
Experiences in Building a Visual SLAM System from Open Source Components
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Abstract— This paper shows that the field of visual SLAM
has matured enough to build a visual SLAM system from open
source components. The system consists of feature detection,
data association, and sparse bundle adjustment. For all three
modules we evaluate different libraries w.r.t. ground truth.

We also present an extension of the SLAM system to
create dense voxel-maps. It employs dense stereo-matching and
volumetric mapping using the poses obtained from bundle
adjustment, both implemented with open source libraries.

Apart from quantitative comparison we also report on
specific experiences with the various libraries.

I. INTRODUCTION

Research into the simultaneous localization and mapping

(SLAM) problem [1] has seen a certain level of consolidation

over the past few years. 2D (indoor-)SLAM based on laser

rangefinder data is largely considered a solved problem and

the availability of open source packages [2], [3] enables even

users unfamiliar with the internals of the underlying algo-

rithms to deploy autonomously navigating mobile robots [4].

Visual SLAM, i.e., SLAM using cameras, is currently

approaching a similar consolidation phase – although a

complete, accessible solution is not yet available, all required

building blocks exist with open source implementations. In

this paper, we share our experiences combining these into

a fully-functional, deep prototype of a visual SLAM system

in C++. The architecture of the system is shown in Fig. 2

and follows the usual pattern. First, keypoints are detected

in the images. Then points are matched to establish which

observations correspond to the same physical feature (data

association). Finally, feature positions and camera poses

are estimated, by fitting the measurement equations for the

feature observations. The latter has been studied as bundle

adjustment in photogrammetry [5], as structure from motion

in computer vision [6], and visual SLAM in robotics [7].

For these three modules we contribute a quantitative

comparison of the performance of different available libraries

w.r.t. ground truth. We extended the system to compute

a dense map (Fig. 2, bottom) using stereo-matching and

volumetric mapping in open source implementations. Here

we present early results, but no extensive evaluation.

Our experiment (Fig. 1) focuses on applications in ur-

ban search and rescue scenarios consisting of unstructured,

highly cluttered environments as typically found in, e.g.,

This work has partly been supported under DFG grant SFB/TR 8 Spatial
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Fig. 1. A screenshot of our visual SLAM system built from open source
components. Features with different status are shown as crosses: green:
stereo-matched, orange/yellow: fused with the map (monocular/stereo),
cyan: reprojected from the map. A red grid is projected onto the ground
plane for visually assessing the precision of the computed camera poses.
Colors correspond to Fig. 2 and the full experiment is attached as a video.

collapsed buildings. The general architecture and the imple-

mentations used are also suitable in other application areas.

We use a stereo camera (Fig. 2, left) to avoid scale

ambiguity and combine it with an inertial measurement

unit (IMU). This has three advantages: Temporary outages

of the stereo keypoint input (e.g., due to occlusion) can

be compensated for, the required frame rate of the vision

component is reduced, and the map has a defined up and

down.

This paper is structured as follows. After related work

in Section II we discuss the main modules in Sections III

to VI, each with module-specific experiments. Section VII

presents calibration and Section VIII the overall system

along with experiments. Section IX discusses the extension to

dense volumetric mapping and we close with lessons learned,

conclusions, and an outlook on future work in Section X.

All experiments were performed using a dual Intel Xeon

E5420@2.5GHz (2× 4 cores) running a 32bit Linux 2.6.26.

II. RELATED WORK

There is a vast amount of literature on (visual) SLAM. A

good starting point is [1] or the recent special issue [7]. We

focus here on a few highlights involving full systems.
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Fig. 2. System architecture: Keypoints (yellow) are extracted from images
(black) of a stereo camera, associated left-to-right and to the map and finally
fused (cyan) together with integrated IMU information (magenta). Left and
right images are also stereo matched and the resulting depth-images are
integrated into a voxel map using the poses (red) estimated by SLAM.

