
A Multi-Dimensional Classification Approach towards
Recognizing Textual Semantic Relations

Rui Wang and Yi Zhang

Saarland University and DFKI GmbH
Saarbruecken, 66123, Germany

rwang@coli.uni-sb.de, yzhang@coli.uni-sb.de

Abstract. Recognizing textual entailment has been known as a challenging task,
with many proposed approaches focusing on solving it independently. From a
broader perspective, there are other semantic relations between pairs of texts,
e.g., paraphrase, contradiction, overlapping, independence, etc. In this paper, we
propose three basic measurements: relatedness, inconsistency, and inequality, to
characterize these closely related Textual Semantic Relations. We show empiri-
cally the effectiveness of these measurements for the recognition tasks (e.g. an
improvement of 3.1% of accuracy for entailment recognition) with features ex-
tracted from dependency paths of the joint syntactic and semantic graph. With the
semantic relation space based on these three dimensions, we show this is a way
to achieve a better understanding of general semantic relations between texts.

1 Introduction

Recognizing Textual Entailment (RTE) has been known as a challenging task, with
interesting close relations to both natural language understanding (i.e. meaning inter-
pretation) and natural language processing (i.e. applicable to various tasks). The task
was defined as to recognize a specific relation (i.e. entailment) between two texts, text
(T) and hypothesis (H). While many attempts have been made to solve the problem
in a standalone manner, fewer investigated the relation between entailment and other
possible semantic relations between pairs of texts.

From this perspective, we could categorize most approaches into two groups. In the
first group, either the system deals with different cases of entailment with specialized
modules [1, 2], to learn various lexical or inference rules [3, 4] from large scale corpora,
or to apply logic inference techniques with manually-crafted rules [5]. In the second
group, people work on (seemingly) different tasks, e.g. identifying contradiction [6],
acquiring paraphrase [7], and finding answers to the questions [8]. They try to connect
these tasks with the RTE research and this paper falls into this category as well.

The term semantic relation refers to the relations that hold between the meaning of
two linguistic units. It is commonly used to describe relations between pairs of words,
e.g., synonym, hypernym, etc. However, it has also been used in a wider sense to refer
to relations between larger linguistic expressions or texts, such as paraphrasing, tex-
tual entailment, etc. [9]. We refer to the latter relations as Textual Semantic Relations
(TSRs), to differentiate them from the study of lexical semantic relations. At a first
glance, such generalization makes the already challenging recognition tasks even more



complex. However, if these TSRs are mutually related, the simultaneous prediction will
make much sense.

In previous work, [10] have shown that recognizing relatedness between two texts
can be viewed as an intermediate step for entailment and contradiction recognition.
[11] proposed five elementary relations between text pairs, EQUIVALENT, FORWARD
(ENTAILMENT), REVERSE (ENTAILMENT), INDEPENDENT, and EXCLUSIVE and rep-
resent them in terms of entailment and negation. [12] proposed an annotation scheme
for semantic relations between text pairs, including six labels, BACKWARD ENTAIL-
MENT, FORWARD ENTAILMENT, EQUALITY, CONTRADICTION, OVERLAPPING, and
INDEPENDENT.

In order to obtain a better characterization of all these TSRs, in this paper, we pro-
pose three basic numerical features, relatedness, inconsistency, and inequality. We show
empirically these features are effective for the TSR recognition tasks, e.g. an improve-
ment of 3.1% of accuracy on entailment recognition and 2.3% on paraphrase identi-
fication (Section 5.2). Although these three values are not entirely orthogonal to each
other, we can still build an approximate three-dimensional semantic relation space, and
observe distributional difference between various TSRs.

2 Related Work

While textual entailment analysis is now widely spotted in many NLP applications,
e.g. question answering [13] and machine translation evaluation [14], the state-of-the-
art performance of RTE systems is far from satisfactory. According to the yearly RTE
challenges (from RTE-1 in 2005 [15] to 2009 [16]), the average performance of the
particpating systems is around 60% on the two-way annotated data (ENTAILMENT vs.
NON-ENTAILMENT) and even worse on the three-way annotated data (ENTAILMENT,
CONTRADICTION, and UNKNOWN) starting from the RTE-3 pilot task1. Nevertheless,
successful systems include both machine-learning-based classifier [17] and logic-form-
based inferencer [18].

