
DynaQ — Faceted Search for Document Retrieval

Christian Reuschling, Stefan Agne, and Andreas Dengel
Knowledge Management Lab

German Research Center for Artificial Intelligence (DFKI)
Trippstadter Strasse 122, D-67663 Kaiserslautern, Germany

{christian.reuschling, stefan.agne, andreas.dengel}@dfki.de

ABSTRACT
’Sometimes it is easier to describe the way rather than the
goal.’ – this is especially true for searching documents in
current desktop environments. Classical keyword search is
only partially sufficient to manage large amounts of data,
like the emails and documents of an average user. Several
studies show that navigational approaches in searching fits
better with the natural searching strategies of human beings.

This paper presents the DynaQ system aiming to increase
information retrieval by combining faceted search with the
state of the art searching paradigms Orienteering and Dy-
namic Queries. DynaQ stands for ’Dynamic Queries for
document-based personal information spaces’.

Categories and Subject Descriptors
H.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval—Information filtering, Search
process

General Terms
Algorithms, Human Factors, Performance

Keywords
Document Retrieval Systems, Faceted Search, Desktop Search,
Dynamic Queries, Orienteering

1. INTRODUCTION
Not only the amount of information available on the inter-
net, but also the volume of information stored in personal
desktop computers is constantly expanding and increasingly
difficult to manage. Through the years thousands of emails
and documents of all kinds create a complex personal infor-
mation space. Naturally, this information space comprises
many facets like title, author, and body, which should enable
people to identify their information items, like documents.

In the domain of databases, due to the structured character-
istic of the data, many facets are naturally available. This
is not necessarily the truth in the document world. Facets
like buzzwords, abstract, page count, etc. are optional and
must be calculated, sometimes requiring a lot of effort.

In order to support facets to assist searching documents,
search enginges must consider these both in the backend and
the user representation. There are many different ways to
do this, and current applications already offer components
such as index tree browsing. Nevertheless, there is a lack of
work involving the heterogenious facets for search assistance,
and normally the applications are not compatible with the
natural search strategies of human beings.

DynaQ tries to go further in these directions, by combining
faceted search technology with state of the art searching
strategies, such as Orienteering [10] and Dynamic Queries
[6].

Orienteering is typically characterized by relatively small
steps following one after another. In contrast to searching
through keywords, Orienteering offers several advantages:
reduction of cognitive load, sensitivity of the environment,
and a better understanding of the results [10].

Dynamic Queries enables the user to specify search queries
in a dynamic way by getting immediate feedback on changes
inside data sets that fulfill the query criteria [5].

2. STATE OF THE ART
The First Workshop on Faceted Search was held in conjunc-
tion with SIGIR 2006 in Seattle, WA. In the following you
can find a quotation from the Call for Papers:

Over the last few years, the direct search paradigm
has gained dominance and the navigational ap-
proach became less and less popular. Recently
a new approach has emerged, combining both
paradigms, namely the faceted search approach.
Faceted search enables users to navigate a multi-
dimensional information space by combining text
search with a progressive narrowing of choices
in each dimension. It has become the prevail-
ing user interaction mechanism in e-commerce
sites and is being extended to deal with semi-
structured data, continuous dimensions, and folk-
sonomies....

There are several research groups in faceted search. Most of
them focus on the user interface for realizing faceted search
on structured data.

The Relational Browser++ is a browsing tool for statisti-
cal information (developed at the University of North Car-
olina). ’It makes heavy use of mouse-overs to create a more
dynamic and informative interface than is possible through
most other kinds of interfaces’ [7].

The mSpace browser is a multi faceted column based tool for
browsing large data sets [9] (developed at the University of
Southampton). This tool won the Semantic Web Challenge
2003.

Within the Flamenco search interface project under the lead
of Marti Hearst at the University of California in Berkeley a
framework is developed to organize the results of a keyword
search by using hierarchical faceted metadata. FLAMENCO
stands for FLexible information Access using MEtadata in
Novel COmbinations [2].

Conclusion
Orienteering mirrors a typical strategy of humans when per-
forming personally motivated searches, with relatively small
steps following one after another. For this purpose, faceted
search offers adequate support for the user. All the men-
tioned tools show that this approach is mainly realized for
information spaces similar to data bases where data is clearly
structured inside fixed, predefined attribute sets. As a rare
exception Flamenco makes use of well structured meta data
to browse the result list of a keyword search. The mission of
DynaQ is to enable also the unstructured information parts
of documents for the faceted search.

3. FACETS IN DYNAQ
In order to assist searching documents with facets, each in-
formation item must be represented in a structured, uniform
data format. Thus, the available facets of a document be-
come well formed, making them searchable. The heteroge-
neous nature of typical information items makes it impossi-
ble to search inside them directly because of lack of perfor-
mance. Document formats have to be converted, and data
is sometimes on the network and hard to access directly, e.g.
email stored on an IMAP server. Additionally, it is impos-
sible to assume a fixed data structure. DynaQ uses Lucene
[3] to store documents as tuples of arbritrary attribute value
pairs, highly optimized for search access.