Paz et al. [8] realized visual SLAM with a hand-held stereo

camera and demonstrate accurate estimation of a 210m in-

door and 140m outdoor loop. They find that stereo improves

precision in addition to resolving scale ambiguity. However,

also including distant bearing-only features improves the

precision even more providing orientation information. The

system uses image patches around Shi-Tomasi corners and

an EKF for building local maps which are later joined.

Milford et al. [9] show an impressive map of a 66km

car journey through a suburb with 51 loops of up to 5km.

The biologically inspired algorithm “RatSLAM” performs

iterative updates thus amortizing loop-closures over time.

Konolige and Agarwal [10] map a 10km outdoor environ-

ment. Local bundle-adjustment on center-surround-extrema

features provides constraints between regularly spaced poses.

This graph of relations is then optimized globally using

PCG [10] or sparse Cholesky-decomposition [11].

Kaess and Daellert [12] close a 90m loop through difficult

bushy terrain with visual SLAM in a real-time implementa-

tion on an autonomous off-road vehicle. They use a point-

feature detector without descriptor and sparse bundle adjust-

ment. Their major contribution is reliable data-association

and obtaining the covariance information required for that.

Unlike the systems above, PTAM by Klein and Mur-

ray [13] is monocular. It operates at video rate but is

limited to small environments. Their key idea is to use two

concurrent threads: One to localize the camera from FAST

feature points w.r.t. the map at frame rate. And another,

slower one to extend the map using bundle-adjustment.

In a very impressive demonstration, Weiss et al. [14] use

PTAM onboard a quadrocopter for point-to-point navigation.

They also showed mapping a 100m path through a small

village generating a triangle model from the sparse point

features used by PTAM and texturizing that model.

III. FEATURE EXTRACTION

The feature extraction module needs to find 2D image

coordinates of environment features such as object corners

or other salient points. To enable data association there

must be a way to identify corresponding features both in

a stereo frame pair and across frames from different time

steps. Recent work in computer vision makes this possible:

Feature detectors identify salient points (keypoints) in an

image, descriptors determine a numerical description of

these, usually as a signature vector describing the local

neighborhood. Both should ideally be invariant to changes

in viewing angle, distance (scale), and viewing conditions

(illumination, noise). Signatures should be distinctive to

allow for reliable matching and be uniformly distributed

across the image to yield good geometrical constraints.

The de-facto gold standard in feature detection/description

was established by the seminal work of Lowe [15] with the

scale invariant feature transform (SIFT). A very accessible

introduction is given in [16, §4.1]. For image retrieval,

Mikolajczyk and Schmid found SIFT to outperform earlier

approaches [17]. For SLAM, it is reportedly superior to other

approaches particularly under changes in viewing angle [18].

SIFT feature extraction is not real-time; GPU implementa-

tions get close [19] but have their own issues.

SURF [20] picks up the same ideas as SIFT but employs

approximations to get much closer to real-time and delivers

features not identical yet structurally very similar to SIFT.

More recently, machine learning has been applied to

feature extraction. FAST [21] learns a decision tree which is

turned into C code to yield an extremely fast corner detector

the downside being that features cluster at edges. Calonder

et al. [22] reformulate the descriptor task as a classification

problem and define the signature as the response of a

randomized tree classifier.

A. Towards Constant Computation Times

Depending on the viewing conditions and the detector

used, we get 500-10000 features per (monocular) frame,

far too many for real-time processing. Thus, we select the

k = 200 features with the best detector score. This limits

computation time per frame and in our application still

ensures a reasonable distribution of features.

B. Selecting a Detector/Descriptor Combination

We use Lowe’s reference implementation of SIFT for

comparison only due to its closed-source nature and real-

time requirements (SIFT runs at ∼1Hz on 512x384 images).

Actual candidates are a re-implementation of SURF from

OpenCV [23] with a minor custom patch to invoke the

descriptor only for the k best keypoints, FAST as contributed

to OpenCV by Rosten, and the Calonder descriptor from

OpenCV. SURF is run with default parameters, FAST op-

erates on four pyramid layers with the parameters also used

by PTAM [13], and the Calonder descriptor with default

parameters and a classifier tree1 from its authors.

