
Chapter 9

CookIIS – A Successful Recipe
Advisor and Menu Creator

Alexandre Hanft, Régis Newo, Kerstin Bach,
Norman Ihle, and Klaus-Dieter Althoff

Intelligent Information Systems Lab
University of Hildesheim, Germany
surname@iis.uni-hildesheim.de

Abstract. CookIIS is a successful Case-Based Reasoning web ap-
plication that recommends and adapts recipes or creates a complete
menu regarding to the user’s preferences like explicitly excluded in-
gredients or previously defined diets. The freely available application
CookIIS won the 2nd Computer Cooking Contest (CCC) in 2009 af-
ter winning the Menu Challenge at the 1st Computer Cooking Con-
test in 2008. The chapter explains the realisation of CookIIS starting
with the requirements of the first CCC until the final CCC’09 ver-
sion. CookIIS uses a an industrial strength CBR tool, the empolis
Information Access Suite (e:IAS). However, it goes beyond the stan-
dard way of building a CBR application based on e:IAS. This chapter
will describe the CookIIS system in detail, especially the knowledge
modelling, case representation and adaptation processes.

1 Introduction

The cooking domain, especially finding the right recipes for entertaining
guests or just preparing dinner for someone’s family, is very common, so
everybody experiences those problems once in a while. CookIIS is an exam-
ple that explains how Artificial Intelligence (AI) methods can be applied to
enrich everybody’s life. It is easy to understand the knowledge model because
everyone knows most of the ingredients from her/his own kitchen and many
people have an (at least basic) understanding of the cooking domain. Never-
theless only a few are gifted chefs. Most of us sometimes need some help and
suggestions. Everybody is interested in new recipes when it comes to cooking
something with given ingredients.

Our project CookIIS that is described here is a CBR-based recipe search
engine. Roughly spoken, it searches in a case base for suitable recipes with
possible ingredients that are given by a user. According to this information
CookIIS also considers ingredients the user dislikes or belong to a certain diet.
If recipes with unwanted ingredients are retrieved, CookIIS offers adaptation
suggestions to replace these ingredients.

S. Montani & L.C. Jain (Eds.): Successful Case-Based Reasoning Appl., SCI 305, pp. 187–222.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

188 A. Hanft et al.

The Computer Cooking Contest is an annual competition with the aim
of comparing different technologies and teams facing the same challenge and
attracting more people to AI with an easy-to-understand example. At this
competition computer programs have to find and adapt recipes according
to users wishes. The Computer Cooking Contest offers a set of recipes that
we use for testing, evaluating and further developing our system. In 2008
and 2009 the tasks went from retrieval of recipes, a negation challenge and
adaptation challenges to the creation of a complete three course menu from
given ingredients.

CookIIS uses a very detailed domain model, that is described first in [1].
It was created using the empolis:Information Access Suite (e:IAS) [2]. E:IAS
provides a rule engine for two kinds of rules that are heavily used by CookIIS.
The first, completion rules, enhance cases and queries as well as they restrict
the result before the retrieval. The second, adaptation rules, modify cases
after the retrieval.

The second part of this chapter describes the Computer Cooking Contest,
the motivation behind it and the results of the two competitions that took place
until 2009. Section 3 gives an overview of e:IAS and its possibilities as well as an
outline of the common architecture of applications built with e:IAS. Next, we
describe in section 4 the requirements regarding the Computer Cooking Con-
test and how we meet them in CookIIS with the knowledge modelling, the case
representation, the similarity measure definition, the determination of recipe’s
origin and the handling of diets as well as the menu creator. We proceed in
section 5 with the explanation of three different adaptation approaches used
in CookIIS. Afterwards, in section 6, we depict the design and technique of
CookIIS’s web-based GUI and its feedback component. We finish with a con-
clusion, discussing related work and give an outlook on future work.

2 Computer Cooking Contest

This section describes the aim, progress and outcome of the Computer Cook-
ing Contest. Furthermore, we present the performance of CookIIS during the
first competition in 2008 and second competition in 2009.

The Computer Cooking Contest(CCC) was announced in autumn 2007 and
took place the first time at the ECCBR 2008 in Trier. The motivation behind
this competition is the comparison between different tools, technologies and
teams facing the same challenge, to foster new developments in Artificial
Intelligence (AI), to attract more students to AI, especially CBR, and to
have an attractive and easy-to-understand example for people from outside
AI. The variation or adaptation of recipes according to some restrictions
as a kind of human creativity is essential for good cooking [3] and it is a
challenging issue for AI, especially CBR, research. The CCC is proposed as
an open competition, not restricted to any technology. The only restriction
is the given recipe base.

CookIIS – A Successful Recipe Advisor and Menu Creator 189

After a successful qualification, the software systems met in a real com-
petition and were evaluated with respect to scientific/technical quality by
researchers and with respect to the culinary quality by a real chef. The scien-
tific and technical quality subsumes the technical originality of the approach,
the usability of the software, as well as their maintainability and scalability.
The chef reviewed the offered recipes whether they are appropriate to the
query, tasty, cookable and creative1.

Each year the Computer Cooking Contest consists of the main discipline,
Compulsory Task, and at least two additional challenges. In 2008 a Negation
Challenge was offered which fosters the handling of unwanted ingredients. This
was replaced by the Adaptation Challenge since 2009. Until 2009 the second
challenge was the Menu Challenge. In 2010 this challenge were replaced by an
open challenge that focuses on various challenges arising from CBR research2.
These problems are: working with numeric quantities, considering adaptation
as a planning task or discovering adaptation knowledge (from the web).

2.1 First Computer Cooking Contest in 2008

Six teams attended the finale of the first CCC in September 2008. In an
one-and-half-hour show all teams had to demonstrate live in public how their
systems performed with the contest queries. It was accompanied by a work-
shop where each team presented the technical and scientific details of their
project.

The system “What’s in the fridge?” awarded in the Compulsory Task as
European Champion on Computer Cooking. They used an active learning
technique to grab the necessary meta data [4]. Team “TAAABLE” [5] was
the biggest team from three French universities and got the European Vice
Champion title. The Team of “ColibriCook” [6] captured a victory in the
Negation Challenge with a suggestion of grapefruit and white wine instead of
the forbidden lemon in the original recipe with poached fish. CookIIS (former
CCCIIS) achieved the third place in the Compulsory Task and attained the
Menu Challenge. They won with a Chinese menu composed of a Ginger Apple
Salad, Chinese Steamed Pork Dumplings (Shiu Mai) and (not perfect) a cereal
bar as a dessert.

2.2 Second Computer Cooking Contest in 2009

For 2009 a different and larger recipe base was provided. However, the
structure and contained information are comparable to recipe base of 2008.
According to the good results of the participants in 2008 the handling of
unwanted ingredients was now assumed as a usual feature in the Compulsory

1 http://www.wi2.uni-trier.de/eccbr08/index.php?task=ccc, last visited 2010-03-
18.

2 http://vm.liris.cnrs.fr/ccc2010/doku.php?id=rules, last visited 2010-03-18.

190 A. Hanft et al.

Task. Instead of the negation challenge the adaptation challenge was proposed
in 2009. For it a different and smaller set of pasta recipes was provided, where
the preparation was divided into numbered steps.

The finale of the 2nd CCC took place jointly with the ICCBR in July 2009
in Seattle, WA, where five teams competed for the awards. CookIIS awarded
the World Champion on Computer Cooking 2009 (Compulsory Task) with a
pizza with leek. Of course, there was no pizza with leek in the recipe base,
but CookIIS retrieved a “No Meat Bean Burn Pizza” and suggested to replace
the contained onions with the missed leek. The Team from France with their
system “WikiTAAABLE” [7] defended the Vice Champion title. The team
“CookingCAKE”[8] succeed in the Menu Challenge3. Three teams continued
their engagement and attended on two finals: (Wiki)Taaable[7], JadaCook(2)
[9], and CookIIS. Next CCC is planned during the ICCBR 2010 in Alexandria
and the CookIIS team is looking forward to attend the finale as well.

3 Information Access Suite

This section introduces the basics of the empolis Information Access Suite
(e:IAS), that is used to build CookIIS. E:IAS [2] is a successful industrial
strength software of empolis, an attensity group company (former a Bertels-
mann subsidiary). E:IAS is now branded as empolis research & discovery suite
(EDR) [10]. The remaining part explains in detail the system architecture,
the knowledge modelling, the workflow organisation, the similarity measure
definition and possibility for retrieval and the rule engine of e:IAS.

The Information Access Suite is a framework to build and configure
knowledge-based applications. They are completely JAVA-based (web)client-
server applications and is built on top of third-party software like Tomcat.
Furthermore, the communication between the components of e:IAS is done
via RMI. For the web client Java Server Pages (JSP) is the most powerful
technique for accessing the functionality of e:IAS. Nevertheless other tech-
niques like HTML plus CGI for simpler web interfaces are feasible. We use
JSP for our web client to realise the web-based GUI of CookIIS that is de-
scribed more detailed in section 6.

