Realizing Multimodal Behavior

Closing the gap between behavior planning and
embodied agent presentation

Michael Kipp, Alexis Heloir, Marc Schréder, and Patrick Gebhard

DFKI, Saarbriicken, Germany
firstname.surname@dfki.de

Abstract. Generating coordinated multimodal behavior for an embod-
ied agent (speech, gesture, facial expression. ..) is challenging. It requires
a high degree of animation control, in particular when reactive behaviors
are required. We suggest to distinguish realization planning, where ges-
ture and speech are processed symbolically using the behavior markup
language (BML), and presentation which is controlled by a lower level
animation language (EMBRScript). Reactive behaviors can bypass plan-
ning and directly control presentation. In this paper, we show how to
define a behavior lexicon, how this lexicon relates to BML and how to
resolve timing using formal constraint solvers. We conclude by demon-
strating how to integrate reactive emotional behaviors.

1 Introduction

Embodied agents have the potential to make human-computer interaction more
intuitive, engaging and accessible. To take full effect, they have to use all modal-
ities of the body (speech, gesture, facial expression, posture etc.) in meaningful
coordination. The SAIBA framework aims suggests three principal modules for
the behavior production process [1]: intent planning for determining the over-
all content of the message in terms of abstract communicative goals, behavior
planning for deciding on the choice of words, gestures, facial expressions etc. in
terms of modalities but not body part and realization for rendering these behav-
iors with a concrete agent body and voice. BML (behavior markup language) was
suggested as a standard language to formulate sequences of abstract behaviors
(speech, gesture, gaze ...), independent of concrete animation or speech synthesis
platforms. For instance, a gaze behavior toward a person X could be defined, in-
dependent of whether this is realized just with the eyes only, a turn of the head,
the upper body or by repositioning the whole body. BML also allows to de-
fine complex temporal synchronization constraints between behaviors. However,
there has been no general solution how to actually solve these in a principled way.
We have argued that SAIBA leaves a significant gap between behavior planning
and realization [2]. Many choices of actual animation must be either made in the
realizer or specified using custom BML extensions, which compromises its con-
ceptual clarity. Therefore, we suggest to separate these processes into realization

planning and presentation (Fig. 1). The realization planner converts abstract,
underspecified and cross-referenced behavior specifications (BML) into linear,
executable presentation scripts (so this includes multimodal coordination). The
presentation module contains a 3D character animation engine and possibly a
separate audio player for the voice. Presentation calls for a new language for the
animation part which we call EMBRSecript [3] which we also use to define the
behavior lexicon.

- Reactive
Bebauioy EMBRScript
EmotionML Affect-
Mapping EMBRScript
—
Affect Behavior |----ceoeooemem 3
Simulation H Lexicon | eeeooiii. :
c 4
EMBR
i =
2 niming L=, | Benavior ||ScriPt AIE'I:;:-I:“
- . i
o Intent _| Behavior co;::::'? L Generator
8 Planning | FML | Planning | BuL
et
[
o

Audio file »| Audio Plaier

Realization Planning Presentation

Fig. 1. Overview of our architecture. Reusable standard components depicted as light
blue rounded boxes.

One of the earliest frameworks for virtual character control was Improv [4]
which provided a scripting language for authoring both the animation and the
behavior of real-time animated actors. This system was the first to make a
distinction between abstract behavior specifications and executable animation
scripts. However, the animation scripts were very low-level, an abstract frame-
work on the level of behaviors was missing. In the BEAT [5] pipeline architecture
a translation mechanism from behavior specifications to animation commands
exists but the translation process is not explicitly described. SmartBody was the
first system to implement BML for agent control [6] but required many custom
extensions to BML. Greta [7] is also based on SAIBA and separates realization
into behavior planning and realization in the sense that MPEG4 scripts for the
player are produced. However, it is not clear how the translation process is done
in terms of e.g. temporal constraints resolution. While most existing frameworks
implicitly make the distinction between realization planning and presentation,
they do not offer declarative languages to control animation and/or define be-
havior lexemes. The problem of time constraint resolution has not been dealt
with in a principled way.