A variant of the logic inference rule is the textual inference rule or other (syntactic
or semantic) representations closer to the surface text than the logic form. The DIRT
rule collection [19] has been applied to the RTE task, although the improvement is
limited [20]. [4] acquired unary rules instead of the binary DIRT-style rules and showed
improvement on the accuracy, although it is still far from satisfactory. Both the logic-
rule-based and textual-rule-based systems suffer from either a laborious and fragile
system with hand-crafted rules (i.e. being lack of recall) or a large collection of “noisy”
rules (i.e. being lack of precision). In order to avoid these disadvantages, we will treat
RTE as a classification task and apply feature-based machine learning techniques to
achieve robustness.

As for the feature space of the machine learning approaches, tree and graph struc-
tures are widely considered. For instance, [21] and their following work used tree edit-
ing distance algorithms; and [22] chose a graph matching method. An alternative to the
feature engineering attempts, support vector machines (SVMs) with different kernels

1 http://nlp.stanford.edu/RTE3-pilot/



are also popular in this classification task. Both the (constituent) tree kernel [23, 24]
and the subsequence kernel based on syntactic dependency paths [25] were quite suc-
cessful. Therefore, in our work, we will also use an SVM-based classifier. Instead of
using the tree kernels, we extract features based on both syntactic and semantic depen-
dency paths (or triples) as an approximation of the meaning, which greatly reduce the
number of dimensions of the feature vectors and achieve better efficiency.

As we mentioned in the introduction, besides RTE, the main goal of this paper is
to build a general framework for recognizing different TSRs. Previous work on this
aspect includes [11]’s proposal of five elementary relations between texts and our own
inventory of six semantic relations [12]. [11] tested their natural logic system on the
FraCaS dataset [26], which is manually constructed and focuses more on the different
linguistic (semantic) phenomena. While the system achieved quite good results on this
“text-book” style dataset, the evaluation on the real world texts (e.g. the RTE datasets)
did not show much advantage of their approach.

Apart from the entailment recognition, [6] attempted to discover contradiction, al-
though it was then proved to be an even harder problem. There is also rich literature
on paraphrase (which can be viewed as a bi-directional entailment relation) acquisition
and application [27, etc.]. [9] mainly focused on EQUIVALENCE and CONTRADICTION
recognition in terms of subjective texts, i.e. opinions. The recent work by [8] proposed
a generic system based on a tree editing model to recognize textual entailment, para-
phrase, and answers to questions. We follow this line of research and draw a more
general picture of all these semantic relations.

3 Textual Semantic Relations

We firstly introduce the TSRs we consider in this paper, and then the three features we
use to characterize the different relations.

In previous study [12], we proposed six relations, BACKWARD ENTAILMENT, FOR-
WARD ENTAILMENT, EQUALITY, CONTRADICTION, OVERLAPPING, and INDEPEN-
DENT. If we consider the unidirectional relations between an ordered pair of texts (i.e.
from the first one (T) to the second one (H)), the first two relations can be collapsed
into one. We use the name ENTAILMENT, but we mean a strict directional relation, i.e.
T entails H, but H does not entail T. The original goal of having both OVERLAPPING
and INDEPENDENT is to capture the spectrum of relatedness. However, in practice,
even the human annotators found it difficult to agree on many cases. Therefore, we also
collapse the last two relations into one, UNKNOWN, following the RTE label conven-
tion. After changing EQUALITY into PARAPHRASE, the TSRs we mention in the rest
of the paper would be, CONTRADICTION (C), ENTAILMENT (E), PARAPHRASE (P),
and UNKNOWN (U).

