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Abstract. In this paper an extension of index-based subgraph match-
ing is proposed. This extension significantly reduces the storage amount
and indexing time for graphs where the nodes are labeled with a rather
small amount of different classes. In order to reduce the number of pos-
sible permutations, a weight function for labeled graphs is introduced
and a well-founded total order is defined on the weights of the labels.
Inversions which violate the order are not allowed. A computational
complexity analysis of the new preprocessing is given and its complete-
ness is proven. Furthermore, in a number of practical experiments with
randomly generated graphs the improvement of the new approach is
shown. In experiments performed on random sample graphs, the num-
ber of permutations has been decreased to a fraction of 10−18 in average
compared to the original approach by Messmer. This makes indexing of
larger graphs feasible, allowing for fast detection of subgraphs.
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1 Introduction

Graphs play a major role in structural pattern recognition. An important task
in this field is to find similar structures (error-tolerant graph matching) or the
same structure (exact graph matching). The focus of this paper is on the latter
task, which is important if exactly the same structure or sub-structure needs to
be retrieved.

Exact graph matching is needed when the user searches for specific con-
stellations in molecules [11], in computer vision for the recognition of 3-D ob-
jects [8, 14], shape matching in image analysis [6, 2], or room-constellations in
floor plans [13]. In most applications, the retrieval result should be available in
real-time and the database of reference structures does not change too often. For



those situations it is advisable to build an index of the reference structures in
advance.

Such a method has been proposed by Messmer et al. [9]. It builds an index
using the permutated adjacency matrix of the graph. The real-time search is
then based on a tree based. While the method has shown to be effective for
reference set with small graphs, it is infeasible for graphs with more than 19
vertices.

In this paper we propose a method to overcome this problem. Assuming
that the number of labels for the nodes is relatively small, we introduce a well-
founded total order and apply this during index building. This optimization
decreases the amount of possible permutations dramatically and allows building
indexes of graphs with even more than 30 vertices.

The rest of this paper is organized as follows. First, Section 2 gives an
overview over related work. Subsequently, Section 3 introduces definitions and
notations which are used and Section 3.1 describes the new preprocessing step.
Next, Section 4 will show that the number of computational steps will be signif-
icantly decreased. Finally, Section 5 concludes the work.

2 Related Work

In [7], Goa et al. give a survey of work done in the area of graph matching. The
focus in the survey is the calculation of error-tolerant graph-matching; where
calculating a graph edit distance (GED) is an important way. Mainly the GED
algorithms described are categories into algorithms working on attributed or
non-attributed graphs. Ullman’s method [12] for subgraph matching is known
as one of the fastest methods. The algorithm attains efficiency by inferentially
eliminating successor nodes in the tree search.

Bunke [3, 4] discussed several approaches in graph-matching. One way to cope
with error-tolerant subgraph matching is using the maximum common subgraph
as a similarity measure. Furthermore the application of graph edit costs which is
an extension of the well-known string edit distances. A further group of subopti-
mal methods are approximate methods, they are based on neural networks, such
Hopfield network, Kohonen map or Potts MFT neural net. Moreover methods
like genetic algorithms, the usage of Eigenvalues, and linear programming are
applied.

Graph matching is challenging in presence of large databases [1, 4]. Conse-
quently, methods for preprocessing or indexing are essential. Preprocessing can
be performed by graph filtering or concept clustering. The main idea of the graph
filtering is to use simple features to reduce to number of feasible candidates. An-
other concept clustering is used for grouping similar graphs. In principle, given a
similarity (or dissimilarity) measure, such as GED [5], any clustering algorithm
can be applied. Graph indexing can be performed by the use of decision trees.

Messmer and Bunke [9] proposed a decision tree approach for indexing the
graphs. They are using the permutated adjacency matrix of a graph to build a
decision tree. This technique is quite efficient during run time, as a decision tree is



generated beforehand which contains all model graphs. However, the method has
to determine all permutations of the adjacency matrices of the search graphs.
Thus, as discussed in their experiments, the method is practically limited to
graphs with a maximum of 19 vertices. The main contribution of this paper is
to improve the method of Messmer and Bunke for special graphs by modifying
the index building process.

3 Definitions and Notations

Basic definitions used throughout the paper are already defined in [9], such as a
labeled graph G = (V,E, Lv, Le, µ, υ), adjacency matrix (M), and permutations
on adjacency matrices (A(G)). Besides, definitions for orders on sets are needed.

Definition 1 A total order is a binary relation ≤ over a set P which is tran-
sitive, anti-symmetric, and total, thus for all a, b and c in P, it holds that:

– if a ≤ b and b ≤ a then a = b (anti-symmetry);
– if a ≤ b and b ≤ c then a ≤ c (transitivity);
– a ≤ b or b ≤ a (totality).