Our research makes the following contributions: (1) Separating realization
planning from presentation, (2) clarifying the role of behavior lexicons, (3) a
principled approach to resolving BML time constraints and (4) demonstrating
reactive behavior integration.

2 Framework

The pipeline architecture of our framework is shown in Fig. 1. We focus on real-
ization planning where processing starts with a BML' document that describes,
e.g., the text to be spoken, gestures, head nods etc. — together with timing con-
straints regarding the behaviors’ sync points. Realization planning consists of
generating speech, resolving all behavior timings and retrieving lexeme data for
the production of an executable animation script, together with an audio file
of the speech. The presentation layer represents character animation and audio
playback. We can now issue reactive behaviors like gaze following or continuous
adjustments to the current emotion (face, posture) by sending it directly to the
presentation module, by-passing intent and behavior planners.

Components Our system is implemented on top of the SEMAINE API, an
open-source distributed multi-platform component integration framework for
real-time interactive systems [8]. Components communicate via standard rep-
resentation formats, including BML, BMLS and EmotionML. For realtime 3D
character animation we use our free EMBR software? (Embodied Agents Real-
izer) [3,2] which allows fine-grained animation control via a pose-based specifi-
cation language called EMBRScript. EMBR allows gesturing, facial expressions,
pose shifts, blushing and gaze control and autonomous behaviors like breathing
and blinking. For the synthesis of speech we use the text-to-speech and speech
realizer components MARY of the SEMAINE system.

Reactive Affect-Behavior Mapping To demonstrate the modeling of reac-
tive behavior, we implemented a direct coupling of emotional state with be-
haviors like facial expression, head orientation, breathing and blushing. We use
ALMA [9] for affect simulation which continually produces EmotionML [10] to
express the current emotion and mood of the agent. This is mapped to behaviors
that are directly sent to the presentation component as EMBRScript documents.
For instance, mood affects blushing and breathing with its arousal component.
We defined mappings for emotion events (joy, anger, liking...) to trigger behav-
iors (facial expressions) and physiological changes (breathing, blushing), based
on the literature. The emotion intensity determines the duration and the vis-
ible intensity (e.g. blushing level, extent of smile, raised eye brow level) of an
emotional cue.

! http://wiki.mindmakers.org/projects:bml:draft1.0
2 http://embots.dfki.de/EMBR

3 Realization Planning

Realization planning input is a behavior specification (BML) to be translated
into an executable animation script (EMBRScript). We propose a pipeline where
the input BML is successively enriched. We call ”solved BML”, short BMLS, a
subset of BML where all time references are resolved.

Behavior Lexicon Behaviors specified in BML have to be translated to ani-
mation plans. Synchronization points must be resolved for each behavior. Both
tasks require a central database of behaviors, the behavior lexicon L, which ef-
fectively restricts the language BML to a subset BML(L).

Fig. 2. EMBRScript template for lexeme ”beats” with parameter handedness=both.
Only the poses P3 ("ready”), P5 (”stroke”) and P7 (”stroke_end”) need markup, the
rest is implicit. The top line shows the pose-hold representation of EMBRScript the
line below the pose-only representation.

The behavior lexicon L consists of a collection of lexemes {l1,...,l,}. Lex-
emes are parametrizable with regard to BML attributes (e.g. handedness, num-
ber of repetitions), i.e. every lexeme represents a set of variants. Each lexeme
must declare which of the BML sync points (start, ready, stroke_start, stroke,
stroke_end, relax, end) can be used in conjunction with this lexeme. In our frame-
work, we use EMBRScript to define the variants of a lexeme which are based on
key poses, some of which can be equated with BML sync points (see Fig. 2). The
key pose representation allows to easily modify the motion by shifting poses in
time or adjusting hold durations. For every lexeme we define several EMBRScript
templates that correspond to a concrete parametrization, e.g. three templates
for handedness variants: left, right or both. We mark up those poses that corre-
spond to sync points. Because of the pose-hold representation, we only need to
mark up three sync points at most (namely ready, stroke and stroke_end). We
can quickly create lexeme templates using a graphical tool for pose creation, sync
point markup and interactive animation viewing. We currently have 51 gesture
lexemes in our lexicon, instantiated by 121 EMBRScript templates.