Concerning the quality of the detectors/descriptors, we are

interested in a combination that yields good matches. Since

in our case groundtruth is impossible to determine automat-

ically (perspective changes, scene-dependent occlusion), we

have manually labeled Euclidean distance nearest neighbor

matches (see IV) as close (< 10px w.r.t. 1024 × 768 reso-

lution), near (< 40px), unrelated (> 40px), and undecided

(Fig. 3). Image pairs to be matched consist of 7 stereo frame

1
http://pr.willowgarage.com/data/calonder_descriptor/current.rtc
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Fig. 3. Stacked number of matches for stereo frame pairs (s1–s7) and inter-frame pairs with zoom in/out situations of increasing difficulty (i1–i3) manually
categorized as close (< 10px, green), near (< 40px, yellow), unrelated (> 40px, red) and undecided (white) for different detector/descriptor combinations.
See III-B and IV-B for details.

TABLE I

COMPUTATION TIMES OF DIFFERENT FEATURE DETECTOR/DESCRIPTOR

COMBINATIONS FOR 2X474 IMAGES DOWNSCALED TO 512X384 FROM

THE DATASET ALSO USED IN THE VIDEO. DESCRIPTORS PROCESS THE

200 BEST FEATURES ONLY.

Detector Descriptor
Time [ms]

min max µ σ

SURF SURF 66.678 93.055 72.158 2.037
FAST SURF 17.289 32.930 25.208 3.081
FAST Calonder 17.630 41.643 25.841 3.008

pairs and 3 pairs of left frames from different time steps

(inter-frame pairs) with zoom in/out situations of increasing

difficulty, all from the log also used for the companion video.

Note that the SIFT dataset contains matches of all features,

all others those of the 2 × 200 best features only. Due to

the high number of matches the SIFT labeling figures were

projected based on a randomly chosen sample of size 25.

Our evaluation criterion is the ratio of correct matches vs.

all matches (similar to [17]) as well as the total number of

matches per frame pair. Taking the different sizes of the input

data into account, SURF/SURF produces a percentage of

correct matches that is slightly lower than that of SIFT/SIFT

but finds some correct matches on all tested frame pairs.

FAST/SURF produces a significantly lower percentage of

correct matches, particularly with the more difficult inter-

frame pairs which affects overall system performance nega-

tively since constraints across different time steps are weaker.

Compared to FAST/SURF, FAST/Calonder improves the

percentage of correct matches for stereo frames although

the keypoints are the same. The improvement for the inter-

frame cases is only marginal. Generally, we conclude that

the detector and descriptor must be designed to work well

with each other. Thus, although we would like to use the

faster alternatives (Table I), we currently prefer SURF as the

detector and descriptor.

IV. DATA ASSOCIATION

The data association module forms the bridge between

feature extraction and the SLAM back-end by identifying

corresponding features in a stereo frame pair (stereo match-

ing) and recognizing previously seen features or adding

new features to the map (map management). In both cases,

features need to be matched based on their signatures.

A. Feature Matching

Using descriptors, the matching procedure boils down to

a nearest neighbors problem. Given two sets of features A

and B, b ∈ B is called the nearest neighbor of a ∈ A if

b = argminb̄∈B

∥
∥a− b̄

∥
∥.

A key problem here lies in determining whether the nearest

neighbor match is distinct enough to be reliable. A common

strategy [15] is to impose a threshold on the relative distance

to the 2nd-nearest neighbor, e.g., 80%. Tuning this threshold

to work under different conditions, however, proved difficult.

Instead, we require consistency in both directions, i.e., (a, b)
match, iff a = argminā ‖ā− b‖ ∧ b = argminb̄

∥
∥a− b̄

∥
∥.

This is checked by keeping track of the current best nearest

neighbors in both directions while looping over all a ∈ A

and all b ∈ B in two nested loops.

