
On-Demand Recipe Processing based on CBR

Régis Newo, Kerstin Bach, Alexandre Hanft, and Klaus-Dieter Althoff

Intelligent Information Systems Lab
University of Hildesheim
Marienburger Platz 22

31141 Hildesheim, Germany
{lastname}@iis.uni-hildesheim.de

Abstract. The third version of CookIIS, our candidate for the third
Computer Cooking Contest (CCC) is focusing on pre-processing and en-
riching the source data for a better performance of the 4R processes.
Our goal for this year is to improve the retrieval process by considering
the ingredients’ weights, strengthen the reuse phase by enhancing the
knowledge model and further developing the adaptation methods, intro-
ducing light revision approaches of retrieval results. This paper presents
the improvement of CookIIS in preparation for the CCC-2010.

1 Introduction

CookIIS is a Case-Based Reasoning system realized in the cooking domain for
providing recipes according to given user preferences. It is a research prototype
that deals with a given standardized case base of 1,484 recipes. Each recipe
consists of a title, a list of ingredients and the preparation advices. We represent
each recipe as one case. In terms of CBR, the list of ingredients serve as problem
description and the recipe’s title as well as the preparation is the according
solution. Nevertheless, usually only a subset of ingredients is given by a user and
it is CookIIS’s task to find the most appropriate recipe to the given desires.

The CCC takes place the third time and the challenges evolved in the com-
parison to the two competitions. There are four challenges this year1:

The Main Challenge focuses on retrieving recipes according to given con-
strains, like the ingredients, the type of ingredients, the type of dish, the prove-
nance of a dish as well as some dietary practices. A possible question to be
answered in this challenge might be ”I would like to cook a Mediterranean fish
dish as starter, but please avoid lemon and other citrus fruits”. Since all com-
petitors work with the same case base, the requests do not have a perfect match
in the case base and it is the system’s task to modify the recipes in order to
match best.

The Adaptation Challenge this year focuses on a specific adaptation task
that everybody might know from personal experiences. Once you have found a
great sounding recipe and start cooking you figure out that you do not have all

1 http://vm.liris.cnrs.fr/ccc2010/doku.php?id=rules



the required ingredients available. This year, the participating systems should
be able to consider this information and help the amateur chef to improvise and
resolve problems like ”I have retrieved the Banana Butterfinger Cake recipe, but
I have no sour cream or vanilla. What should I do?”.

A novelty of this years CCC is the Open Challenge where each team can
show their creativity and moreover present what technology today can do. We
decided to take numeric quantities for the retrieval process into account as well
as we further developed the creation of menus since this has been a challenge in
the last two years and we still have some ideas on this topic.

Another new aspect of this year’s CCC is the Student Challenge that fea-
tures student teams to enter the contest and compete with other student teams.
This year, our team mainly consists of PhD students and research assistants, so
CookIIS will not compete in this challenge. Like the other years, CookIIS is a
web-based application and is available and can be tested by visiting the CookIIS
web page at the University of Hildesheim’s IIS lab2.

The remaining paper is structured as follows: Section 2 introduces the archi-
tecture of CookIIS featuring the underlying knowledge model, retrieval processes,
similarity measures and workflows of the system. The following three sections
focus on the novelty of this year’s system. Section 3 describes the pre-processing
that enables the consideration of the ingredients’ amounts; section 4 introduces
the adaptation processes including the already existing ones and its improve-
ments. Section 5 shows how user feedback can influence to retrieved recipes.
The experimental results including the system’s responses for a set of training
queries is presented in section 6, before the final section sums up the paper and
gives an outlook on future work.

2 Architecture of CookIIS

Before we explain the CBR processes implemented in CookIIS, we will first
present in this section how the system is built. CookIIS is built using an industrial
strength tool called empolis Information Access Suite (e:IAS). The architecture
of our system therefore leans on the architecture of e:IAS, which can be seen in
Figure 1.

The bottom of the architecture shows the data sources. In CookIIS these are
the recipes given by the CCC organizers that we have split up so each recipe is
in one XML file and further preprocessed as described in Section 3. e:IAS then
uses our defined knowledge model and similarity measures in order to process
the user’s queries. The retrieval process is defined in the search engine and it
can be supported/assisted by rules and a text miner. We will now give a short
explanation of some parts of the architecture.

2 http://cookiis2010.iis.uni-hildesheim.de/ccc



Fig. 1. The architecture of e:IAS used for CookIIS

2.1 Knowledge Model

Our knowledge model contains different elements. The main elements are ingre-
dients (about 1000 in our model) which are organized in the following eleven
classes:

Basic Ingredients Fish Meat Vegetable
Supplement Fruit Drinks Milk
Intermediate Ingredients Oil and Fat Spice and Herb

Each ingredient is modeled as a concept with possible synonyms in English
and German. The concepts are mostly organized as taxonomies and each class
can contain several taxonomies. One can for example organize meat by part
(fillet, haunch) or by kind (pork, beef).