<phonetic-timing alphabet="sampa">
<gync id="ml” time="0.0"/>
Hi

<bml>
<speech language="en-Us">

!]
| 1

! i

. ! |

H . : \ <ph p="h" end="0.255"/> !

! <sync id="ml"/> | BML ! <ph p="AI" end="0.410"/> |

: Hi N 1 to : <gync id="m2" time="0.410"/> :

: <sync id="m2"/> ! BMLS | there :

| tmere | <ph p="D" end="0.455"/> !

| <sync id="m3"/> | ! end="0.545" /= |

1 2/ text> | ! end="0.685" /> :
———————————— ! 1 <sync id="m3" time="0.695"/> :
</speech> | </phonetic-timing> |
</bml> ! :

Fig. 3. BML transformed to BMLSpeech: phoneme timings and sync points resolved.

Speech Generator The text-to-speech (T'TS) component reads BML markup
and sends audio data to the presentation module (Fig. 1). For temporal synchro-
nization with the face and gestures, the TTS needs to output (a) the phonetic
symbols and their timings and (b) the absolute time of BML sync points. We
transport this information under the new phonetic-timing tag. Note that this
tag can also be used in the case that an application uses pre-recorded audio files
instead of synthesized speech. BML is transformed to BMLS;,cccp, as depicted in
Fig. 3, where the text tag is replaced by the more informative phonetic-timing
tag, effectively decoupling the steps of audio generation and synchronized visual
realization planning.

t1| tzl Time # absolute sync point
| | " <» relative sync point
] s .
1 2 @ relative or absolute
B4 —F % <
1 1
S, | = ++ 0.7 = s7 Sg Sg
3 '
B e =3 S g e
b
. s 5, 1= | = | =
> 4 6 v : v
— ¢ ¢
510
(a) Fully anchored chains (b) References to 2 outside (c) In-reference to a not
sync points cause warping specified sync point

Fig. 4. Cases of sync point linkages.

Timing Constraints Solver The timing constraints solver receives BMLS pcecn
where speech sync points contain absolute time. The task is to resolve relative
sync points also for nonverbal behaviors like in <gesture start="hl:end"/ >.
We translate this problem to a formal constraint problem and explain this by

example. Fig. 4 shows behaviors and how their sync points can relate to each
other. Case (a) is probably most frequent: sync points refer to other sync points,
and every ”chain” of references is grounded in an absolute sync point. For the
constraint problem formulation we introduce V* for every sync point s. Absolute
times can be directly assigned: V! = t; and V*? = t,. Relative sync point rela-
tionships are expressed via their respective constraint variables. For the example
in Fig. 4 this translates to V3 = V*! and V** = V2 4 0.7 and V*° > V3,

Fig. 4, case (b), a behavior Bs has two (or more) sync points sg and sy
which means Bs has to be stretched or compressed. In case (c), behavior By is
referenced by another behavior with respect to sync point sg, although sg is not
specified at all in B4. This makes sense only if there is another sync point sg that
”anchors” behavior B4. However, how do we formulate a constraint for resolving
s10? For this, we have to consult our lexicon and introduce sg as a virtual sync
point, deriving its relation to sg from the lexeme template. In the lexicon, each
behavior has a pre-specified timing of sync points. We formulate constraints thus
that the changes to the original lexeme are kept minimal. So let us assume that
of behavior By, one sync point sg is specified and another one, sg, is ”virtual”,
i.e. it is referred to but not specified itself. Then, we introduce intra-behavior
constraints to express the relationship between sg and sg: V% + V4 = V59 and
Ve = |lexemen(ss, s9) — VA|. Here, lezeme is a constant that is equal to the
distance of the two sync points in the original lexeme template. V2 is the actual
distance when realized and V¢ is the deviation from the original distance. In our
constraint solver, we ask for minimization of all V¢ variables. We implemented
the described system with the Java constraint solver JaCoP 3.

Note that we can now define the realizability of an BML(L) input document
in terms of three conditions: (1) every sync point of behavior b must be marked-
up in the lexeme of b in lexicon L, (2) every chain of relative sync points must
be grounded, i.e. end in an absolute sync point* and (3) every lexeme reference
in BML must have a counterpart in L.