Although semantic relations are supposed to be situation-independent (i.e. consis-
tently true or false in every possible world), in practice, every text pair is always in a
certain context. Our goal here is to differentiate these four TSRs using some latent fea-
tures shared by them, instead of verifying them in all possible worlds. We assume, there
exists a simplified low-dimension semantic relation space. While the identification of
effective dimensions is a complex question (see Section 5.3 for more detailed discus-
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Fig. 1. Workflow of the System

sion), we start only with three dimensions: Relatedness (Rel), Inconsistency (Inc), and
Inequality (Ine), and assume that the different TSRs would be scattered on this space
with different distributions.

Relatedness captures how relevant the two texts are. PARAPHRASE would be one
extreme (fully related), and UNKNOWN would the other extreme. Inconsistency mea-
sures whether or how contradictory the two texts are. CONTRADICTION has the highest
inconsistency, and the others do not have. Inequality mainly differentiates the asymmet-
ric ENTAILMENT from the symmetric PARAPHRASE. Although the other two relations
are symmetric as well, we assume unequal information is contained in T and H. All
three features will be numerical.

There are two approximations here: i) the number of dimensions in the real semantic
relation space is much higher; ii) these three dimensions we pick are not really orthog-
onal to each other (as shown in the experiments). Nevertheless, we hope to benefit from
the generality of these measures in the TSR recognition task and will show the empirical
results in Section 5.

4 General Framework

The workflow of the system is shown in Figure 1 and the details of the important com-
ponents will be elaborated on in the following sections.

4.1 Preprocessing

In this paper, we generally refer to all the linguistic analyses on the texts as preprocess-
ing. The output of this procedure is a unified graph representation, which approximates
the meaning of the input text. In particular, after tokenization and POS tagging, we did
dependency parsing and semantic role labeling.

Tokenization and POS Tagging We use the Penn Treebank style tokenization through-
out the various processing stages. TnT, an HMM-based POS tagger trained with Wall
Street Journal sections of the PTB, was used to automatically predict the part-of-speech
of each token in the texts and hypotheses.

Dependency Parsing For obtaining the syntactic dependencies, we use two dependency
parsers, MSTParser [28] and MaltParser [29]. MSTParser is a graph-based dependency
parser where the best parse tree is acquired by searching for a spanning tree which maxi-
mize the score on an either partially or fully connected dependency graph. MaltParser is



a transition-based incremental dependency parser, which is language-independent and
data-driven. It contains a deterministic algorithm, which can be viewed as a variant of
the basic shift-reduce algorithm. The combination of two parsers achieves state-of-the-
art performance.

Semantic Role Labeling The statistical dependency parsers provide shallow syntac-
tic analyses of the entailment pairs through the limited vocabulary of the dependency
relations. In our case, the CoNLL shared task dataset from 2008 were used to train
the statistical dependency parsing models. While such dependencies capture interesting
syntactic relations, when compared to the parsing systems with deeper representations,
the contained information is not as detailed. To compensate for this, we used a shallow
semantic parser to predict the semantic role relations in the T and H of entailment pairs.
The shallow semantic parser was also trained with CoNLL 2008 shared task dataset,
with semantic roles extracted from the Propbank and Nombank annotations [30].

4.2 Feature Extraction

We firstly extract all the dependency triples from H, like <word, dependency relation,
word>, excluding those having stop words. Then, we use the word pairs contained in
the extracted dependency triples as anchors to find the corresponding dependency paths
in T. For the following three representations, we apply slightly different algorithms to
find the dependency path between two words,

Syntactic Dependency Tree We traverse the tree and find the corresponding depen-
dency path connecting the two words;

Semantic Dependency Graph We use Dijkstra’s algorithm to find the shortest path
between the two words;

Joint Dependency Graph We assign different weights to syntactic and semantic de-
pendencies and apply Dijkstra’s algorithm to find the shortest path (with the lowest
cost)2.