E:IAS is accompanied with a knowledge modelling tool called Creator that
is based on Eclipse. Creator is a GUI tool for the configuration of an e:IAS-
based application, which itself is created as an e:IAS project based on one of
the delivered project templates. The whole configuration of an e:IAS project
is defined in a set of XML-based languages and can be done either by using the
Creator or by editing the XML files itself. The most used components of the
Creator are the Model Manager, the Data Manager and the Pipe Manager.
Others are the Indexer, the Index Spy, the Query Tester, the TextMiner
Tester, the Ontology Builder, the DocMarker and the Snippet Editor. The
3 http://www.wi2.uni-trier.de/ccc09/index.php?task=results, last visited 2009-

12-21.

CookIIS – A Successful Recipe Advisor and Menu Creator 191

architecture of an e:IAS-based application is explained in the next section as
well as the Model Manager and the Pipe Manager in the following sections.

3.1 System Architecture

Figure 1 shows the architecture of a web-based application that has been
built using e:IAS. An e:IAS-based application consists of several components
and is designed in a 3-tier architecture. Data sources, connector and iterator
represent the data layer at the bottom and the JSP Client at the top stands
for the presentation layer. The remaining components in the middle of the
figure belong to the business layer.

Fig. 1. The architecture of e:IAS used for CookIIS

Connectors are used to connect to the Data Sources. With the aid of
Iterators the data is split into useful parts (e.g. cases). This data flow is
controlled by the e:IAS Server. Knowledge Models are built to define the
objectives and concepts the e:IAS project has to deal with. Knowledge Models
correspond to the knowledge container vocabulary [11]. The TextMiner takes
the imported data and extracts modelled concepts.

Furthermore, a Rule Engine can transform the data during indexing as
well as during retrieval. Similarity Measures should be defined to determine
the similarity globally between a query and a case as well as locally between
attribute values (see section 3.4). The Search Engine can be realised through

192 A. Hanft et al.

several kinds of different retrieval techniques (called Knowledge Server). This
is for instance the KS/Index realising a Case Retrieval Net (CRN)[12].

The Request Broker accepts requests from a JSP Client and forwards them
to the Server, which delegates the search for appropriate cases to the Search
Engine. Afterwards the Request Broker sends the response back to the client.

3.2 Model Manager

The Model Manager is one of the main components of the Creator. It is used
to create types and attributes of a case, to configure the analysis mapping
and to edit the rules for the completion of meta data and adaptation. The
types of attributes are modelled as classes, which themselves are based on
predefined types or even text. To allow more than one value in an attribute
of a case, sets can be built based on these classes.

Especially for text types all possible terms for concepts in different lan-
guages can be added. These terms are considered by the TextMiner during
stemming the words of free text (in a case or query) to their principal form
in order to recognise concepts. For numeric values patterns can be defined to
extract numbers from free text.

Additionally, the concepts can be organised in one or more taxonomies.
Furthermore, (at least) one special class, an aggregate, has to be defined
that represents the complete case (case format) with all contained attributes
belonging to predefined types or user-defined classes. The query is also an
instance of the same aggregate. The definition of concepts, types and aggre-
gate classes belongs to the Knowledge Models. All concepts correspond to
the (case) vocabulary in common CBR terminology [11]. Attributes can be
assigned to certain views to appear only during the tasks in which they are
relevant and necessary. These views can be set in JSP code or in the pipelets
(see next section) to transfer only parts of the attributes from a case or query
between the e:IAS Server and the JSP Client.

3.3 Workflow Organisation

Two major tasks have to be accomplished by an e:IAS project. The first is
extracting data and make it available for searching and the second is searching
for solutions according to user requirements. For the first major task the
e:IAS project has to tap the data sources, segment the data, recognise the
catchwords in the data as well as build up an index structure for the retrieval.
The second major task should at least recognise the catchwords in the query
and find similar cases. Furthermore, the query could be enhanced with data
and the solution might be adapted to fit the query.

All tasks that should be performed by e:IAS are organised with the aid
of a workflow model. A workflow here is called pipeline. Single steps in such
a pipeline are called pipelets representing components mentioned in section
3.1 as well as all other executable services. A pipeline establishes a black-
board, where each pipelet can read and write down the objects on it. To run

CookIIS – A Successful Recipe Advisor and Menu Creator 193

an e:IAS project a Process Manager is started to work off the configured
pipelines. More precisely, the e:IAS Server (from figure 1) is an instance of
the ProcessManager.

Many predefined pipelets representing distinct services are available. Addi-
tionally, user-defined pipelets can be implemented as it is described in section
5.5. Pipelines and both kinds of pipelets can be configured within the Creator.
The Creator supports several project templates with preconfigured pipelines.
An e:IAS project has at least three pipelines. All pipelines are configured in
the Pipe Manager component, except the special Conncect Pipeline, which
is configured in the Data Manager component.

The first pipeline writes the data in the retrieval structure and is performed
once for each new or changed item of the data sources. Usually this is done
for the whole case base while the applications starts. Given by the project
template this pipeline is denoted as InsertCaseProvider and can be seen on
the left hand side in figure 2. It performs (at least) the following tasks each
represented by a pipelet:

1. It connects to the data sources, splits them into pieces,
2. It analyses the data (text) to recognise the concepts with the help of the

TextMiner,
3. It adds, if necessary, additional information to each case with Completion

Rules, and
4. It inserts the cases into the retrieval structure (Knowledge ServerwithCRN).

Fig. 2. The two pipelines in an e:IAS project

194 A. Hanft et al.

Connect refers to the special pipeline modelled in the Data Manager. To-
gether with the InsertCaseProvider pipeline they fulfil the first major task.

The third pipeline (standard name is Search P ipeline) is processed for
each user request (in CookIIS: each search or recipes) and performs the second
major task mentioned at the beginning of this section. This pipeline can be
found on the right hand side in figure 2. It

1. Analyses the free text of the query with the help of the TextMiner,
2. Adds, if necessary, additional information to the query with Completion

Rules,
3. Determines the most similar cases from the retrieval structure (KSIndex-

Pipelet), and
4. Performs adaptation on the retrieved cases with Adaptation Rules.

Before the result is sent back to the requesting client. According to other
necessary tasks more pipelines can be created and configured.

3.4 Similarity Assessment

The similarity determines appropriate or most fitting cases according to the
query. The global similarity between two cases or the query and each case
follows the local-global principle [11]. Hence, the similarity is calculated in
two steps.

For each class a similarity measure can be defined, which determines (except
for aggregates) the local similarity. For numeric types different mathematical
functions can be parameterised to define the similarity between two values. For
non-numeric types the following symbolic similarity measures are available: ta-
ble, a (non-configurable) text similarity as well as measures based on a tax-
onomy and taxonomy-path similarity. Additionally, a combination taking the
maximum or minimum value of the aforementioned measures can be used. The
table similarity measure uses explicitly defined values for pairs of certain values
(concepts) and can be initialised by copying the values from other measures.

For the taxonomy measure a weight is assigned to each node in the taxon-
omy with its relative depth within the whole taxonomy (from 0 for the root
to 1) and the similarity between two nodes equals the weight of the deepest
common parent node.

The taxonomy-path similarity also bases on an order and determines the
similarity according to the shortest path from the query value to the case
value. Therefore it calculates the similarity as the product of a way-up-factor
for each step from the query value to the most specific common concept and
a way-down-factor for each step down to the case value.

First, the local similarity between values of the same attributes are calcu-
lated according to their defined similarity measure. Within an aggregate class

CookIIS – A Successful Recipe Advisor and Menu Creator 195

all attributes are assigned to a weight (even 0), which represents the relative
(to the weight of other attributes) importance of an attribute for the whole
case. Second, the global similarity is subsequently determined as weighted
sum of these (local) attribute similarities and their assigned weights.

3.5 Retrieval

E:IAS offers several retrieval engines determining the similar cases accord-
ing to the above defined similarity: Linear retrieval, index retrieval, full text
retrieval, and others that work with SQL databases, XPath or LDAP. Knowl-
edgeServer/Linear does not need a retrieval structure but calculates the sim-
ilarity for each case one after another during each retrieval.

KnowledgeServer/Index is more efficient and appropriate for most pur-
poses. It realises a Case Retrieval Net (CRN)[12] that performs well with
large cases and a high amount of cases and can be used for Structured as
well as Textual CBR [13].

A Case Retrieval Net [12] is a graph and consists of two types of nodes:
Information Entity (IE) and case descriptor. An IE represents a concept or
a particular attribute-value pair. Furthermore, weighted similarity edges are
in the CRN between similar IE nodes, and relevance edges between a case
descriptor and all IE nodes contained in this case.