Definition 2 A partial or total order ≤ over a set X is well-founded,
iff (∀ Y ⊆ X : Y 6= ∅ → (∃y ∈ Y : y minimal in Y in respect of ≤)).

Additionally, a weight function is defined which assigns weight to a label of a
graph.

Definition 3 The weight function σ is defined as: σ : Lv → N.

Using the weight function, a well-founded total order is defined on the labels of
graph, for example σ(L1) < σ(L2) < σ(L3) < σ(L4). Thus the labeled graph
can be extended in its definition.

Definition 4 A labeled graph consists of a 7-tuple, G = (V,E, Lv, Le, µ, υ, σ),
where

– V is a set of vertices,
– E ⊆ V × V is a set of edges,
– Lv is a set of labels for the vertices,
– Le is a set of labels for the edges,
– µ : V → Lv is a function which assigns a label to the vertices,
– υ : E → Le is a function which assigns a label to the edges,
– σ : Lv → N is a function which assigns a weight to the label of the vertices,

and a binary relation ≤ which defines a well-founded total order on the weights
of the labels:

∀x, y ∈ Lv : σ(x) ≤ σ(y) ∨ σ(y) ≤ σ(x)



3.1 Algorithm

The algorithm for subgraph matching is based on the algorithm proposed by
Messmer and Bunke [9], which is a decision tree approach. Their basic assump-
tion is that several graphs are known a priori and the query graph is just known
during run time. Messmer’s method computes all possible permutations of the
adjacency matrices and transforms them into a decision tree. At run time, the
adjacency matrix of the query graph is used to traverse the decision tree and
find a subgraph which is identical.

Let G = (V,E, Lv, Le, µ, υ) be a graph from the graph database and M the
corresponding n × n adjacency matrix and A(G) the set of permuted matrices.
Thus the total number of permutations is |A(G)| = n!, where n is the dimension
of the permutation matrix, respectively the number of vertices.

Now, let Q = (V,E,Lv, Le, µ, υ) be a query graph and M ′ the corresponding
m ×m adjacency matrix, with m ≤ n. So, if a matrix MP ∈ A(G) exists, such
that M ′ = Sm,m(MP ), the permutation matrix P which corresponds to MP

represents a subgraph isomorphism from Q to G, i.e

M ′ = Sm,m(MP ) = Sm,m(PMPT ).

Messmer proposed to arrange the set A(G) in a decision tree, such that each
matrix in A(G) is classified by the decision tree. However, this approach has
one major drawback. For building the decision tree, all permutations of the
adjacency matrix have to be considered. Thus, for graphs with more than 19
vertices the number of possible permutations becomes intractable. In order to
overcome this issue, the possibilities of permutations have to be reduced. One
way is to define constraints for the permutations. Therefore a weight function σ
(see Definition 3) is introduced which assigns a weight for each vertex according
to its label. Thus each label has a unique weight and a well-founded total order
(see Definition 1 and Definition 2) on the set of labels which reduces the number
of allowed inversion for the adjacency matrix. Figure 1 illustrates an example
for the modified matrices and the corresponding decision tree. Let us consider
the following weights for the nodes:

Lv ={L1, L2, L3}
σ(L1) = 1,

σ(L2) = 2,

σ(L3) = 3.

Each inversion that violates the ordering is not allowed. Thus just the vertices
which have the same label, respectively the same weights, have to be permuted
and if the labels have a different weight, just the variations are required. Given



Fig. 1: Modified decision tree for adjacency matrices

the graph G, the following labels are assigned to the vertices,

V ={v1, v2, v3}
µ(v1) = L1,

µ(v2) = L2,

µ(v3) = L2.

Hence, the only valid permutations are:

1. σ(µ(v1)) ≤ σ(µ(v2)) ≤ σ(µ(v3))
2. σ(µ(v1)) ≤ σ(µ(v3)) ≤ σ(µ(v2))
3. σ(µ(v2)) ≤ σ(µ(v3))
4. σ(µ(v3)) ≤ σ(µ(v2))



Let V A(G) be the set of all valid permutations. The decision tree is built ac-
cording to the row-column elements of the adjacency matrices MP ∈ V A(G)
and should cover all graphs from the database. So, let R be the set of semantics
R = {G1, G2, ..., Gn}, where n is the total number of graphs in the reposi-
tory, with their sets of corresponding adjacency matrices V A(G1), V A(G2), ...,
V A(Gn). Now, each set of adjacency matrices has to be added to the decision
tree. An obvious advantage of the method is that the whole process can be done
a priori. The decision tree acts as an index for subgraphs. So, during run time
the decision tree has been loaded into memory and by traversing the decision
tree, the corresponding subgraph matrices are classified. For the query graph
the adjacency matrix is determined following the constraints defined by order-
ing. Afterwards the adjacency matrix is split up into row-column vectors ai. For
each level i the corresponding row-column vector ai is used to find the next node
in the decision tree using an index structure. As query q1 ends in a leaf of the
decision tree, the labels of the leaf are the results, query q2 stops in a node, thus
the labels of all leafs beneath the node combine the result.