Since the matching procedure is time critical we follow the

trend towards multi-core CPUs and parallelize the outer loop

using the Threading Building Blocks library [24] by dividing

the set A into chunks to be processed in parallel. Another

optimization is to replace the Euclidean distance (L2 norm)

with the sum of absolute differences (SAD) (L1 norm). We

go one step further and implement an approximation L∗
1

by scaling signatures to sequences of 8bit unsigned integers

and computing the SAD with the PSADBW SSE2 instruction

operating on 16 values in parallel.

B. Stereo Matching

To determine stereo matches we apply the feature match-

ing procedure as above and additionally filter results by

an epipolar constraint. Table II lists the computation time

required to match the 200 best SURF features from two

stereo frames for an L2/float implementation, the L∗
1

implementation and the FLANN library [25] in different

modes – brute force search, k-D tree and k-means-based

search. Since FLANN determines nearest neighbors in one

direction only, we call it twice.

The results show how the parallelized SSE implementation

clearly outperforms all others and that in our case the

advanced algorithms in FLANN (k-D tree, k-means) do not

pay off since a k-D tree does not help with high dimensional



TABLE II

COMPUTATION TIMES OF L2 /FLOAT , L∗

1
, AND FLANN (BRUTE FORCE,

K-D TREE, K-MEANS) METHODS MATCHING 2X200 FEATURES.

Time [ms]
min max µ σ

L2/float 7.734 8.193 7.980 0.081
L2/float Parallel 1.698 2.171 1.928 0.083

L∗

1
1.157 1.594 1.388 0.076

L∗

1
Parallel 0.805 1.254 1.022 0.073

FLANN
Linear 16.964 17.456 17.183 0.088
k-D 50.163 60.100 52.061 1.926
k-means 17.322 30.297 23.180 2.463

spaces [15] and the pre-processing required to build the

helper data structures cannot be leveraged as they need to

be rebuilt at every time step.

Concerning our optimization strategy, the single largest

speed-up is gained by the conversion to SSE instructions.

The speed-up due to parallelization is significant but not

linear in the number of cores due to overheads induced by

the parallelization itself. We have also seen vastly different

behavior on different machines with the same number of

cores hinting at the exact memory/cache layouts playing an

(expectedly) important role.

As for a qualitative comparison, the L∗
1 implementation

yields results that are very similar overall but in some cases

clearly inferior to the L2/float matches as highlighted

by the inter-frame matches in Fig. 3. Once other parts of

the system have been optimized more, we will likely favor

accuracy over speed and switch to the parallel L2/float

version especially given its small absolute computation time.

C. Map Management

The map consists of estimated world coordinates of (some)

detected features and their signatures. Detected mono and

stereo keypoints are searched for in the map using the

feature matching algorithm defined above (using an averaged

signature in the stereo case). If a match is found and the

distance to the reprojected feature is not too large, the match

is passed as a feature measurement to the SLAM back-end.

Stereo keypoints with no match are added unless they are

too close to an existing landmark.

Obviously, this can make loop-closing or reattaching after

a blackout period without any features difficult or nearly

impossible. In future work, we intend to revisit this decision

once the back-end supports longer trajectories (see VIII-B).

Re-localization is another topic to look into in this context.

V. SLAM BACK-END

Interpreting SLAM as a (non-linear) least squares (LS)

problem is quite straight forward and long known in pho-

togrammetry as bundle adjustment (BA) [5]. It was first

applied in robotics by [26] and later formalized in [27, §11]

as GraphSLAM. The idea is to view odometry, i.e., measure-

ments between consecutive poses, and landmark observations

as “constraints” between parts of the state, which consists of

all poses and landmark positions (Fig. 4).

t+1ut−1u tu t+2u

tzt−1z

xt−1 t+1x xt+2

t+1z t+2z

m2 m3

x

m1

t

Fig. 4. Bayes net for the SLAM problem solved by the backend (illustration
from [27]). Poses Xt (red) are linked by IMU data ut (magenta). Feature
observations zt (yellow) link poses to feature positions Mi (cyan). The
zt can be either mono (2DOF) or stereo (4DOF) observations. Colors
correspond to Fig. 2 and grey indicates unknown random variables.

