconvexity of the SLAM
problem. This is coincide with some recent research [13][14]
where robot orientation error is shown to be the main cause
of SLAM inconsistency. The benefit of having spherical
covariances is due to the cancellation of highly nonlinear
terms introduced byR(φ) as shown in (16). This explains
why TORO can only performs well and why both the
Victoria Park data and the DLR data set have the “magic”
convergence property, all with spherical covariances.

The use of relative state vector in SLAM is not new.
For example, it is shown in [9] that using a relative state
vector makes the proposed constraint network optimization
algorithm perform extremely well. Relative state vector has
also been used in D-SLAM [16]. In [17], relative robot pose
estimate is proposed to be used as a performance metric
to compare different trajectory based SLAM algorithm. So
why not directly using relative poses as state vector in the
estimation/optimization?

In [10], SLAM was described as “Certainty of relations
despite uncertainty in positions”. If relative state vector
(relation) is used, then the SLAM problem becomes more
“certain”. After a good and consistent estimate of the “rela-
tions” is obtained, to compute the “positions” is trivial.

Map joining has already been demonstrated to be an effi-
cient strategy for large-scale SLAM [4]. It is also commented
that map joining can reduce linearization error [15]. This
paper further confirms this by showing how the nonlinearity
and nonconvexity is reduced by using map joining.

VIII. C ONCLUSIONS ANDFUTURE WORKS

This paper provides some evidence of the underlining spe-
cial structure of feature based SLAM problems. Some initial
analysis on the convexity of SLAM problem is performed.
The non-quadratic terms of SLAM optimization problem is
further clearly distinguished by using a relative state vector.
Moreover, how map joining can reduce the nonconvexity and
nonlinearity is clearly explained.

The results in this paper clearly show that SLAM is a
special optimization problem. The analysis of the convexity
and nonlinearity helps to explain some unbelievable results
in SLAM. Further more rigorous investigation of the un-
derlining special structure in SLAM is necessary and will
benefit SLAM community significantly. For example, more
efficient and reliable SLAM algorithms could be developed
by using the special structure of the problem. The work in
these directions is underway.
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