Furthermore, our model contains several rules which are used for the com-
putation of meta information like:

– the type of meal,
– the type of cuisine,
– the consideration of some diets (for example low cholesterol).

Further details on the knowledge model as well as the computation of meta
information can be found in [1, 2].

2.2 Similarity Measures

Within CookIIS, similarities between recipes (or between a query and a recipe)
are computed in two steps. First, a local similarity measure is defined for each



class of the knowledge model in order to compare the different types of ingre-
dients. The underlying taxonomies give a strong basis for the computation of
the similarities between ingredients within a class. Here, adequate values are
given for the generalization and the specialization step so that the similarities
can be automatically computed. These values indicate the similarity between a
concept and a child or a parent. In addition to the taxonomy based similarity
measures, we also used table based similarity measures for some classes, because
the values computed with taxonomies do not always reflect the reality in our
opinion. The similarity between some pairs of elements is (manually) entered
in the corresponding matrix. When several local similarity measures are defined
within a class, the highest similarity value is always used.

In the second step, we use a global similarity measure to compute the similar-
ity between cases (i.e. the recipes). It is a weighted sum of the local similarities
of the attributes in the cases, following the local-global principle for similarity
modeling [3]. The global similarity measure do not only consider the ingredients
of the recipes, but also other attributes like the computed meta information
mentioned in the previous Section.

2.3 Indexing and Searching

Indexing and Searching recipes in CookIIS is done using workflow-like constructs,
called pipelines in e:IAS. The pipelines consist of the so-called pipelets which
represent the different steps (actions) for each operation.

Fig. 2. The index and search pipeline for CookIIS

The Index Pipeline The aim of the index pipeline is to create an index rep-
resenting the case base (i.e., insert the recipes in the case base). This is done by
performing the following actions (as depicted on the left hand side of Figure 2):
First a connection to the data sources has to be established before an analysis



of the data and the extraction of the concepts by the text miner is carried out.
The third pipelet computes of meta information based completion rules and the
final pipelet inserts the cases in the retrieval structure.

The Search Pipeline The aim of the search pipeline is to retrieve and adapt
the recipes from the case base according to a query. The actions performed
are the following (right hand side on Figure 2): First, the query is analyzed and
concepts are extracted using the text miner. The following pipelet computes meta
information based on the input given by the query. The third pipelet executes
the retrieval of the most similar cases from the case base with the aforementioned
similarity measure. The final piplet carries out the adaptation of the retrieved
cases (this is done in many steps as explained in Section 4).

3 Recipe Pre-Processing

The information given in recipes still has potential to improve the CookIIS sys-
tem. There are different ways of using the case base obtaining knowledge that
can be provided in within the knowledge containers. This point has also been
discussed by the Taable team [4] as well as the JaDaCook team [5]. For example,
we have applied association rules aiming at adaptation knowledge, but caused
by the high variation we only received rules containing very obvious associations,
like eggs and sugar usually come with flour. We think that a higher amount of
recipes is required for acquiring more special association rules.

The global similarity measure of the last versions of CookIIS only takes
the ingredient without the according amount into account. Hence, recipes that
contain many ingredients are retrieved more often because the probability that
one of the containing ingredients was requested is higher. However, users that are
looking for recipes usually name those ingredients that should be characteristic
for the whole dish: when looking for a recipe with carrots you might not be
satisfied with a casserole that includes half of a carrot. Therefore, we are taking
the amounts of the ingredients into account.

3.1 Pre-processing Process

We decided to enrich the information given in the case base including an at-
tribute that marks the major ingredients of a recipe. Since the amounts are
given in various measures, we built up a dictionary that normalizes each amount
to milligram. Further, we used the normalized amount information for improving
the retrieval aiming at retrieving recipes that contain the requested ingredient
as a major ingredient. Algorithm 1 shows how the major ingredients of a recipe
are determined.

Given the normalized amount of each ingredient, we first determine the me-
dian of the amounts occurring in the recipe. The median splits the ingredients
into major and minor ingredients of a recipe. In the third step we mark all major
ingredients by adding the attribute ”major” to the ingredients tag. In the last



Algorithm 1 Marking Major Ingredients
1: Order ingredients descending according to its amounts of one recipe
2: Calculate the median over all amounts of one recipe
3: Mark all ingredients with amount > median as major
4: Mark the position of major ingredients according to their amounts

step we determine the order (based on the ingredients’ amounts) of the major in-
gredients and assign it to the ingredients. This results in an enhanced ingredient
tag in the xml source file, like the following:

<IN amnt=’425243’ major=’5’>1 cn (15 oz ) tomato sauce</IN>

Obviously this information can be used in various ways. However, currently
we only use it within the retrieval process. For that purpose, we doubled the
weight of major ingredients within the global similarity calculation. In the sim-
ilarity assignment, we have an attribute that represents a set of major ingredi-
ents, so each major ingredient that has been requested gets the double weight.
As a result, the retrieved recipes containing the desired ingredients are more
emphasized. We are aware that for instance spices and herbs, which have a huge
influence on a recipe, but only occur in small amounts, are not considered in
this approach. However, in the CookIIS knowledge model and within the global
similarity calculation spices and herbs are treated separately.