To fill the storage, the search engine must deal with sev-
eral data formats that the users work with, e.g. office for-
mats (ODF, MS DOC) or emails. All documents have to
be converted to the uniform data format, whereby all facets
are extracted that are available directly inside a document.
Typical examples for these are ’fullbody’, ’title’, ’author’,
’pagecount’, etc. DynaQ uses Aperture [1] for data extrac-
tion, which is able to convert a large range of common data
formats into rdf containers. The content of these containers
is stored inside a Lucene index by DynaQ.

Another category of facets are those who are not part of any
document format, and thus must be calculated separately.
Further, this category is split again into two facet types:

1. Calculated directly out of a single document, e.g. term
stems, approximated page count (where needed), doc-
ument language.

2. Calculated in relationship to all other user documents
or other base corpora, e.g. document characteristic
words (buzzwords), document similarities, auto-tagging,
or classification. For this purpose, we get good results
using indices which contain the contents of wikipedia
[4].

To make sure that the same facets from different formats
can be searched transparently, there has to be a common
structure for a set of known attributes. One example is
the body of a document which is called ’body’ inside ODF
and ’text’ inside MS DOC. Both of these values have to
appear under the same name inside the index because they
are semantically identical. For this set of attributes, DynaQ
makes use of the NIE ontology, specified by the Nepomuk
consortium [8]. All other attributes will appear ’as is’ inside
the index and are still searchable under their original name.

4. FACETS INSIDE THE USER INTERFACE
Once the facets are available in the backend for searching,
they are still unusable to an average user. Thus, how an
applications interface provides access to the facets is critical.
This is a main focus of the DynaQ project. In fact, the range
of usability of a frontend goes from ’totaly useless’ to ’users
find their data’.

Studies have shown that common searching enginges are
not compatible with the natural search strategies of hu-
man beeings. Humans tend to search ’stepwise’, while get-
ting overview between each step, which is more a ’naviga-
tional’ approach. DynaQ tries to support this searching
paradigm, named Orienteering [10], by combining it with
faceted search:

• Enabling Dynamic Queries approach [6] for searching
facets gives ’stomach feeling’ about the results.

• Setting context possibility with relevant documents (e.g.
relevance feedback, ’document as facet’), document
similarity search, and narrowing down on structured
metadata (facets, e.g. date range).

• Explaining result documents with classical term high-
lighting and simple, automatic abstracting for getting
document overview.

• Giving an overview, which most common result lists
lack because of their focused view by realizing a bird-
eye view.

Dynamic Queries gives immediate feedback to the user by
changing searching criterias, similar to the behaviour of a
dimmer. This ad hoc response enables the user to get a
feeling about how the result list changes by adjusting spe-
cific query dimensions / parameters. Traditionally, this ap-
proach is enabled in database-like environments, where the
structure and the dimension are clear according to type and
semantic.

For searching inside documents, DynaQ offers a mixed ap-
proach, whereby some database-like criterias can be adjusted
directly. Thus, attributes with a well defined order can be
used for shrinking the result list using range sliders. These
are normally numerical ones, e.g. the creation date. At-
tributes with a set characteristic appear as checkbox menus
for cherry-picking their values (e.g. document MimeType).

Figure 1: Query facets with contextualization

Inside unstructured data, it is natural to search for criteria
defined by the user, normally in the form of query terms.
This can also happen for semi-structured data, when sev-
eral facets of a document comprise fulltext. For example, by
searching emails, both the body and the subject are search-
able. The same scenario is given inside attributes with a set
characteristic, in the case the number of set values is too
big for visualization (e.g. email author names). For these
facets, DynaQ gives an edit field with type-ahead search,
offering selectively the values for the current facet [Figure
1]. Spanning the dimensions for searching, each user query
term appears as a ’term slider’, enabling weighting of this
specific dimension for searching. The documents inside the
result list will be re-sorted immediately by adjusting the
term slider [Figure 2].

Contextualization inside DynaQ takes two approaches. One
approach is shrinking down the results by specifying ded-
icated metadata, as described. The other approach is a
more fuzzy one, by marking documents as ’relevant’. For
this, result documents can be picked and dropped inside a
list of so called ’contextualization documents’. Thus, doc-
uments which are somehow similar to the contextualization
documents appear higher inside the result list, where ’sim-
ilar’ means similar according to similar content / topics in-
side the documents. The similarity is computed statistically
which brings a kind of fuzzyness and works with arbritrary
documents. This has the benefit that all the possible user
data can be considered. For the context consisting of docu-
ments marked as relevant, DynaQ also offers a weight slider
which enables the Dynamic Queries approach for this syn-
thetic facet [Figure 1]. To support orienteering, getting an
overview is critical to know how to adjust your searching
parameters adequately. To do so, there is a need for expla-
nation components that describe why the documents inside
the result list appear, i.e. shows the relationship of the doc-
uments to the users query. A common way to do so is query
term highlighting, which is also realized in DynaQ. Each
term (dimension) gets its own highlighting color for quick
identification. As this approach adequately shows why the
top documents appear, it does not give an overview of the
whole result list. It is known that, in average, only the top
N documents will be recognized by the user - all others are
more or less ’hidden knowledge’. We have realized a bird’s
eye view of the result list, whereby the relevance of each
query term is visualized per document, as a bar chart. For
this, the highlighting colors assigned to the terms are used.
This gives, for example, the chance to recognize that there
still exists documents relevant to a specific query term that
are not inside the top n documents. Further, in the case of
document contextualization, you can see similarity peeks at
context-relevant documents. The users are able to weight
both term and context facets with the according sliders so
that these documents will appear higher or lower inside the
result lists immediately.