The retrieval starts with the activation of all IE nodes corresponding to
IEs found in the query. Second, in the propagation step all IE nodes, that
are similar to activated IE nodes, are also activated over the similarity edges
with a strength according to the similarity weight. Third, the activation of all
IE nodes is accumulated for each case using a relevance function (following
the relevance edges). Consequentially, the case (descriptor) with the highest
activation represents the most similar case according to the query.

The functionality to insert new cases into the CRN and to retrieve similar
cases from them is implemented by two distinct services and represented by
two pipelets KnowledgeServer/Index InsertPipelet and KSIndexPipelet.

3.6 Rule Engine

Rules can be used for automatic modification of the query as well as the
cases. Two kinds of rules are available in e:IAS: completion rules and adap-
tation rules. Completion rules are executed before building the case index or
before the retrieval if its corresponding CompletionRulesPipelet is inserted
into a pipeline (see figure 2). Their purpose is to enhance cases or queries
with meta-information or modify attributes. Adaptation rules are executed
after the retrieval to modify retrieved cases, if their corresponding Adapta-
tionRulesPipelet is inserted into a pipeline.

196 A. Hanft et al.

Like in rule-based systems e:IAS rules follow the classic IF ... THEN ...
structure. The Creator offers a rule editor with auto-completion support,
however it does not detect all syntax errors like misspelled variable names.
Both kinds of rule types use the same e:IAS specific syntax, which is stored
after the compilation in the format of the Orenge Rule Markup Language
(ORML), an XML language. The only difference in syntax between both
kinds of rules remains in using a prefix for accessing the query or case.

Completion rules can only access one kind of objects depending on the
pipeline: cases during the insertion process and the queries during the search
before the retrieval (KnowledgeServer pipelet). Hence, a prefix is neither nec-
essary nor possible. Adaptation rules have, apart from a read access to the
query object (with prefix @query), write access to the retrieved cases (prefix
@case) since they are executed after the retrieval.

A large amount of predefined functions helps to manipulate single values as
well as value sets. Nevertheless, these functions have some limitations which
will be explained in more detail using examples in section 5.2.

To control the order of the execution of rules they can be prioritised. To
execute different subsets of rules in different pipelines or places in the same
pipeline each rule can be assigned to a certain context.

4 The CookIIS Project

CookIIS4 was initiated following the call for the first Computer Cooking Con-
test (CCC)5 in autumn 2007. Although the CCC does not prescribe a certain
technique, it seemed that according to the requirements and the context of
the participants using case-based reasoning as underlying technique would
be (among others) a promising approach.

This section describes how CookIIS meets the requirements of the Com-
puter Cooking Contest by applying its knowledge modelling, the case repre-
sentation, the similarity measures, the determination of recipe’s origin, the
handling dietary practices as well as the creation of a three-course menu.

4.1 Requirements of the Computer Cooking Contest

Each year the Computer Cooking Contest was divided into a main discipline
Compulsory Task and two additional challenges. The requirements on CookIIS
arise from the different challenges and the general rules of the CCC as well as
the provided data. The Computer Cooking Contest is described in section 2.

The data basis was given as an XML file containing a fixed set of recipes
with only three attributes: a title, a list of ingredients as text and preparation
instructions as text.

According to this simple XML structure the participants were faced
with the tasks of recognising the concepts from pure text and adding all

4 but called CCCIIS until the first CCC.
5 http://www.wi2.uni-trier.de/eccbr08/index.php?task=ccc

CookIIS – A Successful Recipe Advisor and Menu Creator 197

additional and required information (automatically). Summing up, we col-
lected the following requirements:

– provide an easy-to-use (web-based) user interface,
– suggest at least 5 recipes which fit the user’s wishes as best as possible,
– recognise the concepts for food, preparation, cuisine et cetera from a recipe,
– add additional meta information automatically or by hand to the given

recipes for the type of meal and cuisine,
– handle unwanted ingredients,
– consider certain diets like low-cholesterol, gout, non-alcoholic, nut-free or

vegetarian,
– handle other restrictions like the usage of a seasonal calendar,
– adapt the complete recipe with its preparation steps with a separate set

of recipes (Adaptation Challenge in 2009), and
– create a three-course menu

We met these requirements with certain parts of e:IAS. When the user pro-
vides possible ingredients, CookIIS searches for suitable recipes in a case base.
Thereby it considers ingredients the user does not want or those excluded ac-
cording to certain requested diet. If recipes with unwanted ingredients are
retrieved, CookIIS offers adaptation suggestions to replace these ingredients.
Besides the retrieval and adaptation of recipes it also provides recipes for
a complete three course menu from the given ingredients (and maybe some
additional ones).

4.2 Case Representation

Although free text is used as input, the case representation is based on Struc-
tured CBR, because this allows a more detailed adaptation than using Tex-
tual CBR (TCBR)[14]. We modelled eleven classes for the different kinds of
ingredients (basic ingredients, fish, fruit, drinks, meat, milk products, minor
ingredients, oil and fat, spices and herbs, supplements and vegetables). More-
over, some classes for additional information (e.g. type of meal, type of cuisine,
tools, season et cetera) were created. For these classes we modelled about 2000
concepts (which are possible instances for the ingredient classes) of the cook-
ing domain. Most of the refinements of the modelling for the 2nd CCC in 2009
were based on [15]. Figure 4 exemplifies a part of the taxonomy of the class
fruit concerning the modelled nuts. It should be noticed that we do not always
follow the botanic point of view, but focus on the cooking domain.

Example: From the botanic point of view almonds and coconuts are not, in
contrast to walnuts, real nuts. They are drupes. Nevertheless, users assign al-
monds and coconuts as nuts. Hence we modelled them as sub-concepts of nuts.

Most concepts of the classes are structured in specific taxonomies to model
a hierarchy of (almost) all ingredients. For each ingredient class we built set
types to allow multiple values for each ingredient class of the recipe. The
attribute names for the ingredients start with Att ingredients .

198 A. Hanft et al.

Fig. 3. The most important attributes of the aggregate for a recipe or query
together with their type, weight and views

CookIIS – A Successful Recipe Advisor and Menu Creator 199

Fig. 4. This is a part of the fruit taxonomy considering the modelling of nuts.
Almonds and coconuts are nuts from the user’s perspective.

Figure 3 shows the most important (regarding the modelling) attributes
of the aggregate for a recipe or query along with their type (second column),
weight (third column) and views (last three columns).

Example: The attribute Att Extra Exchanges Text collects all the adapta-
tion advice generated during the adaptation (see section 5), but it is irrelevant
for the similarity (weight is zero).

The attributes Att Query In as well as Att Forbidden In appear in the view
“View Input” and store the user input during a query. The view “View Result”
in the right column in figure 3 marks only those attributes as visible which are
used to represent the retrieved recipe to the user, for instance the attribute
Att Recipe Processing storing the preparation instructions.

Although we had to model a different aggregate class for the Adaptation
Challenge, we used the same modelled concepts and classes. Indeed, it had
one additional, more specific attribute for Pasta, because the focus of this
challenge lay on pasta recipes.

4.3 Type of Meal and Type of Cuisine

The determination of the type of meal and cuisine for a recipe was an-
other requirement of the CCC. Therefore we built separate types with corre-
sponding taxonomies to model the different types of meal (e.g. starter, main
course, dessert as well as soup, ice cream) and cuisines (e.g. Italian, Chinese,

200 A. Hanft et al.

Mediterranean). For both we used sets of completion rules to add this meta
information to the recipes. The type of meal is determined by two main as-
pects: indicative keywords in the recipe title and indicative (combination of)
ingredients [16]. The assignment of the type of cuisine to a recipe follows
three aspects (more details in [16]):

1. identification of the recipes origin in the recipe title,
2. identification of characteristic strings or meals in the recipe title, and
3. identification of ingredients (mainly spices and herbs) that are character-

istic for a type of cuisine.

4.4 Similarity Assessment

As usual in CBR we defined at first a local similarity measure for each type
to define the similarity between two attribute values. Second, we set a global
similarity measure to compare the query with a case [11]. For each ingredient
class (except Minor ingredients) at least one taxonomy was built. Based on
those a taxonomy-based similarity measure calculates the similarity value be-
tween two concepts as the product along the path from one node to the other
in the taxonomy. We chose a factor of 0.75 for a generalisation step (upwards)
and a slightly higher factor of 0.8 for each specialisation step (downwards).
Therefore each parent concept has a similarity value of 0.75, each child con-
cept one of 0.8 and each sibling concept a value of 0.75 * 0.8 = 0.6. A nephew
concept has in the same manner a similarity of 0.75 * 0.8 * 0.8 = 0.48 (one
step upwards and two steps downwards). The advantage of this approach
is that we have to set only two factors, but accordingly each pair of con-
cept and parent concept respectively child concept has the same similarity
value.

For pairs that should have an individual similarity value, we built a cus-
tom table similarity measure to define the similarity between certain pairs
explicitly. Afterwards we configured a combined similarity measure taking
the maximum value of both measures as the local similarity measure for each
attribute.