4 Adaptation

The given recipe base contains 1484 recipes, which are not enough recipes for
the whole variety of desired as well as unwanted ingredients. Therefore, an adap-
tation of the queried recipes to the users needs is necessary.

This section describes three different kind of adaptations we use in CookIIS.
Two approaches are known from former versions of CookIIS: the model-based
and the community-based adaptation. Furthermore, we implemented an in-place
adaptation and an adaptation approach regarding user feedback.

All of our adaptation approaches share some assumptions and have a certain
generality in the used methods with the aim to be able to transfer these methods
to other domains. First, we denote ingredients that are excluded by a diet or
explicitly by the user as forbidden ingredients. If a forbidden ingredient occurs
in a retrieved recipe we consider it as critical (for this recipe) because it has to
be omitted or replaced. Second, we restrict the replacements to the same class
as the replaced ingredient to assure certain a level of applicability.

4.1 Integration of the three Approaches

All three adaptation approaches are performed sequentially and each of them
uses the results of the preceding one. First, the community-based adaptation is



Fig. 3. Replacement of forbidden concepts (crossed out) with new replacements (ital-
icised) in the ingredient list and preparation: sunflower oil replaces olive oil in the
ingredient list and only oil in the preparation because olive oil does not exist there.

executed. For those forbidden ingredients where no community-based replace-
ments can be offered, the standard model-based adaptation is carried out after-
wards. Both approaches only add adaptation advice in an extra text attribute
of the retrieved recipes but leave all attributes for ingredients and preparation
unchanged. In contrast, the third approach changes the ingredient list and prepa-
ration text visible according to the advice of both preceding approaches.

The integration of the all approaches is realised with three subsequent pipelets
within the the Search Pipeline used for retrieval and reuse. A user-defined pipelet
for the community adaptation is inserted into this pipeline which is followed by
the a standard AdaptationRulesPipelet implementing the model-based adap-
tation. The in-place adaptation as third approach is realised as another user-
defined pipelet and integrated after the AdaptationRulesPipelet in the same
pipeline. All approaches are described in the next sections.



4.2 Model-based and Community-Based Adaptation

For the community-based adaptation we collect lots of adaptation advices from
comments of recipes within a large cooking community using the knowledge
model of CookIIS. With the aim of this model we classify each ingredient of the
comment as OLD (if it exits in the recipe already) or NEW (if it exists only in
the comment). Afterwards we interpret the co-occurrence of a OLD and a NEW
ingredient belonging to the same ingredient class as an adaptation advice and
sum them up over all 70.000 recipes. This results in 2967 adaptation suggestions
for 410 different ingredients. If there exist a suggestion for a forbidden ingredient,
the two most frequent adaptations are presented. A more detailed description
and evaluation of this approach is given in [6].

In contrast to the community-based adaptation, which delivers adaptation
suggestions for 40% of the ingredients, the model-based adaptation works for all
concepts, based on the similarity between ingredients. In general, it determines
similar ingredients to the forbidden ingredients and suggest them as replacement.
The similarity between two ingredients is based on the knowledge model that
are applied along with thresholds to determine nephew and sibling concepts as
replacements [2].

4.3 In-place Adaptation

Both aforementioned approaches only add adaptation advices in an extra text
attribute, but did not change the original attributes for ingredients and prepa-
ration which makes it harder to take the ingredient list as shopping list or work
through the preparation step by step. Therefore we add an additional adapta-
tion component which executes these adaptation advices directly on the original
recipe. By investigating the preparation instructions we detect the following dif-
ficulties that prevent using a simple string matching: ingredients are mentioned
in their (irregular) plural form, referred in an abbreviated form or more general
term or described by their synonyms. Additionally, the user should recognise in
the modified recipe what the changes are, especially if an adaptation suggestion
is not good as expected by the user. Therefore, the in-place adaptation has to
tackle two problems: Simple string matching for the replacement often does not
succeed and the original ingredient should be visible if one of the replacement
suggestions is not accepted by the user.

The replaced and the new text are marked up with HTML tags in order to
make changes on the original text of the case visible. Hence, the user can notice
the original ingredient. To identify concepts that should be replaced in the given
text four consecutive possibilities are tested until one is successful:

1. find the concept name in the text
(a) search and replace plural form (considering -es, -ies, -ves and -oes) and
(b) search and replace singular form,

2. consider common synonyms belonging to certain concepts,
3. if it is a 2-word-concept, replace only the last word, otherwise



4. look for the class name of this concept and replace if exists.