More formally, the odometry function g, which using

odometry ut maps the previous state Xt−1 to the current state

Xt, can be converted to a set of functions g̃t, constraining

two consecutive poses:

Xt = g(Xt−1, ut) g̃t(Xt−1, Xt) := g(Xt−1, ut)−Xt (1)

Analogously, the measurement function h, which maps a

landmark Mi at the current pose Xt to its corresponding

measurement zit , can be mapped to a constraint h̃i
t:

zit = h(Xt,Mi) h̃i
t(Xt,Mi) := h(Xt,Mi)− zit (2)

for all observations (t, i) ∈ O. All state variables Xt and Mi

can be combined to a global state X . The results of g̃ and

h̃ are called residues and are accumulated to a cost function

f(X) =
∑

t

ρg(g̃t(Xt−1, Xt))+
∑

(t,i)∈O

ρh(h̃
i
t(Xt,Mi)), (3)

with ρ∗ mapping to R≥0. For classical LS, we have ρ(x) =
‖x‖

2
Σ = x⊤Σ−1x with a covariance matrix Σ and (3) can be

minimized using textbook math (e.g., Levenberg-Marquardt

algorithm). In presence of outliers, robust choices for ρ are

better [6, §A6.8]. We use classical LS for odometry links,

and a modified Huber cost function ρ(x) =
{

‖x‖2

Σ
, ‖x‖

Σ
≤1

‖x‖
Σ
, ‖x‖

Σ
>1

for camera measurements. The latter behaves like classical

LS below the standard deviation and is more robust above.

A. Selecting a Back-End Library

Pure pose adjustment frameworks such as TORO [28] and

SPA [11] are unable to solve BA directly and therefore not

applicable to our problem. BA is addressed in [6, §18] and

[5], and with the sba package a well established open source

implementation is available [29], implementing monocular

BA as an example. Stereo SLAM and usage of robust

estimation with sba is possible in theory, but technically

difficult.

Recently Strasdat et al. [30] published RobotVision, a

library focusing on monocular SLAM. It takes advantage of

the manifold structure of SO(3) and natively supports robust

estimation. Currently it does not support stereo SLAM.

More recently iSAM [31] was made open-source. It can

handle arbitrary LS problems, but currently only implements

Gauss-Newton optimization, thus it is incapable of optimiz-

ing rank-deficient problems such as BA.
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B. Sparse Least Squares on Manifolds (SLoM)

The goal of the SLoM framework [32] is to define and

optimize general LS problems easily. This is accomplished

by providing building blocks in C++ to define state variables

(e.g., poses or landmarks) and measurements (or constraints)

between states (e.g., odometry). Afterwards instances of

states can be added to a problem (in arbitrary order) as well

as constraints between those states.

Behind the scenes, SLoM exploits the sparsity of many LS

problems, first when calculating Jacobians, and secondly by

using the CSparse library [33] when solving the linear sys-

tem occurring in each Gauss-Newton/Levenberg-Marquardt

iteration. States are viewed as so-called manifolds, elegantly

avoiding problems with singularities and overparameteriza-

tion, occurring when working with, e.g., 3D orientations. The

manifolds are encapsulated by two operators: ⊞ which adds

small perturbations to a state, and its inverse ⊟. This makes

it possible to adapt generic sensor fusion algorithms mainly

by replacing + and − by ⊞ and ⊟.

In recent work [34], we enhanced the framework by

factoring out the handling of manifolds into the separate

Manifold ToolKit (MTK) so it can be used by other algo-

rithms, too. MTK is capable of stacking manifold primitives

such as vectors (Rn) and orientations (SO(3)) to compound

manifolds such as poses (SE(n) ≃ SO(n) × R
n), with

components being accessible by name instead of index. For

matrix/vector operations, MTK uses the open source library

Eigen 2 [35] making the implementation of measurement

functions straight-forward using a MATLAB-like notation

via overloaded operators, and efficient using expression tem-

plates. SLoM has previously been released as open source.