For the features, we firstly check whether there are dependency triples extracted
from H as well as whether the same words can be found in T. Only if the corresponding
dependency paths are successfully located in T, we could extract the following fea-
tures. The direction of each dependency relation or path could be interesting. We use a
boolean value to represent whether T-path contains dependency relations with different
directions of the H-path.

Notice that all the dependency paths from H have length 13. If the length of the
T-path is also 1, we can directly compare the two dependency relations; otherwise, we
compare each of the dependency relation contained the T-path with H-path one by one4.

2 In practice, we simply set semantic dependency costs at 0.5 and syntactic dependency costs at
1.0, to show the preferences on the former when both exist.

3 The length of one dependency path is defined as the number of dependency relations contained
in the path.

4 Enlightened by [25], we exclude some dependency relations like “CONJ”, “COORD”,
“APPO”, etc., heuristically, since usually they will not change the relationship between the
two words at both ends of the path.



By comparing the T-path with H-path, we mainly focus on two values, the category of
the dependency relation (e.g. syntactic dependency vs. semantic dependency) and the
content of the dependency relation (e.g. A1 vs. AM-LOC). We also incorporate the
string value of the dependency relation pair and make it boolean depending on whether
it occurs or not.

Table 1 shows the feature types we extract from each T-H pair. H NULL? means
whether H has dependencies; T NULL? means whether T has the corresponding paths
(using the same word pairs found in H); DIR is whether the direction of the path T
the same as H; MULTI? adds a prefix, M , to the REL PAIR features, if the T-path is
longer than one dependency relation; DEP SAME? checks whether the two dependency
types are the same, i.e. syntactic and semantic dependencies; REL SIM? only occurs
when two semantic dependencies are compared, meaning whether they have the same
prefixes, e.g. C-, AM-, etc.; REL SAME? checks whether the two dependency relations
are the same; and REL PAIR simple concatenates the two relation labels together.

Table 1. Feature types of different settings of the system.
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4.3 TSR Recognition

After obtaining all the features for text pairs with different TSRs, we train three classi-
fiers for the three measurements, relatedness, inconsistency, and inequality, and test on
the whole dataset to obtain the numerical values. The training data are labeled accord-
ing the scheme shown in Table 2. The later recognition of the TSRs are based on these
three measurements.

Table 2. Training data of the three classifiers

relatedness inconsistency inequality
PARAPHRASE + − −
ENTAILMENT + − +

CONTRADICTION + + +

UNKNOWN − − +

5 Experiments

5.1 Datasets

Table 3 gives an overview of all the datasets we use in our experiments and we briefly
describe them in the following.



Table 3. Collection of heterogenous datasets with different annotation schemes.

Corpora Paraphrase(P) Entailment(E) Contradiction(C) Unknown(U)
AMT Facts Counter-Facts
(584) (406) (178)
MSR Paraphrase Non-Paraphrase

(5841) (3940) (1901)
PETE YES NO
(367) (194) (173)
RTE ENTAILMENT CONTRADICTION UNKNOWN

(2200) (1100) (330) (770)
TSR Equality Forward/Backward Entailment Contradiction Overlapping&Independent
(260) (3) (10/27) (17) (203)
Total 3943 637 525 973(9252)

AMT is a dataset we constructed using the crowd-sourcing technique [31]. We used
Amazon’s Mechanical Turk5, online non-expert annotators [32] to perform the task.
Basically, we show the Turkers a paragraph of text with one highlighted named-entity
and ask them to write some facts or counter-facts about it. There are three blank lines
given for the annotators to fill in. For each task, we show five texts, and for each text,
we ask three Turkers to do it. In all, we collected 406 valid facts and 178 counter-facts,
which will be viewed as E and C respectively.

MSR is a paraphrase corpus provided by Microsoft Research [33]. It is a collection
of manually annotated sentential paraphrases. This dataset consists of 5841 pairs of
sentences which have been extracted from news sources on the web, along with human
annotations indicating whether each pair captures a paraphrase/semantic equivalence
relationship.