Example: Figure 5 shows the similarity values for all concepts in rela-
tion to the concept “nectarine”. Following the path from nectarine one step
upwards (0.75 for generalisation) and one step downwards (0.8 for specialisa-
tion) “peach” has a similarity of 0.75 * 0.8 = 0.6 according to the taxonomy
path similarity measure. However, in the table similarity measure a similar-
ity of 0.9 between “nectarine” and “peach” is defined, hence the combined
similarity results in 0.9.

For the calculation of the global similarity we assigned a weight to each
attribute of the aggregate (or even zero if this attribute is irrelevant for the
retrieval). In CookIIS, important attributes in terms of similarity are meat,
fish, vegetable and the species of a recipe, which can be seen their weight ≥ 4
in the third column of figure 3.

CookIIS – A Successful Recipe Advisor and Menu Creator 201

Fig. 5. Part of the taxonomy for fruit showing drupe concepts. This part shows
the similarity values based on a taxonomy path similarity measure for all concepts
with respect to the concept “nectarine”. For instance, following the path one step
upwards (0.75 for generalisation) and one step downwards (0.8 for specialisation)
“peach” has a similarity of 0.8 * 0.75 = 0.6.

Accordingly the global similarity between the query and a case is set as
weighted sum of the local similarities as follows:

simglobal =
1

∑
weightlocal sim

×
(
6 × (simmeat + simspecie) + 5 × simvegetable

+ 4 × (simfruit + simtypeOfMeal + simdishCategory)
+ 3 × (simsupplement + simtypeOfCuisine)

+ 2 × (simfish + simbasicIngr. + simmilk)+ 1×
(∑

simothers

))

It is calculated automatically during the execution of the KSIndexPipelet.

4.5 Modelling Dietary Practices

CookIIS allows the user to request recipes according to certain dietary
practices, which are currently vegetarian, nut-free, non-alcoholic, gout, low-
cholesterol and seasonal vegetable. The first three came from the the first
CCC, but we kept them for the second CCC, where the last three were re-
quired for the second CCC.

Furthermore, the user has the possibility to exclude one or more ingredients
explicitly. We consider both as the same kind of restriction and we denote

202 A. Hanft et al.

such ingredients as forbidden. In general we propose (at least) five methods to
handle them (based on [17]) guiding our retrieval and adaptation afterwards:

1. Ignore all recipes containing forbidden ingredients
2. Remove the forbidden ingredients from the recipe
3. Replace the forbidden ingredients with other ingredients, according to the

following principles:

a. Replace with similar ingredients
b. Replace with ingredients according to experience (e.g. from community)
c. Replace with ingredients according to certain explicit modelled replace-

ments

4. Modify the similarity measure to decrease the similarity of recipes con-
taining forbidden ingredients

5. Inform (the user) that a certain constraint is not met

We chose different ways to handle these restrictions, first depending on the
kind of restriction (diet) and second depending on the ingredient category.
For method 1 we applied completion rules which extend the query before the
retrieval is executed with some additional attribute-values and filters.

Example: If the user chooses a nut-free diet, all cases containing the concept
“nut” or a child concept should be ignored (see figure 4). For that we set a
filter to the concept “nut” in the fruit taxonomy using a completion rule.

For the non-alcoholic diet a filter to the concept “alcohol” in the “drink”
taxonomy was set to exclude all recipes containing alcoholic ingredients
(method 1). For the vegetarian diet all cases containing a concept from the
taxonomies for meat and fish were excluded, because we cannot offer a good
replacement for these main ingredients. Additionally, we marked minor in-
gredients from animal origin as forbidden with the aim of replacing them
through adequate ones during the adaptation process.

If users choose to use seasonal ingredients and certain ingredients of a recipe
are not available, we inform them that these ingredients are only available
from storage (method 5) [16]. Otherwise, we advice a replacement with an-
other given ingredient. The information, in which months which ingredients
are freshly available, are in storage or have to be replaced with valid replace-
ments, was given as a table and transformed into a set of adaptation rules.

Example: If the user asks for a recipe with asparagus and demands the
seasonal restriction for August to be considered, a retrieved recipe with as-
paragus will be enhanced with the hint that fresh asparagus is not available in
August (only fresh in June and July). Otherwise, in October and November
a replacement with fresh salsify is advised.

A list of recommended and not recommended ingredients is given for the
gout and the low cholesterol diet. A set of completion rules is built that
includes all recipes with preferable ingredients and excludes all recipes with
non-preferable ingredients (method 1) [16]. Here we could not use our usual
similarity-based replacement, because the applicability in case of gout or the

CookIIS – A Successful Recipe Advisor and Menu Creator 203

amount of cholesterol in an ingredient is not modelled in the taxonomies.
Example: Milk that is not recommended for cholesterol diet in contrast to
low-fat milk which is a child concept of milk.

4.6 Three-Course Menu Creator

With regard to the Menu Challenge CookIIS is capable to create a three-
course menu with a starter, a main course and a dessert. The underlying as-
sumption is that all three dishes shall belong to the same origin. The user can
state desired and unwanted ingredients for starter, main course and dessert
separately. At first the best-matching main course is retrieved to determine
the type of cuisine that is used to restrict the subsequent requests for the
starter and the dessert. Some recipes can be equally offered as starter and
as main course. However, CookIIS ensures that not the same dish is offered
as starter and main dish. If necessary, it offers the second-best instead of the
best-matching recipe.

5 Adaptation in CookIIS

Adaptation of solutions from retrieved cases is a central part of case-based
reasoning [18]. The importance of a good adaptation increases if the case
base is restricted to a small number of cases or if the variation of problems to
be solved is very high. Nevertheless, adaptation has not been the important
topic in recent years of CBR research [19]. Often adaptation means justifying
values in a bounded range [20] and is done via rules created and maintained
by a domain knowledge expert or system developer [21]. Compared to the
whole variety of favoured ingredients, the provided recipe base is too small.
We assume that even a recipe base of a hundred thousand recipes does not
cover all possible combinations of wanted and undesirable ingredients. Hence,
we need to adapt the given recipes.

This section describes three different kind of adaptations we use in CookIIS.
We start with the model-based adaptation and afterwards we analyse its
shortcomings. According to the shortcomings we investigate by the model-
based adaptation we describe the idea, implementation and evaluation of the
community-based adaptation, which collects adaptation advice from cooking
communities on the web. A least we explain how the in-place adaptation
transfers the adaptation advice from the conceptual level to the text of the
recipes and how this is integrated into e:IAS.

We denote ingredients that are excluded by a diet or explicitly by the user as
forbidden ingredients. If a forbidden ingredient occurs in a retrieved recipe we
consider it as critical (for this recipe) because it has to be omitted or replaced.

Due to the amount of ingredients we cannot model a replacement advice for
each single ingredient by hand or by interviewing experts. Our adaptation
approaches share a certain generality in the used methods to be able to
transfer these methods to other domains. Nevertheless, to assure certain a

204 A. Hanft et al.

level of applicability we restrict the replacements to the same class as the
replaced ingredient. Of course, replacements from another ingredient class
are imaginable, but in this case we had to spend much effort to gather these
pairs of original and replaced ingredient by hand or use other techniques to
collect this information from communities.

5.1 Three Kinds of Adaptation

CookIIS features several kinds of adaptation methods. Our standard is the
model-based adaptation working for all concepts with a similarity measure
modelled in CookIIS. According to some shortcomings of this approach [17]
we enhanced it with a second approach: the community-based adaptation.
With this approach we gather adaptation knowledge from internet commu-
nities using the domain model that usually exists in structured CBR appli-
cations [14]. The third approach, the in-place adaptation, is dedicated espe-
cially to the adaptation challenge. It changes the ingredient list as well as the
preparation instructions directly in the pasta recipes considering also parent
concepts and plural or abbreviated forms, whereas both preceding approaches
consider only the concept names.

While executing a query unwanted (forbidden) ingredients are collected in
extra attributes of the case (starting with Att Forbidden Ingredient , see
figure 3). The components of all three approaches access these attributes to
determine which concepts of the recipe are critical and should be replaced.

Example: If a user asks CookIIS for tomato, eggplant and chicken but
wants neither mushrooms nor beans, then the attribute Att Ingredient Meat
contains chicken and Att Ingredient Vegetable owns tomato and eggplant.
The attribute Att Forbidden Ingredient Vegetable is of the same type as the
last one and contains mushroom and bean to indicate forbidden vegetables.

Integration of the three Approaches. All three adaptation approaches
are executed sequentially and each approach uses the results of the preceding
one. First, the community-based adaptation is performed. For those forbid-
den ingredients where no community-based replacements can be offered, the
standard model-based adaptation is carried out secondly. Both approaches
only add adaptation advice in an extra text attribute of retrieved recipes but
leave all attributes for ingredients and preparation unchanged. In contrast,
the third approach changes the ingredient list and preparation text traceably
according to the advice of both preceding approaches.