C. Comparison with sba and RobotVision

We compared sba, RobotVision, and SLoM on a mono-

cular BA problem extracted from the log also used for the

companion video but only using keypoints from the left

camera (with the data association obtained from our full

system). Measurement outliers were filtered out as well as

poses and features with too few measurements. This lead to

349 poses, 188 features and 4152 image projections.

For each algorithm the data was passed through a function-

ally equivalent BA application. Fig. 5 shows the χ2-error for

each algorithm over time. As the goal was mainly to compare

runtime-performance we did no ground truth comparisons.

Surprisingly, SLoM dramatically outperforms both algo-

rithms, mainly because much less time is spent for sparse

matrix operations. We assume this is because we do not try to

manually exploit any structural sparsity, but let CSparse [33]

take advantage of the overall sparsity. The fact that we

have more DOFs in poses than in features may contribute

to that being untypical for bundle adjustment. Interestingly,

RobotVision outperforms SLoM per iteration, which we

assume is due to its more sophisticated parameter control

in the Levenberg-Marquardt step.

D. Comparison with iSAM

As iSAM cannot handle BA, we compared it to SLoM on

problems included with iSAM as sample data sets. On 2D

pose adjustment problems, iSAM was about 5% faster with

hand-implemented Jacobians, but about three times slower

when using numerical differentiation. For 3D problems,

iSAM failed to converge in batch mode, probably due to

its use of Euler Angles.

VI. IMU INTEGRATION

Our odometry is provided by an IMU, i.e., gyroscopes

measuring angular velocity ωt and accelerometers measuring

acceleration and gravity at. Given a start pose and velocity,

IMU measurements can be integrated to an end pose and end

velocity using “dead reckoning”. Thus, referring to (1), the

state elements Xt contain the position ξt, orientation Rt ∈
SO(3) and velocity vt. The transition function g can then

calculate the next pose as follows:

Rt+1 = Rt · exp(δt · ωt), (4a)

vt+1 = vt + δt · (Rt · at − ag), (4b)

ξt+1 = ξt + δt · vt, (4c)

where ag is the gravity vector, δt the time between measure-

ments, and exp is the SO(3) exponential map calculating a

rotation from a scaled axis (Rodriguez-formula).

IMUs measure much faster than camera frame rates lead-

ing to a chain of poses without feature measurements. We

remove these to enhance performance. Thus, actually, the

state transition function g needs to calculate a pose Xt from a

pose Xt−k without explicitly calculating Xt−k+1, . . . , Xt−1.

Fortunately, g(Xt, ut) is linear in Xt, so by induction we get:

Rt = R0 ·

∆Rt

︷ ︸︸ ︷∏

i exp(δt · ωi) (5a)

vt = v0 − tδt · ag +R0 ·

∆vt

︷ ︸︸ ︷

δt ·
∑

i ∆Ri · ai (5b)

ξt = ξ0 + tδt · v0 −
t(t+1)

2 δt2 · ag +R0 ·

∆ξt
︷ ︸︸ ︷

δt ·
∑

i ∆vi (5c)

The clue is that now it is sufficient to accumulate ∆Rt, ∆vt,

∆ξt and ∆t = tδt only once for each pose relation, but when

evaluating g in (1) only (5) needs to be calculated.

VII. SENSOR CALIBRATION

Fusing measurements of multiple sensors requires a cross-

calibration. For our setup, this is a 6-DOF transformation

between both cameras and the IMU.



A. Stereo Camera and Inertial Sensor Calibration

As in [36], we use gravity as a vertical reference. For the

IMU frame, we measure gravity using its accelerometers. For

the camera, it is measured through the extrinsic parameters

while observing a horizontally placed checkerboard pattern.