3.2 Proof of Completeness

For the proposed modified algorithm it has to be proven that the algorithm
finds all solutions. The algorithm elaborated in the previous section reduces
the number of valid permutations. So, it has to be shown that by leaving out
permutations, no valid solution is lost.

Let G = (V,E, Lv, Le, µ, υ, σ) be a well-founded total ordered graph and let
A(G) be the set which contains all valid permutations of the graph’s adjacency
matrices. To be complete, the algorithm must find a solution if one exists; other-
wise, it correctly reports that no solution is possible. Thus if every possible valid
subgraph S ⊆ G, where the vertices of S fulfill the order, every corresponding
adjacency matrix M has to be an element of the set A(G), M ∈ A(G).

For this reason to proof that the algorithm is complete it has to be shown
that the algorithm generates all valid subgraphs S ⊆ G. Therefore the pseudo
code of Algorithm 1 shows how the index is build. Algorithm 2 and Algorithm 3
are helping functions for calculating all variations of the set of vertices in an
interval. The generation of the index starts with an unsorted set of vertices.
By sorting the vertices with their associated labels using the well-founded total
order, the set is ordered according to the weights of the labels.

Now, the algorithm iterates over all intervals of vertices {va, ..., vb} where
the labels have the same weights, σ(µ(va)) == σ(µ(vb)). For each interval
{va, . . . , vb}i all variations with respect to the order have to be determined.
These variations are computed in Algorithm 4, by determining all combina-
tion of the interval {va, . . . , vb}i including the empty set and calculating all
permutations for these combinations. Algorithm 2 and Algorithm 3 realize the
algorithm proposed by Rosen [10] which computes all permutations for a de-
fined interval. It has been proven that Rosen’s algorithm computes all per-
mutations. In combinatorial mathematics, a k-variation of a finite set S is a
subset of k distinct elements of S. For each chosen variation of k elements,



Algorithm 1 BUILD INDEX(G = (V,E,Lv, Le, µ, υ, σ), Tree)

Require: Unsorted set V of vertices, µ labeling function, σ weight function.
1: sort(V, Lv, µ, σ)

Ensure: Vertices V are sorted according to the defined order.
2: Let O be an empty list.
3: for all li ∈ LV do
4: Let interval {va, . . . , vb} contain all v with µ(v) = li
5: Oi ← V ARIATIONS({va, . . . , vb})
6: end for
7: Let AG← O1 × . . . ×O|Lv|.
8: for all mi in AG do
9: Add row column vector for sequence of mi to Tree.

10: end for

Algorithm 2 PERMUTE(V, begin, end,R)

Require: Sorted set V of vertices and begin < end, with Vend−1 being last the element.
1: Adding sequence of vertices V to R.
2: for i← end− 2 to begin do
3: for j ← i+ 1 to end− 1 do
4: Swapping position i and j in V.
5: Call PERMUTE(V, i+ 1, end,R).
6: end for
7: Call ROTATE(V, i+ 1, end,R).
8: end for

where k is Linterval = length of interval; k = 1 . . . Linterval, again all permu-
tations have to be considered. Now, assuming there would be a valid subgraph
Q = (V ′, E′, L′

v, L
′
e, µ, υ, σ), respectively the corresponding adjacency matrix A

which depends on the alignment of the vertices. To be a valid subgraph, V ′ has
to be a subset of V , V ′ ⊆ V . Furthermore the alignment of the vertices V ′

according to their labels has to fulfill the defined order, σ(µ(vi)) ≤ σ(µ(vi+1)).
For the alignment the intervals {v′a, . . . , v′b} ∈ V ′ where the weights of the labels
have the same value σ(µ(v′a))) == σ(µ(v′b) are important as they can vary. The
Algorithm 4 determines all variations for intervals with the same weights for la-
bels, thus the alignment {v′a, . . . , v′b} is considered. This holds for each interval,
thus algorithm produces all valid permutations according to the well-founded
total order. As the query graph Q also has to fulfill the order, its adjacency
matrix A will be an element of A(G), if Q is a valid subgraph of G. Thus, the
solution will be found in the decision tree.