The integration of the three approaches is realised with three different
pipelets. A user-defined pipelet for the community adaptation is inserted into
the given Search pipeline before the AdaptationRulesPipelet implementing
the model-based adaptation (compare figure 2). The in-place adaptation as
third approach is realised as another user-defined pipelet and integrated after
the AdaptationRulesPipelet in the same pipeline. All three approaches are
described in the next sections.

CookIIS – A Successful Recipe Advisor and Menu Creator 205

5.2 Model-based Adaptation

The model-based adaptation is realised by a set of adaptation rules executed
by the rule engine of e:IAS after the retrieval of similar cases. Especially for
the handling of sets of attributes (multiple values) a couple of set-oriented
functions are used. The general scheme of this adaptation approach is to
determine critical ingredients (according to a certain diet or explicitly un-
wanted) and replace them with some similar ingredients of the same class.
This approach works on the defined similarity measure (and the underlying
taxonomies) for each ingredient class. Accordingly, we have the same set of
six adaptation rules for each ingredient class.

Fig. 6. Scheme for the Model-based Adaptation: Exchange critical ingredients with
similar ones (from [22])

We explain the adaptation rules for the ingredient category fruit in figure 6
using set theory. First, the intersection of the set of all forbidden ingredients
and the set of all fruit ingredients in the retrieved recipe is calculated to
determine which ingredients are critical and have to be replaced in this recipe
(illustrated on the left side). The second step uses a relaxed intersection
function that determines for the first set all similar concepts (in virtue of the
defined similarity measures) out of a second set above a given threshold. We
chose 0.48 as the threshold, which corresponds to the similarity of a nephew
concept (e.g. “mirabelle plum” for the “nectarine” in figure 5). Applying
this function to the critical ingredients and to all (modelled) fruit concepts,
we receive all fruits that are similar to the critical ones and can be used as
replacement (marked bold in figure 6). This approach follows our adaptation
advice described in method 3a (in section 4.5). At the end a new replacement
advice is generated.

Example: Having only the taxonomy-based similarity measure and looking
for similar concepts to replace the critical “nectarine”, twelve concepts will
be returned (all concepts shown in figure 5). Considering that plum is also
forbidden, “plum” and its sub-concepts will be excluded.

206 A. Hanft et al.

If the forbidden ingredient cannot be substituted (no similar ingredient
found), the system recommends to omit it (method 2 in section 4.5).

Shortcomings of the Existing Model-based Adaptation Approach.
Since the used adaptation approach makes use of the modelled taxonomies,
the results sometimes lack refinement (first in [17]). For instance the relaxed
intersection function returns all sibling concepts to the critical concepts as
well as parent and child concepts, whereas only the siblings are most ap-
propriate. In most situations, if siblings exist, parents are too unspecific as
a replacement suggestion. Moreover, for an unwanted ingredient one or two
ingredients as replacement suggestion would be sufficient and preferable com-
pared to all siblings.

Example: If “cucurbit(a)” is undesired, all sub-concepts of them like “but-
ternut squash” or “pumpkin” are not adequate as well as the parent concept
“fruit vegetable”.

Fig. 7. Sub-concepts of fruit vegetables in the Vegetable taxonomy. The values
show the similarity to “cucurbita”.

Indeed, the intersection function neither delivers the similarity value of the
returned concepts to pick the most similar ones nor does there exist a function
to determine the relation of concepts inside taxonomies. Furthermore, the
Rule Engine does not provide a function to iterate over sets.

Improvements of the Model-based Adaptation. To overcome the afore-
mentioned drawbacks we added rules to prune parent and child concepts from
the result and removed replacement candidates which are forbidden. For that
we reviewed the values in all similarity tables and ensured that they are dif-
ferent from taxonomy-based similarity values by increasing them. We deter-
mined the child concepts using only the default combined similarity measure
by calling the relaxed intersection function twice. First, we called the inter-
section function with a threshold equal to the similarity value for a child and
second, with a threshold slightly above the last threshold. Determining the
difference set between these two calls we got the replacement candidates with-
out child concepts. We did the same for grandchildren. Moreover, to avoid
suggestions for very common concepts like “fruit vegetable” or “meat” all the
time, we cut them out of the set of “all” ingredients during the compilation
of the adaptation rules.

CookIIS – A Successful Recipe Advisor and Menu Creator 207

Afterwards, ingredients for which replacement candidates are found, are
saved in an extra attribute for later processing as well as the ones where no
similar replacement candidates are found.

To reduce the amount of offered replacement candidates we could increase
the value for some pairs of concepts explicitly (table similarity) and increase
the threshold for the minimal similarity accordingly. Thus for each concept
only one or two ingredients would have had a similarity above the threshold
and would have been recommended. But acquiring these pairs is a time-
consuming and expensive task. Facing this effort we had the idea to gather
the necessary information from communities as described in the next section.

Additionally, we added rules that look for desired ingredients which are not
in the recipe and added another adaptation advice to replace existing ones
with desired, similar ingredients. For that they use same intersection function
as above to determine whether desired ingredients have similar ingredients
from within the recipe.

As a consequence we had six rules for each ingredient class in both ag-
gregates. To realise a data and control flow where some rules depend on the
results of preliminary executed rules, we added only for this purpose a couple
of auxiliary variables into the case format (aggregate class) and prioritised
the rules to control the right order of execution.

A workflow system would be more appropriate than a classic rule set or
a combination of both [23], because a rule set with dependent variables is
difficult to maintain and more complex than a nested if-then-else control
structure with local variables as in usual procedural languages.

5.3 Community-Based Adaptation

The acquisition of knowledge for adaptation (Adaptation Knowledge acqui-
sition: aka) is an exhausting task because it is highly domain dependent and
the required experts are rarely available for acquiring and maintaining the
necessary knowledge. Some research on the automatic adaptation knowledge
acquisition has been done to tackle this challenge, but it mainly focused on
the automatic aka from cases in the case-base [24, 25, 26].

The WWW, especially the Web 2.0 with its user-generated content, is (be-
side the case base) a large source of any kind of knowledge and experience.
Following the Web 2.0 paradigm of user-interaction people upload their ex-
perience, opinions and advice on any kind of topics. Plaza [27] proposes to
gather the experience from communities as the main source for future CBR
applications.

Although people are not necessarily experts in a domain, the assumption
is that the mass of users will correct most of the mistakes as practised for
example in the Wikipedia project. Each single post has only a small impor-
tance. But if a lot of users submit the same proposal (e.g. suggest to apply
the same ingredients replacements), this gives weight to this proposal.

208 A. Hanft et al.

As a consequence, we investigate communities for dedicated replacements
for each ingredient without modelling these replacements all by hand (first
published [28]). Fortunately, there exist a lot of cooking communities where
people post comments to provided recipes expressing (among others) adap-
tation suggestions of these recipes.

Idea behind the Approach. We used comments that people posted in
reply to provided recipes. In these comments users express their opinion on
the recipe, before as well as after cooking it. They write about their experience
with the preparation process and also tell what they changed while preparing
the recipe. With that they express their personal adaptation of the recipe and
frequently give reasons for this.

Since this is written down in natural language text, often using informal
language, we had the idea to avoid semantic analysis of written sentences
and to just find the occurrences of ingredients in the comment texts. For this
purpose we used our existing knowledge model from the CookIIS applica-
tion and the TextMiner provided by e:IAS. Afterwards we compared them
to the ingredients mentioned in the actual recipe. We classified them into
three classes, depending on whether the ingredients mentioned in a comment
appeared in the recipe or not. Thus we use only the class that contains old
and new ingredients in a comment as replacement suggestions.

Analysis of Example Cooking Communities. In Germany, chefkoch.de6

is a well known cooking community with a large number of active users.
Over 157,000 recipes have been provided so far by the users with an even
larger amount of comments on them. The users also have the possibility to
vote on the recipes, send them to a friend via email or even add pictures
of their preparation. Besides the recipes, chefkoch.de features an open dis-
cussion board for all kinds of topics on cooking with more than 8.8 million
contributions. Their English partner site cooksunited.co.uk7 is unfortunately
much smaller with only about 5,000 recipes and 4,400 posts.

But with allrecipes.com8 a comprehensive platform with nearly 44,000
recipes and over 2.4 millions reviews is available in English.

It has comprehensive localizations for the United States, Canada, the
United Kingdom, Germany, France and others countries. Allrecipes.com ex-
plicitly provides variants of an existing recipe. Hence, it also seems to be
also a good source candidate. Another large German cooking community is
kochbar.de9 with over 261,000 recipes and 176,000 user posts. Besides these
large communities a number of smaller communities exist in the Web with
more or less similar content. For our approach we decided to use a large Ger-
man community since the recipes and the corresponding comments are pre-
6 http://www.chefkoch.de, last visited 2010-03-18.
7 http://www.cooksunited.co.uk, last visited 2010-03-18.
8 http://allrecipes.com, last visited 2010-03-18.
9 http://www.kochbar.de, last visited 2010-03-18.