Using these static measurements collected at different poses

we can compute the full transformation between both cam-

eras and the rotation between one camera and the IMU.

Since our sensors are not rotating fast, a manually determined

IMU-to-camera translation is sufficiently precise. In contrast

to [36], we formulate this as a combined non-linear LS

problem. We use OpenCV’s findChessboardCorners

and cornerSubPix to extract the checkerboard features,

and cvFindExtrinsicCameraParams2 provides ini-

tial guesses. Optimization is done by SLoM using the camera

model provided by projectPoints.

B. Tracker-Camera (Hand-Eye) Calibration

For evaluation, we used a Qualisys motion capture system

to track position and orientation of a set of tracking markers

mounted to the camera. Turning this into the camera ground

truth trajectory requires knowledge of the transformation

between the marker set and the camera which we determine

by adding the tracking system’s marker measurements to the

LS calibration problem. An initial guess is obtained by the

method of [37].

VIII. OVERALL SYSTEM PERFORMANCE

For overall experimental evaluation, we attached a stick to

our stereo head, for handling and to rigidly mount tracking

markers. We then recorded several trajectories through the

mock-up (Fig. 10, top) moving the cameras by hand. We

recorded camera data with 1024× 768 pixels at 10 Hz, IMU

data from an XSens MEMS IMU at 512 Hz and Qualisys

motion tracking data (ground truth) at 100 Hz.

Since working at 10 Hz is not realistic using our imple-

mentation we evaluated each run at 5 Hz, skipping every

other camera frame. We also downscaled camera images to

50% resolution. The complete data sets, source code and

tools are available from our website2.

A. Qualitative Evaluation

We compared each resulting trajectory to ground truth

(Fig. 6), obtaining rotational and translational errors over

time (Fig. 7). In two runs out of six our algorithm diverged

(expectedly) when near the end of the run features could not

be matched against the map for an extended period of time

– too long to be compensated for by the IMU. Otherwise,

we had an average error of about 1.0° and 13 mm, 95%

errors below 2.6°/38 mm and outliers up to 10.1°/57 mm.

We noted some spurious measurements in the ground truth,

which we assume to be responsible for some of the outliers.

In retrospect, we doubt that the motion tracking data is

sufficiently precise to serve as a source of ground truth.

2
http://www.informatik.uni-bremen.de/agebv/en/pub/hertzbergicra11/
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Fig. 6. Estimated trajectory of vSLAM (solid, blue) compared to ground
truth (dashed, yellow)
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Fig. 7. Error of estimated trajectory compared to ground truth.

B. Real-Time Capability

To check for real-time performance we traced the com-

putation times of each module over time. We found that

times for data association and IMU integration are negligible

(below 2 ms in total), thus we only further investigated

feature extraction and the SLAM back-end. Fig. 8 shows

accumulated computational costs for these modules over time

when processing data at 5 Hz. At the beginning, feature

extraction is clearly dominant, but over time the back-

end costs increase. After about 28 seconds the overall cost

exceeds 200 ms, thus technically losing real-time capability.

We have experimented with reducing the frame rate further

but ultimately SLoM needs to be extended to allow for

efficient incremental SLAM, e.g., by a two-level approach

such as [10] or [13]. In addition large-scale operation would

require global data-association for loop closing [38].

IX. DENSE STEREO AND VOLUMETRIC MAPPING

A feature based map is of little use to the human operator,

supporting whom was our search and rescue motivation.

Thus, we also build a map representing the 3D structure

of the environment: We first compute dense range mea-

surements from each stereo image pair, transform these

into world coordinates, and register them in a volumetric
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Fig. 8. Stacked computation time of feature extraction and SLAM back-end
over time.



Fig. 9. Top: A typical undistorted and rectified stereo image pair and the
resulting disparity map (center). Bottom: Preliminary Kinect experiment.

map (Fig. 10). This is the youngest part of the system but

provides a glimpse of what is possible.