PETE is taken from the SemEval-2010 Task #12, Parser Evaluation using Textual
Entailment6 [34]. The dataset contains 367 pairs of texts in all and has a focus on en-
tailments involving mainly the syntactic information. The annotation is two-way, YES
would be converted into ENTAILMENT and NO could be either CONTRADICTION or
UNKNOWN. Since each text pair only concerns about one syntactic phenomenon, the
entailment relation is directional, excluding the paraphrases.

RTE is a mixture of RTE-4 (1000) and RTE-5 (1200) datasets. Both are annotated
in three-way, but the ENTAILMENT cases actually include PARAPHRASE as well. We
did not include the unofficial three-way annotation of the RTE-3 pilot task.

TSR is the dataset we annotated under the annotation scheme mentioned in Sec-
tion 3. The sentence pairs were extracted from the the RST Discourse Treebank (RST-
DT)7. The annotation was done by two annotators in two rounds. The inter-annotator
agreement is 91.2% and the kappa score is 0.775. We take all the valid and agreed
sentence pairs (260) as the TSR dataset here.

We randomly sample 250 T-H pairs from each dataset as the test sets (1000 pairs in
all). The rest of the data are then randomly selected to create a balance training set with
equal number of instance pairs from each class.

5 https://www.mturk.com/mturk/
6 http://pete.yuret.com/guide
7 Available from the LDC: http://www.ldc.upenn.edu/Catalog/
CatalogEntry.jsp?catalogId=LDC2002T07



5.2 Setup & Results

First of all, we take the PETE dataset to do binary classification (ENTAILMENT vs.
NON-ENTAILMENT) on a small scale to confirm that both syntactic and semantic de-
pendency structures are useful. The features extracted from the joint dependency graph
improve the model of features purely from the syntactic dependency tree by as much
as 10% of accuracy. Therefore, in the rest of the experiments, we will take the joint
dependency graph as the default structure to extract features.

For comparison, we configure our system in the following two ways to compose
different baseline systems: 1) from the classification strategy perspective, the direct
four-class classification would be the baseline (Direct Joint in Table 4), compared with
the main system with a two-stage classification (3-D Model); and 2) from the feature set
point of view, we take the bag-of-words similarity as the baseline8 (Direct BoW), com-
pared with the main system using both syntactic and semantic dependency structures
(i.e. the 3-D Model). Table 4 shows the results.

Table 4. Results of the system with different configurations and different evaluation metrics.

Systems
4-Way 3-Way 2-Way

(C, E, P, U) (C, E&P, U) (E&P, Others) (P, Others)
Direct BoW 39.3% 54.5% 63.2% 62.1%
Direct Joint 42.3% 50.9% 66.8% 77.3%
3-D Model 45.9% 58.2% 69.9% 79.6%

Notice that E here indicates the strict directional entailment excluding the bidi-
rectional ones (i.e. P), which makes the task much harder (as we will see it more
in Section 5.3). Nevertheless, the main approach, 3-D Model, improves the system
performance greatly in all aspects, compared with the baselines. Apart from the self-
evaluation, we also compare our approach with others’ systems. Due to the difference
in datasets, the numbers are only indicative.

Table 5. System comparison under the RTE annotation schemes (∗ indicates different datasets).

RTE
3-Way 2-Way

(C, E&P, U) Acc. Prec. Rec.
3-D Model 58.2% 69.9% 75.9% 53.4%

*M&M, 2007(NL) - 59.4% 70.1% 36.1%
*H&S, 2010 - 62.8% 61.9% 71.2%

Our Prev. 59.1% 69.2% - -
*RTE-4 Median 50.7% 61.6% - -

*RTE-5 Avg. 52.0% 61.2% - -

For the RTE comparison (Table 5), the datasets are partially different due to the mix-
ture of datasets. For reference, we re-run our previous system on the new dataset (indi-
cated as Our Prev., which was one of the top system in the previous RTE challenges).