CookIIS – A Successful Recipe Advisor and Menu Creator 209

sented on one page with a standardized HTML-code template, which makes
it easier to crawl the site and extract relevant information items. Besides
the technical issues other problems could prevent the gathering of experi-
ence. Obstacles could be that the owner of the community site prohibits the
automatic grabbing of their website or that problems occur if users upload
copyright-protected content (e.g. pictures of recipes).

Extraction of Information Items from a Cooking Community. We
crawled about 70’000 recipes with more than 280’000 comments from a large
German community. We saved the HTML source-code of each web page con-
taining a recipe together with the corresponding comments. From this HTML
code we extracted the relevant information snippets using the customized
HTML Parser tool10. For the recipes these entities were primarily the recipe
title, ingredients and the preparation instructions, but also some additional
information on the preparation of the recipe (e.g. estimated time for the
preparation, difficulty of the preparation, et cetera) and some usage statis-
tics (e.g. a user rating, number of times the recipe has been viewed, stored
or printed). We extracted the text of the comments, checked whether the
comment was an answer to another comment and whether the comment had
been marked as helpful or not. The recipe ID of the related recipe was also
saved. We stored all this information in a database for an efficient access.

In the next step, we created another e:IAS-based application and indexed
all recipes and comments into two different case bases using a slightly ex-
tended CookIIS knowledge model. For each recipe and each comment we
extracted the mentioned ingredients and stored them in the case using our
knowledge model and the e:IAS TextMiner during the indexing process. Since
our knowledge model is bilingual (English and German) we were also able to
translate the original German ingredient names from the comment text into
English terms during this process and in this way had the same terms in the
case bases that we use in our CookIIS application.

Classification of Ingredients. Having built the two case bases, we first
retrieved a recipe and then all of the comments belonging to the recipe and
compared secondly the ingredients of the recipe with those in the comments.
Afterwards, we classified the ingredients mentioned in the comments to the
following three categories:

– New : ingredients mentioned in the comment, but not in the recipe
– Old : ingredients mentioned in the comment as well as in the recipe
– OldAndNew : two or more ingredients of one ingredient class, of which at

least one was mentioned in the recipe and in the comment and at least
one other one was only mentioned in the comment

10 http://htmlparser.sourceforge.net, last visited 2010-01-10.

210 A. Hanft et al.

We interpreted the classification as follows:

– New : New ingredients are a refinement or variation of the recipe. A new
ingredient (for example a spice or an herb) somehow changes the recipe in
taste or is a try of something different or new.

– Old : If an ingredient of a recipe is mentioned in the comment it means
that this ingredient is especially liked or disliked (for example the taste of
it), that a bigger or smaller amount of this ingredient has been used (or
even left out), or there is a question about this ingredient.

– OldAndNew : This is either an adaptation (e.g. instead of milk I took
cream) or an explanation/specialization (e.g. Gouda is a semi-firm cheese).

The last class is the interesting for the adaptation. For each ingredient classi-
fied as OldAndNew we also stored whether it was the new or the old one. We
distinguished between adaptation and specialization by looking for hints in
the original comment text and using the taxonomies of our knowledge model.
For that we tried to find terms in the comment during the text-mining process
that confirmed if it was an adaptation (e.g. terms like: instead of, alternative,
replaced with, ...) and stored those terms in the corresponding case. Addi-
tionally, we looked in the taxonomy of the ingredient class whether the one
ingredient is a child of the other (or the other way around). We interpreted
this as specialization or explanation, because one ingredient is a more general
concept than the other. Indeed, we do not consider specializations as adap-
tation suggestions, because we decline child concepts and parent concepts as
replacements. This way we could avoid adaptations like: “Instead of semi-firm
cheese take Gouda.”.

After assigning the score we aggregated our classification results. We did
this in two steps: First we aggregated all classified ingredients of all com-
ments belonging to one recipe. Thereby we counted the number of the same
classifications in different comments and added up the score of the same clas-
sifications. More details to calculate the score are given in [29]. For instance a
specific recipe has 12 comments in which 3 of them mention milk and cream.

Second, we aggregated all classifications without regarding the recipe they
belong to. In our dataset we found comments with milk and cream belonging
to 128 different recipes. This way we could select the most common classifica-
tions out of all classifications. Since we are using a CBR tool and have cases,
we also investigate if similar recipes have the same ingredients with the same
classification mentioned in the comments. We did this for each recipe first
with a similarity of at least 0.9, then with a similarity of 0.8. If many of the
same classified ingredients exist in similar recipes, this supports our results.

Usage as Adaptation Knowledge. We use OldAndNew -classified ingre-
dients (except specialisations) to generate adaptation suggestions. This can
be done in two different ways: independent from the recipe or with regard to
the recipe. Considering the first way, we look in the database table for the
ingredient that needs to be replaced and use the result where this ingredi-
ent is categorized as old and appears in the most recipes or has the highest

CookIIS – A Successful Recipe Advisor and Menu Creator 211

Fig. 8. The most frequent of 6200 suggestions for adaptation gathered from
280.000 comments

score. It is possible to retrieve two or more adaptation suggestions to be more
manifold. Using this approach we got more than 6200 different adaptation
suggestions of which we only used the most common (regarding the num-
ber of appearances in the comments and the score) per ingredient. Figure 8
shows the most frequent of these suggestions. For instance, in the first line a
suggestion to replace cream with milk appears in comments to 128 different
recipes.

5.4 Evaluation of the Results of the Community-Based
Suggestions

Only the ingredient class “supplement” reveals problems that stem from the
fact that too many different ingredients are integrated into this class. This
can be changed by further improving the knowledge model.

The evaluation can be divided into two different parts. First, we checked if
our classification and the interpretation correspond to the intentions written
in the original comments. This was done manually by comparing the classi-
fication results and their interpretation to the original comments: it matches
in most of over 400 tests the classification.

The second evaluation was done on the results of the overall aggregated
adaptation suggestions. We examined whether the adaptation suggestions
with a high score are good adaptation suggestions for any kind of recipe. We
took a representative number of recipes and presented them with adaptation
suggestions to chefs. These chefs then rate the adaptation suggestions.

If the adaptation suggestion was applicable, the chefs should rate it as very
good, good and practicable. Here again the dependent suggestions perform

212 A. Hanft et al.

Fig. 9. Applicability of dependent and overall independent suggestion rated by
chefs

better, see figure 11. 22% of the dependent suggestions are very good com-
paring with 18% of the first independent suggestions and 49% compared to
43% are rated as good.

We designed a questionnaire by choosing randomly a recipe and add one
adaptation suggestion extracted from comments belonging to that recipe (de-
pendent) and secondly add two adaptation suggestions without regard of the
recipe (independent) each with two ingredients as replacement suggestion.
At the end we present the 50 questionnaires with 50 dependent pairs and
100 pairs of independent ingredients to different chefs, because each chef may
have a different opinion. 76% (38 of 50) of the dependent and 56% (109 of
194) of the independent adaptation suggestions were confirmed as applicable
by the chefs (see figure 9). Differentiating the first and second independent
suggestion it could be observed that the first one is noteworthy better (see
figure 10). Summing up it follows that only by 11 of the 100 independent
adaptation suggestions no ingredient can be used as substitution.

After gathering possible replacement candidates we proceed with a way
these advice could be better integrated into the retrieved recipes.

5.5 In-Place Adaptation on Recipes (for Adaptation Challenge)

The third approach was especially settled for the pasta adaptation challenge.
It changes the retrieved recipes according to the prior advice. Thereby it has
to tackle two problems: Simple string matching for the replacement often
does not succeed and the original ingredient should be visible if one of the

CookIIS – A Successful Recipe Advisor and Menu Creator 213

Fig. 10. Applicability of the first and second independent suggestion

Fig. 11. Ratings of applicable adaptation suggestions

replacement suggestions is not accepted by the user. This is done for each
critical concept in two areas of the recipe: in the ingredient list as well as in
the preparation description. The replaced and the new text are marked up
with HTML tags in order to make changes on the original text of the case
traceable. Therefore, if a suggestion is not good as expected, the user can

214 A. Hanft et al.

notice the original ingredient. One possible realisation we implemented is to
strike out all occurrences of the forbidden ingredients and insert the first of
the replacement candidates in italics behind it.

Although e:IAS is accompanied with a MarkerPipelet, we cannot meet
these requirements with the predefined functionality of e:IAS. Hence, we built
a customized pipelet and add them as last element to our search pipeline.
The outcome and approach is described as follows and afterwards we highlight
some details of building customized pipelets.

By investigating the preparation instructions we detect the following diffi-
culties that prevent using a simple string matching: ingredients are mentioned
in their (irregular) plural form, refered in an abbreviated form or more gen-
eral term or described by their synonyms. To identify critical concepts in the
given text four consecutive possibilities are tested until one is successful:

1. find the concept name in the text

a. search and replace plural form (considering -es, -ies, -ves and -oes) and
b. search and replace singular form,

2. consider common synonyms belonging to certain concepts,
3. if it is a 2-word-concept, replace only the last word, otherwise
4. look for the class name of this concept and replace if exists.