A. Determining Dense Stereo Correspondence

For every pixel in one image we seek to find the pixel in

the other image of the same stereo pair that corresponds to

the same physical location [39]. In a nutshell, the problem

is first reduced to line search by undistorting and rectifying

the input images such that epipolar curves become parallel

lines with identical y-ordinates. For every pixel in the left

image the corresponding pixel (if any) in the right can then

be found in the same row. A commonly used search method

is called block matching and looks for the two pixels that

minimize a certain distance function (often the SAD) applied

to a pixel-neighborhood around both candidates.

We use the OpenCV functions stereoRectify,

initUndistortRectify and remap for undistortion

and rectification, the StereoBM class for block matching,

and reprojectImageTo3D to transform the resulting

disparity map back into metric coordinates which finally

is transformed from the rectified camera coordinate system

into world coordinates using the poses estimated by SLAM.

Block matching requires a pixel-precise calibration. We

have found that down-scaling by a factor of two increases

robustness against minor, 1-pixel differences and the loss in

resolution is negligible.

The algorithm works reasonably well but as illustrated

in Fig. 9 (top) the resulting disparity map is not as dense

as we had hoped for. It also has the well-known problem

of washed out object boundaries and occasional incorrect

matches. In future work, we intend to integrate available open

source implementations of other, more modern dense stereo

algorithms ([40], [41]). An alternative is the recently released

Kinect sensor [42]. Preliminary experiments (Fig. 9, bottom)

show that it provides nearly dense data except at depth

discontinuities and below the minimum range of ≈ 0.6m.

B. Probabilistic Volumetric Mapping

Our volumetric mapping component is based on Octo-

Map [43], a probabilistic map data structure that uses an

octree to store occupancy probabilites in voxels.

OctoMap implements mapping with known poses [27, §9]

and was originally designed for use with laser rangefinder

Fig. 10. The test environment and the corresponding volumetric map (1cm
voxels, 1m ground grid). Visual inspection reveals that all larger connected
blocks and more than half of the small blocks (< 10 voxels) in the map
actually exist in reality. Major parts of the environment, including the floor,
however, were not stereo-matched and are missing in the dense model. The
attached video also shows how the map is built incrementally.

data resulting in an interface that expects range scans. Given

the disparity map and the camera pose we can easily convert

the dense stereo output into this format – each pixel in the

disparity map defines the endpoint of a range ray.

At present, we use OctoMap to store the raw input data

required for mapping (camera trajectory, range information)

upon a key-press and later generate and visualize the map in

the offline viewer octovis. In future work, we will inves-

tigate real-time operation. Currently, OctoMap spends most

time in registering every voxel along a ray as unoccupied.

X. LESSONS LEARNED AND CONCLUSIONS

Our main conclusion is that it is actually possible to build

a dense visual SLAM system from open source components

with moderate effort (4 person months in our case). This

shows that the field has both a remarkable degree of maturity

and a positive attitude towards open source. We follow this

line and also release our implementation and dataset.2

In detail, we found SURF as detector and descriptor

to be the best compromise between speed and reliability.

For efficient matching, a brute-force but highly optimized

(SSE, multi-core) implementation clearly outperforms more

sophisticated algorithms. We believe this is remarkable,

because the scientific community prefers complex algorithms

over tuned implementations. For the SLAM back-end, SLoM

surprisingly outperformed sba and RobotVision. It also was

the only one allowing us to integrate IMU data. For dense

mapping, the main qualitative bottle-neck is stereo matching,



where the OpenCV block-matcher we used only matched a

fraction of the whole environment.

As an outlook, there is still room for improvement. A real-

time detector as reliable as SIFT would be very valuable.

Our system operates in real-time as long as the SLAM

back-end (i.e., batch BA) can handle the map size. There

is still no library for incremental BA that could overcome

this growth in computation time. The related work shows

various methods to address this issue, but does not provide a

black-box implementation as for batch operation. This should

be a challenge for the SLAM community that has a strong

tradition in incremental methods.
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