Figure 3 shows an example where ”black beans” (1.b) are replaced by ”beans”
(1.a). In the preparation only ”oil” instead of forbidden ”peanut oil” (3.) occurred
and is replaced by ”colza oil” (from Community). Furthermore, ”broth” in the
preparation stands for ”chicken stock” (2.) and is replaced by ”meat extract”.

5 Revise through User Interaction

During a small evaluation we investigated that users often discover that they
either dislike or do not have certain ingredients available that are required for
preparing the desired recipe. To make this more faster and comfortable the user
can now click on an icon before each ingredient to exclude this ingredient instead
of adding the text by hand into the exclude text box in the GUI. At start, each
ingredient has a green check mark, which is changed into a red cross if the
user clicks on it to exclude this ingredient. In a subsequent search request these
ingredients where excluded as well. According to the fact that in our current
implementation the amount of forbidden ingredients in an recipe did not affect
the similarity of a recipe to a query, the same recipes would be retrieved again,
but with additional adaptation suggestions. Of course, the exclusion can be
undone by clicking again on the icons. The complete functionality is realised
with Javascript called by the JSP code of website. Figure 4 shows a scenario
where the user has excluded the ingredients minced ginger an Sesame seeds
after the first retrieval.

Fig. 4. Feedback: The user can easily exclude additional ingredients by clicking on the
green icon in front of each ingredient

6 Experimental Results

As stated earlier, many features of CookIIS have been improved (from the pre-
vious versions), like for example, the computation of meta information (type
of meal, type of cuisine), the adaptation of recipes (model based, community
based and in-place). We will concentrate in this Section on two new features



of CookIIS, namely the impact of the preprocessing of the data source and the
revise step in CookIIS.

We will consider for this purpose the query ”I want a dessert with straw-
berries”. CookIIS returns many recipes which are 100% similar to the query
because they contain strawberries and were tagged as desserts. These recipes
are automatically ranked according to the amount of strawberries contained (in
comparison to the remaining ingredients). CookIIS thus ranks the recipe ”My
Strawberry Pie” (which contains few ingredients) higher than the ”Summer-
time Strawberry Gelatin Salad” which contains much more ingredients (because
strawberry is this case less important). Furthermore, if an ingredient is not avail-
able, the user can explicitely select the failing or unwanted ingredients as can be
seen in Figure 4. Gelatin for example in the ”Summertime Strawberry Gelatin
Salad” is then replaced through agar-agar.

7 Conclusion

The paper presents new developments of the CookIIS system - mainly the pre-
processing for taking ingredients’ amounts into account, applying adaptation
knowledge to recipes and replacing the modified ingredients within the recipe as
well as enabling user interaction for interactive search refining.

However, we have addressed the first three of the four CBR processes and
since the case base is standardized and static, the only way for retention is acquir-
ing and updating modification knowledge, similarity and vocabulary knowledge.

Future work will be focused on including the amount information, now avail-
able for each recipe, in the adaptation process as well. This also affects the
substitution of ingredients or a modification that leaves out certain ingredients
instead of looking for a substitute.

References

1. Ihle, N., Newo, R., Hanft, A., Bach, K., Reichle, M.: Cookiis - A Case-Based
Recipe Advisor. In Delany, S.J., ed.: Workshop Proceedings of the 8th International
Conference on Case-Based Reasoning, Seattle, WA, USA (July 2009) 269–278

2. Hanft, A., Newo, R., Bach, K., Ihle, N., Althoff, K.D.: Cookiis - a successful recipe
advisor and menu advisor. In Montani, S., Jain, L., eds.: Successful Case-based
Reasoning applications. Springer (2010)

3. Bergmann, R.: Experience Management: Foundations, Development Methodology,
and Internet-Based Applications. Volume 2432 of LNAI. Springer-Verlag (2002)

4. Badra, F., Cojan, J., Cordier, A., Lieber, J., Meilender, T., Mille, A., Molli, P.,
Nauer, E., Napoli, A., Skaf-Molli, H., Toussaint, Y.: Knowledge acquisition and
discovery for the textual case-based cooking system WikiTaaable. In Delany, S.J.,
ed.: ICCBR 2009, Workshop Proc. (2009)

5. Herrera, P.J., Iglesias, P., Sanchez, A.M.G., Diaz-Agudo, B.: Jadacook 2: Cooking
over ontological knowledge. In Delany, S.J., ed.: ICCBR 2009, Workshop Proc.
(2009)

6. Ihle, N., Hanft, A., Althoff, K.D.: Extraction of adaptation knowledge from internet
communities. In Delany, S.J., ed.: ICCBR 2009, Workshop Proc. (2009) 35–44