Let us motivate and illustrate this approach with examples.
1. Concepts appear in singular and plural form. At the moment we consider
singularia tantum (singular equals plural form) for some words, but no irreg-
ular plural forms.
2. Some ingredients are often mentioned as their synonyms (e.g. stock, broth
and bouillon). In case of “chicken stock” we also look for “chicken broth”
(also together with other kind of meat). However, at the moment we do not
look for all modelled synonyms for each concept, but only for the most com-
mon ones.
3. We often discovered in the preparation of the given recipes that only the
more common parent concept is used. For example, if “olive oil” should be
replaced and appears in the ingredient list, but it is possibly referred in the
preparation only as “oil”. Hence we looked additionally for “oil” after the
unsuccessful search for “olive oil” in the preparation.
4. If a recipe lists tomato, paprika and aubergine (eggplant) in the ingredients,
they are sometimes mentioned in the preparation as vegetable.

An improvement of step 4 would be to look for the most special occur-
ring parent concept. Figure 12 shows an example where “tomatoes” (1.a)
and “parsley” (1.b) are replaced by “onions” and “basil” respectively. In
the preparation only “oil” (3.) occurred and is replaced by “sunflower oil”,
which is the first of the two replacement candidates for “olive oil” from the
community.

Create User-defined Pipelets to implement new Behaviour. To build
an own pipelet, a JAVA class must be exported into a package and announced

CookIIS – A Successful Recipe Advisor and Menu Creator 215

Fig. 12. Replacement of forbidden concepts (crossed out) with new replacements
(italicised) in the ingredient list and preparation: sunflower oil replaces olive oil in
the ingredient list and only oil in the preparation because olive oil does not exist
there.

to the Creator. A pipelet always has to implement a kind of the Service
class. To preserve a high flexibility for the functionality and assure that the
pipelet can be configured within the Creator as well as executed from the
Process Manager the Adapter Pattern [30] has to be used. The aim of using
an Adapter Pattern is to enable a client (here: the Process Manager) to use
an incompatible interface (from our new service). Following to this pattern
each pipelet consist of (at least) two classes: adapter (for the configuration)
and adaptee (for the functionality). The Pipelet itself has via adapters and
iterators access to the case objects (an aggregate) on the blackboard and can
read and write almost every attribute.

216 A. Hanft et al.

6 User Interface and Feedback

A well-designed and easy-to use interface is essential for a successful applica-
tion because that is the only way how the application can be presented to the
user. We decided to have a web-based application that is realised with JSP
and TagLib libraries. The website does not only present recipes, it includes
also a feedback component, which enables interaction with the user.

Fig. 13. Screenshot of the CookIIS Recipe Creator

After the 1st Computer Cooking Contest the web-based GUI was com-
pletely redesigned to become more user-friendly. The Web Accessibility Ini-
tiative (WAI) proposes guidelines for web content accessibility11. In similar
sense there are of course other guidelines that conduct not only to make
websites more accessible but also to attract user (for instance [31]). For our
project we took the most important ones for realisation:

11 http://www.w3.org/TR/WCAG/, Version 2.0 released 11th December 2008.

CookIIS – A Successful Recipe Advisor and Menu Creator 217

– clear and easy to understand structure of the site,
– corporate identity with a distinctive design,
– clear design (in colour and layout),
– visualisation with graphics instead of text, and
– possibility to give feedback.

According to the first point the menu structure of the website consist only
five items: one for each challenges according to the CCC plus two additional
items for feedback and about.

Due to the second point of our guidelines we designed a new logo and
complete design with a new colour scheme for CookIIS. The GUI has been
designed using only the colours green, light grey and white for a clear and
light-weight appearance. Popup boxes explain each element of the GUI.
Figure 13 shows the new web GUI of CookIIS.

The website is offered in English and German, therefore all texts of the
site are accessed via the standard fmt JSP Tag Library (JSTL). Therefore
the JSP Code contains Tags, that are replaced by English or German strings
from configured languages files depending on the actually selected language.
More details are given in [32].

To meet the last guideline we offer the user a possibility to give feedback in
general as well as on a concrete recipe. We did not premise a configured email
client but offer an email form to make it as easy as possible for the user. This
form is shown in figure 14 and checks the user inputs and the given email
address. The functionality for checking and sending email is implemented as
a JAVA Bean that can be easily reused for other projects.

The special e:IAS Tag Library allows accessing the functionality of the
e:IAS server (also in [1]). To send a query with the user input and present
the results, the JSP page has to perform five steps:

1. initialise the RequestManager bean and create a request,
2. set the query, transfer user input into parameters,
3. execute the query (request),
4. fetch the results in local variables, and
5. iterate over the results and display them

The JSP page is reloaded after clicking on the submit button and filled with
data starting from the second step. The result of each pipelet including the
sent query can be accessed separately to display the results after the retrieval
or after the adaptation. According to the CCC the five best-matching recipes
are displayed at once and can be expanded on demand. Buttons are offered
to navigate to the next or previous five recipes. Each recipe is presented
with their original attributes and enhanced with adaptation suggestions if
adaptations for the retrieved recipes are necessary. Furthermore, only on the
page for the adaptation challenge the original ingredient list and preparation
are modified directly (see figure 12).

218 A. Hanft et al.

Fig. 14. Screenshot of the CookIIS Feedback form

7 Conclusion, Related Work and Outlook

In this chapter we presented the successful CBR application CookIIS that
provides adapted recipes according to the users wishes. It is a web-based
client-server software using JAVA technologies and is realised with the em-
polis Information Access Suite (e:IAS), a framework for building CBR appli-
cations. The CookIIS system is equipped with a detailed domain modelling
containing over 2000 concepts, a fine-grained rule set to determine the type
of cuisine and the type of meal of given recipes.

Following the tasks of the Computer Cooking Contest it was described how
CookIIS masters the Compulsory Task, the Adaptation Challenge as well as
the Menu Challenge. For each of the CCC challenges CookIIS presents an
extra web page. We faced the Adaptation Challenge with modelling an extra
aggregate and the ingredient class pasta as well as our in-place adaptation to
make the changes directly visible in the recipe.

Furthermore, CookIIS is capable to handle six different kinds of diets and
any other ingredient the user explicitly mentions as undesired. This is im-
plemented with a couple of filters and a complex adaptation process. The
filters, realised by completion rules, exclude recipes completely from the

CookIIS – A Successful Recipe Advisor and Menu Creator 219

result. In contrast, the implemented adaptation process exchanges forbidden
ingredients through other adequate ingredients.

CookIIS uses three different kinds of adaptations: a community-based, a
model-based, and an in-place. The community-based approach collects con-
crete pairs of ingredients as adaptation advice from comments inside cook-
ing communities on the web. This represents a new approach for validating
adaptation knowledge acquired from communities. The appropriateness of
this approach was shown with an evaluation by chefs.

For forbidden ingredients, where no replacements at the first step are
found, the subsequent model-based adaptation is executed and replaces them
with similar ingredients. It requires only a designed knowledge model and
similarity measures. The last, in-place adaptation, applies strategies to find
forbidden ingredients that go behind a simple string matching and modify
the original text of the recipes traceably according to the replacement sug-
gestions. Whereas the both preceeding approaches only work on the concept
level and generate the text of their adaptation advice with a simple sentence
template, the in-place works directly on the original free text.

Related Work. Early CBR systems that suggested preparation advice for
meals are JULIA [33] and CHEF [34]. CHEF was a planning application that
builds new recipes in the domain of Szechwan cooking. JULIA integrated
CBR and constraints for menu design tasks. It uses a large taxonomy of
concepts and problem decomposition with fixed decomposition plans. Unlike
our approach their knowledge was built by experts and was not captured
from communities.

The community-based as well as the model-based adaptation approaches
presented here belong to the structural adaptation [14]. The idea presented
with the community-based adaptation closely relates to the research of Plaza
[27]. However, they focus more on gathering cases from web experience in-
stead of adaptation knowledge. Furthermore, acquisition of adaptation knowl-
edge from cases was done by by [25] or with the CabamakA System by [26].

The integration of subsequent adaptation approaches, precisely the proce-
dure of looking at first for concrete adaptation suggestions and apply after-
wards, if the first step yields no results, more general rules, was done also by
[21] with DIAL, which attempts to retrieve adaptation cases first. CookIIS
has a couple of competitors (e.g. [4, 5, 6]) facing the same challenges of the
Computer Cooking Contest, for instance appropriate similarity measures,
recognising ingredient concepts, determining the type of cuisine, handling
unwanted ingredients and others.