Figure 2: Query and results with birdeye view

Figure 2 gives an overview over a whole search, showing both
the query window and the result list with the bird’s eye view.
The query weight sliders are at the bottom-left, the bird’s
eye view at the right, whereby the contextualization peeks
are with grey background.

5. PERFORMANCE OF DYNAQ
The paradigms of DynaQ depend on the agility and perfor-
mance of the application. The typical running environment
is on the users desktop machine, thus it has to work on
standard hardware.

A lot of effort was spent on runtime optimizations to realize
this scenario. Here we want to show some examples of how
DynaQ performs.

Environment: AMD Athlon(tm) 64 X2 Dual Core Processor
4400+, 2GB RAM

Two searchable indices, one with crawled desktop docu-
ments and emails (50 213 documents), combined with an-
other one with the content of the german Wikipedia (1 315
192 documents) for parallel searching.

Average searching times (including visualisation):

• Two terms searched in fullbody and titles: ˜232 ms

Number of result documents: 16 163

• With additional filtering over a facet (term inside the
source attribute): ˜213 ms

Number of result documents: 4 571

• With additional document contextualisation: ˜253 ms

Number of result documents: 4 571

The time amount for the different types of queries is more
or less the same. This is not surprising because most of the
time is spent visualizing the results. A typical response time
from the searching backend is about 25 ms, depending on
the type of queries and the number of result documents that
have to be ranked.

These times are sufficient to assure that dragging a weight
slider gives the feeling that the result list moves smoothly.

6. SUMMARY
In this paper, we described the DynaQ system, a tool for
searching the document based information space. It was
shown how it deals with faceted search on heterogeneos data
sources that are only partialy structured. In this context,
the impacts of Orienteering and Dynamic Queries on both
the backend and the frontend was described.

In contrast to the classical keyword search approach used in
common search engines, DynaQ considers different kinds of
facets, and implements methods for their use in information
retrieval. Types of facets are

• Facets directly available inside the documents meta-
data (e.g. body, title, size, date, mime type).

• Facets that must be generated, derived from a sin-
gle document (e.g. term stems, page count, language)
and whole corpora (e.g. buzzwords, classification, auto
tagging).

• Synthetic ’fuzzy facets’ used for contextualization (doc-
ument similarity).

The storage and access to the facet data was done very ef-
ficiently, which was critical to the implementation of the
searching paradigmes. Thus, the DynaQ application is able
to give agile feedback to the user while searching.

As open source software under the GPL2 license, DynaQ can
be downloaded for common use at http://dynaq.opendfki.de.

7. ACKNOWLEDGMENTS
This research is supported by the Stiftung Rheinland–Pfalz
für Innovation.

8. REFERENCES
[1] Aperture – a java framework for getting data and

metadata. Available online:
http://aperture.sourceforge.net/. Aperture – a Java
framework for getting data and metadata.

[2] The flamenco search interface project. Available
online: http://flamenco.berkeley.edu/. University of
California, Berkeley.

[3] Jakarta lucene – a high-performance, full-featured text
search engine library. Available online:
jakarta.apache.org/lucene. Jakarta Lucene is a
high-performance, full-featured text search engine
library written entirely in Java.

[4] Wikipedia, the free encyclopedia. Available online:
www.wikipedia.com. A Wiki-based encyclopaedia.

[5] S. Agne, C. Reuschling, and A. Dengel. DynaQ —
Dynamic Queries for Electronic Document
Management. In T. Kwok and W. Cheung, editors,
Proceedings of the First International EDM Workshop
(EDM 2006) – The Electronic Document Management
in an Enterprise Computing Environment, pages
56–59, Hong Kong, China, 17. Oktober 2006. IEEE.

[6] C. Ahlberg, C. Williamson, and B. Shneiderman.
Dynamic queries for information exploration: An
implementation and evaluation. In Proc. ACM Conf.
Human Factors in Computer Systems, CHI, pages
619–626, 3–7 1992.

[7] R. G. Capra and G. Marchionini. The relation browser
tool for faceted exploratory search. In JCDL, page
420, 2008.

[8] A. Mylka, L. Sauermann, M. Sintek, and L. van Elst.
Nepomuk information element ontology. Available
online:
http://www.semanticdesktop.org/ontologies/nie/.

[9] M. Schraefel, M. Wilson, A. Russell, and D. A. Smith.
mspace: improving information access to multimedia
domains with multimodal exploratory search.
Commun. ACM, 49(4):47–49, 2006.

[10] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R.
Karger. The perfect search engine is not enough: a
study of orienteering behavior in directed search. In
Proceedings of the 2004 conference on Human factors
in computing systems, volume 1, pages 415–422. ACM
Press, 2004.