Behavior Generator The behavior generator receives BMLS and produces
final EMBRScript. For viseme generation, the phonetic mark-up is translated
to a sequence of morph targets (currently 16 visemes). For gesture generation,
each BMLS behavior tag B that refers to a lexeme in the behavior lexicon is
looked up based on the parameters (e.g. handedness) to retrieve the correct
lexeme variant in the form of an EMBRScript template e. This template is then
modified according the the resolved sync points in B.

4 Conclusion

We presented a framework for realizing multimodal behaviors for an embodied
agent. Our framework is based on the modified SAIBA framework where realiza-

3 http://jacop.osolpro.com
4 Here, we need an extended definition of a ”chain” where, if sync point s refers to
behavior b, the only condition is that b has at least one other sync point.

tion and presentation are separated, and utilizes existing and coming standards
for data exchange (BML and EmotionML). We showed how to resolve timing
constraints in BML and how to expand gesture lexemes to executable scripts.
We demonstrated the potential for reactive behaviors by implementing a direct
affect-behavior mapping. Our work clarifies that BML is tightly linked to the
behavior lexicon. The realizability of a BML document depends internally on
the linking of relative constraints and externally on the lexicon entries (lexemes)
and the semantic meta-data of each lexeme. We advocate to use standardized
XML languages for data exchange, even within modules, in the form of ”solved
BML” (BMLS), to facilitate the exchange of components in the community.

In future research we plan to integrate a dialogue manager and rich sensor
input, e.g. tracking gaze, facial expressions and biosignals. These signals can
directly be mapped to presentation for reactive behaviors like gaze following.

Acknowledgments. This research has been carried out within the framework
of the Excellence Cluster Multimodal Computing and Interaction (MMCI), spon-
sored by the German Research Foundation (DFG).

References

1. Vilhjalmsson, H., Cantelmo, N., Cassell, J., Chafai, N.E., Kipp, M., Kopp, S.,
Mancini, M., Marsella, S., Marshall, A.N., Pelachaud, C., Ruttkay, Z., Thérisson,
K.R., van Welbergen, H., van der Werf, R.J.: The behavior markup language:
Recent developments and challenges. In: Proc. of Intelligent Virtual Agents. (2007)

2. Heloir, A., Kipp, M.: EMBR - a realtime animation engine for interactive embodied
agents. In: Proc. of the Intl. Conf. on Intelligent Virtual Agents. (2009)

3. Heloir, A., Kipp, M.: Realtime animation of interactive agents: Specification and
realization. Applied Artificial Intelligence (2010)

4. Perlin, K., Goldberg, A.: Improv: A System for Scripting Interactive Actors in
Virtual Worlds. Proc. of SIGGRAPH 96 29(3) (1996)

5. Cassell, J., Vilhjdlmsson, H., Bickmore, T.: BEAT: the Behavior Expression Ani-
mation Toolkit. In: Proceedings of SIGGRAPH 2001. (2001) 477-486

6. Thiebaux, M., Marshall, A., Marsella, S., Kallman, M.: Smartbody: Behavior
realization for embodied conversational agents. In: Proc. of the Intl. Conf. on
Autonomous Agents and Multiagent Systems. (2008)

7. Niewiadomski, R., Bevacqua, E., Mancini, M., Pelachaud, C.: Greta: an interactive
expressive ECA system. In: AAMAS ’09: Proc. of The 8th International Conference
on Autonomous Agents and Multiagent Systems, Richland, SC (2009) 1399-1400

8. Schroder, M.: The SEMAINE API: towards a standards-based framework for build-
ing emotion-oriented systems. Advances in Human-Computer Interaction (2010)

9. Gebhard, P.: ALMA - a layered model of affect. In: Proceedings of the Fourth
International Joint Conference on Autonomous Agents and Multiagent Systems,
ACM Press (June 2005) 29-36

10. Schréder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., Zovato, E.:
Emotion markup language (EmotionML) 1.0. W3C first public working draft,
World Wide Web Consortium (October 2009)