Outlook. For the near future we will work on the tighter integration of
community advice, so that we wo be able to look for adaptation sugges-
tions in recipes that are similar to the one that needs to be adapted. We
plan to improve and integrate the in-place adaptation within the Compul-
sory Task in the way that it can be used for all retrieved recipes. Following the
SEASALT architecture [35] we also want to realise a multi-agent system that

220 A. Hanft et al.

continuously monitors the community for new experiences with the recipes
and enhance our adaptation knowledge if necessary. The CookIIS team has
prepared for the third CCC and is looking forward to attend the finale in
July 2010 in Alexandria.

Acknowledgements. We would like to thank Franziska Öllerer for her great work
on the new design and the better usability as well as the feedback component of
the CookIIS GUI.

References

1. Hanft, A., Ihle, N., Bach, K., Newo, R., Mänz, J.: Realising a cbr-based ap-
proach for computer cooking contest with e:IAS. In: [36], pp. 249–258

2. empolis GmbH: Technical white paper e:information access suite. Technical
report, empolis GmbH (January 2008),
http://www.empolis.com/downloads/download-english/article/

white-paper-empolisinformation-access-suite.html

(last verified 2009-11-22)
3. Barham, P.: The Science of Cooking. Springer, Heidelberg (2001)
4. Zhang, Q., Hu, R., Namee, B.M., Delany, S.J.: Back to the future: Knowledge

light case base cookery. In: [36], pp. 239–248
5. Badra, F., Bendaoud, R., Bentebitel, R., Champin, P.-A., Cojan, J., Cordier,

A., Desprès, S., Jean-Daubias, S., Lieber, J., Meilender, T., Mille, A., Nauer,
E., Napoli, A., Toussaint, Y.: Taaable: Text mining, ontology engineering, and
hierarchical classification for textual case-based cooking. In: [36], pp. 219–228

6. DeMiguel, J., Plaza, L., Dı́az-Agudo, B.: Colibricook: A cbr system for
ontology-based recipe retrieval and adaptation. In: [36], pp. 199–208

7. Badra, F., Cojan, J., Cordier, A., Lieber, J., Meilender, T., Mille, A., Molli,
P., Nauer, E., Napoli, A., Skaf-Molli, H., Toussaint, Y.: Knowledge acquisition
and discovery for the textual case-based reasoning system wikitaaable. In: [37],
pp. 259–268

8. Fuchs, C., Gimmler, C., Günther, S., Holthof, L., Bergmann, R.: Cooking
CAKE. In: [37], pp. 259–268

9. Herrera, P.J., Iglesias, P., Sánchez, A.M.G., Dı́az-Agudo, B.: JaDaCook2: Cook-
ing over Ontological Knowledge. In: [37], pp. 279–288

10. empolis GmbH: Empolis research & discovery,
http://www.empolis.com/applications-services/applications/

research-discovery.html (last verified 2009-11-22)
11. Richter, M.M.: Introduction. In: [38], pp. 1–15
12. Lenz, M.: Case Retrieval Nets as a Model for Building Flexible Information

Systems. Dissertation, Mathematisch-Naturwissenschaftliche Fakultät II der
Humboldt-Universität zu Berlin (1999)

13. Lenz, M., Hübner, A., Kunze, M.: Textual CBR. In: [38], pp. 115–138
14. Bergmann, R.: Experience Management: Foundations, Development Method-

ology, and Internet-Based Applications. LNCS (LNAI), vol. 2432. Springer,
Heidelberg (2002)

http://www.empolis.com/downloads/download-english/article/white-paper-empolisinformation-access-suite.html
http://www.empolis.com/downloads/download-english/article/white-paper-empolisinformation-access-suite.html
http://www.empolis.com/applications-services/applications/research-discovery.html
http://www.empolis.com/applications-services/applications/research-discovery.html

CookIIS – A Successful Recipe Advisor and Menu Creator 221

15. Löbbert, R., Dietlind Hanrieder, U.B., Beck, J.: Lebensmittel: Waren, Lebens-
mittel, Trends. Verlag Europa-Lehrmittel, Haan-Gruiten (2001)

16. Ihle, N., Newo, R., Hanft, A., Bach, K., Reichle, M.: Cookiis - A Case-Based
Recipe Advisor. In: [37], pp. 269–278

17. Hanft, A., Ihle, N., Newo, R.: Refinements for retrieval and adaptation of the
CookIIS application. In: Hinkelmann, K., Wache, H. (eds.) GI-TCS 1983. LNI,
vol. 145, pp. 139–148 (2009)

18. Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)
19. Greene, D., Freyne, J., Smyth, B., Cunningham, P.: An Analysis of Research

Themes in the CBR Conference Literature. In: [39], pp. 18–43
20. Cojan, J., Lieber, J.: Conservative adaptation in metric spaces. In: [39], pp.

135–149
21. Leake, D.B., Kinley, A., Wilson, D.C.: Learning to improve case adaptation by

introspective reasoning and cbr. In: Veloso, M.M., Aamodt, A. (eds.) ICCBR
1995. LNCS, vol. 1010, pp. 229–240. Springer, Heidelberg (1995)

22. Hanft, A., Ihle, N., Bach, K., Newo, R.: CookIIS – competing in the first com-
puter cooking contest. Künstliche Intelligenz 23(1), 30–33 (2009)

23. Bali, M.: Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing, Birm-
ingham (2009)

24. Wilke, W., Vollrath, I., Althoff, K.D., Bergmann, R.: A framework for learning
adaptation knowledge based on knowledge light approaches. In: 5th German
Workshop on CBR, pp. 235–242 (1996)

25. Hanney, K., Keane, M.T.: The adaptation knowledge bottleneck: How to ease
it by learning from cases. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS,
vol. 1266, pp. 359–370. Springer, Heidelberg (1997)

26. d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.:
Case base mining for adaptation knowledge acquisition. In: Veloso, M.M. (ed.)
IJCAI, pp. 750–755. Morgan Kaufmann, San Francisco (2007)

27. Plaza, E.: Semantics and experience in the future web. In: [39], pp. 44–58
(invited talk)

28. Ihle, N., Hanft, A., Althoff, K.-D.: Extraction of adaptation knowledge from
internet communities. In: [37], pp. 35–44

29. Ihle, N.: Modellbasierte Wissensextraktion aus Internet-Communities. Master’s
thesis, University of Hildesheim (2009)

30. Freeman, E., Freeman, E., Bates, B., Sierra, K.: Head First Design Patterns.
O’Reilly, Sebastopol (2004)

31. Scott, B., Neil, T.: Designing Web Interfaces: Principles and Patterns for Rich
Interactions. O’Reilly Media, Sebastopol (2009)

32. Öllerer, F.: Redesign und Programmierung einer intuitiven Weboberfläche für
das Projekt CookIIS, project thesis. Technical report, University of Hildesheim
(2009)

33. Hinrichs, T.R.: Problem solving in open worlds. Lawrence Erlbaum, Mahwah
(1992)

34. Hammond, K.J.: Chef: A model of case-based planning. In: American Associ-
ation for Artificial Intelligence, AAAI 1986, Philadelphia, pp. 267–271 (1986)
http://www.aaai.org/Papers/AAAI/1986/AAAI86-044.pdf

35. Bach, K., Reichle, M., Althoff, K.D.: A domain independent system architec-
ture for sharing experience. In: Hinneburg, A. (ed.) Proceedings of LWA 2007,
Workshop Wissens- und Erfahrungsmanagement, September 2007, pp. 296–303
(2007)

http://www.aaai.org/Papers/AAAI/1986/AAAI86-044.pdf

222 A. Hanft et al.

36. Schaaf, M. (ed.): ECCBR 2008, Workshop Proceedings, Trier, Germany,
September 1-4. Tharax Verlag, Hildesheim (2008)

37. Delany, S.J. (ed.): Workshop Proceedings of the 8th International Conference
on Case-Based Reasoning, Seattle, WA, USA (July 2009)

38. Lenz, M., Bartsch-Spörl, B., Burkhard, H.D., Wess, S. (eds.): Case-Based Rea-
soning Technology. LNCS, vol. 1400. Springer, Heidelberg (1998)

39. Althoff, K.D., Bergmann, R., Minor, M., Hanft, A. (eds.): ECCBR 2008. LNCS
(LNAI), vol. 5239. Springer, Heidelberg (2008)

	Introduction
	Computer Cooking Contest
	First Computer Cooking Contest in 2008
	Second Computer Cooking Contest in 2009

	Information Access Suite
	System Architecture
	Model Manager
	Workflow Organisation
	Similarity Assessment
	Retrieval
	Rule Engine

	The CookIIS Project
	Requirements of the Computer Cooking Contest
	Case Representation
	Type of Meal and Type of Cuisine
	Similarity Assessment
	Modelling Dietary Practices
	Three-Course Menu Creator

	Adaptation in CookIIS
	Three Kinds of Adaptation
	Model-based Adaptation
	Community-Based Adaptation
	Evaluation of the Results of the Community-Based Suggestions
	In-Place Adaptation on Recipes (for Adaptation Challenge)

	User Interface and Feedback
	Conclusion, Related Work and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