8 The bag-of-words similarity has shown to be a strong baseline in the previous RTE challenges.



The results show that our new approach (3-D Model) catches the previous system on
the three-way RTE and outperforms it on the two-way task. And both systems achieves
much better results than the average. [11]’s system based on natural logic (M&M, 2007)
is precision-oriented while [8]’s (H&S, 2010) is recall-oriented. Our system achieves
the highest precision among them.

Table 6. System comparison under the paraphrase identification task (∗ indicates the test sets).

P vs. Non-P Acc. Prec Rec.
3-D Model 79.6% 57.2% 72.8%

*D&S, 2009 (QG) 73.9% 74.9% 91.3%
*D&S, 2009 (PoE) 76.1% 79.6% 86%

*H&S, 2010 73.2% 75.7% 87.8%

Besides the RTE task, we also compare our approach with other paraphrase identifi-
cation systems (Table 6). [35] proposed two systems, one with high-recall (D&S, 2009
(QG), using a quasi-synchronous grammar) and the other with high-precision (D&S,
2009 (PoE), using a product of experts to combine the QG model with lexical overlap
features). H&S, 2010 is the same system in Table 5. Although our system has lower
precision and recall, our accuracy ranks the top, which indicates that our approach is
better at non-paraphrase recognition.

Notice that, our system is not fine-tuned to any specific recognition task. Instead,
we build a general framework for recognizing all the four TSRs. We also include het-
erogenous datasets collected by various methods in order to achieve the robustness of
the system. On the contrary, if one is interested in recognizing one specific relation, a
closer look at the data distribution would help with the feature selection.

5.3 Discussions
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Fig. 2. Test data in the three-dimensional semantic relation space projected onto the three planes.

While the empirical results show a practical advantage of applying the three-dimensional
space model in the TSR recognition task, in this subsection, we investigate whether this
simplified semantic relation space with the chosen axises is a good approximation for



these TSRs. We plot all the test data into this space and Figure 2 shows three different
projections onto each two-dimensional plane.

Although the improvement on recognition accuracy is encouraging, these three mea-
surements cannot fully separate different TSRs in this space. P is clearly differentiated
from the others and most of the data points stay in the region of low inconsistency (i.e.
consistent), low inequality (i.e. equal), and high relatedness. However, the other three
TSRs behave rather similarly to each other in terms of the regions.
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Fig. 3. C, E, and U test data projected onto the inconsistency-inequality plane.

Figure 3 shows the other three TSRs on the same plane, inconsistency-inequality.
Although the general trend of these three groups of data points is similar, slight dif-
ferences do exist. U is rather restricted in the region of high inconsistency and high
inequality; while the other two spread a bit over the whole plane. We have expected
the contrary behavior of C and E in terms of inconsistency, but it seems that our in-
consistency measuring module is not as solid as the relatedness measure. This is in
accordance with the fact that for the original three-way RTE task C is also the most
difficult category to be recognized.

A even more difficult measurement is the inequality. Among all the four TSRs, the
worst result is on E, which roots from the suboptimal inequality recognition. In retro-
spect, the matching methods applied to the T-H pair cannot capture the directionality
or the semantic implication, but rather obtain a symmetric measurement, and thus it ex-
plains the success of paraphrase recognition. Additionally, this might also suggest that,
in the traditional RTE task, the high performance might attribute to the P “section” of
the entailment, while the real directional E is still very difficult to capture.

6 Conclusion and Future Work

In this paper, we present our approach of recognizing different textual semantic rela-
tions based on a three-dimensional model. Relatedness, inconsistency, and inequality
are considered as the basic measurements for the recognition task as well as the di-
mensions of the semantic relation space. We show empirically the effectiveness of this
approach with a feature model based on dependency paths of the joint syntactic and
semantic graph. We also interpret the results and the remaining difficulties visually.



There are several issues on the list: 1) Inequality seems to be difficult to define and
measure, which suggests to consider other possible dimensions; 2) we are looking for a
systematic way to tune the general system for specific TSR recognition tasks; and 3) we
have not incorporated lexical resources (e.g. WordNet) into our system yet, for a proper
way of integration is still up for future research.
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