3.3 Complexity Analysis

The original algorithm by Messmer [9] as well as the proposed algorithm need an
intensive preprocessing, the compilation of the decision tree. Messmer’s method
has to compute all permutations of the adjacency matrix of the graph, thus the



Algorithm 3 ROTATE(V, begin, end,R)

1: Let temp← Vend−1.
2: Shift elements in V in from position begin to end− 1 one position right
3: Set Vbegin ← temp.
4: Add sequence of vertices V to R.

Algorithm 4 VARIATIONS({va, . . . , vb})
Require: Sorted set V = {va, . . . , vb} of vertices, a ≤ b.
1: Let O be an empty list.
2: Determine all combinations C for {va, . . . , vb} including the empty set.
3: for all c in C do
4: Call PERMUTE(c, 0, |c|, O).
5: end for
6: Return O.

compilation of the decision tree for a graph G = (V,E, Lv, Le, µ, υ, σ) has a run
time complexity of O(|V |!).

Due to space limitations, we omit the detailed listing of all calculations. The
final result for the complexity of our proposed approach is

O(((nmax + 1)!)|Lv|),

where nmax is the maximum number of vertices with the same weight. Thus for
the worst case - where all vertices have the same label - nmax = |V |, O((|V |+1)!)
which would be worse than the method proposed by Messmer and the best case
- where all vertices have different labels (nmax = 1) is O(2|V |) To find the
average case of the algorithm the distribution of the labels in the graph has to
be considered. This distribution varies according to the represented data.

4 Evaluation

In order to examine run time efficiency of the modified subgraph matching ex-
periments on randomly generated graphs were performed. The modified decision
tree algorithm has been implemented in Java using a Java 6 virtual machine.
The experiments ran on a Intel Core Duo P8700 (2.53 GHz) CPU with 4 GByte
main memory. For the experiment 100 random graphs were generated with 15
to 30 vertices. It compares Messmers’s algorithm with its required permutations
to the modified algorithm. The permutations for the modified algorithm were
determined according to the algorithm discussed in Section 3.1 and the formula
in Section 3.3:

|Lv|∏
i=1

 ni∑
j=1

(
ni
j

)
· j!


and as the original has to be calculate the permutations for all vertices (|V |!
permutations). In the second experiment the time to add a graph to the deci-



Table 1: Results of graph experiments (first 10 graphs).

Graph Vertices Permutations Permutations Same lables
# (modified) (original) (max.)

1 17 3.26× 106 3.55× 1014 5
2 21 3.59× 109 5.10× 1019 8
3 17 1.08× 107 3.55× 1014 5
4 20 2.50× 108 2.43× 1018 6
5 24 1.64× 1012 6.20× 1023 10
6 17 1.63× 106 3.55× 1014 3
7 21 2.04× 107 5.10× 1019 3
8 30 1.39× 1012 2.65× 1032 5
9 22 8.01× 108 1.12× 1021 6
...

...
...

...
...

100 23 1.00× 109 2.58× 1022 6

� 23.05 1.09× 1013 3.73× 1031 5.23

Table 2: Run time for compiling the decision tree for each graph

Graph Vertices Run time Permutations Same lables
# (minutes) # (max.)

1 17 1.47 8.19× 105 4
2 17 8.90 4.17× 106 5
3 21 45.67 5.32× 107 4
4 21 10.06 8.19× 106 3
5 21 38.01 4.09× 107 3

sion tree was measured and again the number of permutations of the adjacency
matrix which were added to the decision tree. As the experiment was quite
time-consuming on a desktop machine, only the performance for five smaller
graphs was measured. The results of the experiment are listed in Tab. 2. The
experiments show that the algorithm significantly reduces the number of per-
mutations (see Tab. 1). Though, the time needed to compile the decision tree is
still quite long even for small problem instance, as shown in Tab. 2. However, as
the method is designed for an off-line preprocessing and considered to run on a
server machine, it is still reasonable for practical applications.

5 Conclusions and Future Work

In this paper an extension for the method of Messmer’s subgraph matching has
been proposed. The original method is very efficient to perform exact subgraph
matching on a large database. However, it has a limitation for the maximum
number of vertices. The modification discussed in this paper enables to increase
this limit depending on how the vertices are labeled. As the number of permuta-
tions in the preprocessing step depends on the vertices with the same labels, an
analysis of the data that will be represented in graph is necessary. If there are



just a few vertices with the same label, e.g. less than five, even graphs with 30
vertices can be handled. It has been proven that the modification of the method
does not affect its completeness.

Noteworthy, the proposed method can be applied in several areas, such as
object recognition, matching of 2D or 3D chemical structures, and architec-
tural floor plan retrieval. Future work will be to perform experiments on real
graph data sets and research strategies for choosing appropriate weight func-
tions. Furthermore, we plan to extend this method to provide a fast method for
error-tolerant graph matching.
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