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ABSTRACT

Machine learning approaches are increasingly used in brain-machine-
interfaces to allow the automatic adaptation to user-specific brain
patterns. One of the most crucial factors for the practical success
of these systems is that this adaptation can be achieved with a
minimum amount of training data since training data needs to be
recorded during a calibration procedure prior to the actual usage
session. To this end, one promising approach is to reuse models
based on data recorded in preceding sessions of the same or other
users. In this paper, we investigate under which conditions it is
favorable to reuse models (more specifically spatial filters) trained
on data from historic sessions compared to learning new spatial
filters on the current session’s calibration data. We present an empir-
ical study in a scenario in which Brain Reading, a particular kind of
brain-machine-interface, is used to support robotic telemanipulation.

Index Terms— Brain Reading, spatial filter, model transfer

1. INTRODUCTION

In many scenarios that involve the use of man-machine interfaces,
the usability of the system can be improved if the machine is pro-
vided with some information about the current state and intent of
its user such that the machine can optimize its behavior accord-
ingly. Analyzing the user’s electroencephalogram (EEG) is one way
to obtain this information since event-related potentials and certain
changes in brain wave frequency bands are known to be related to the
changes of the user’s mental state and intent. Decoding of a user’s
mental state and intent based on detecting these patterns by external
observation of brain activity is denoted as Brain Reading (BR). In
contrast to most Brain Computer Interfaces (BCIs, see [1, 2] for a
review of works) no active participation of the user is required.

BR systems must be adapted to the current brain patterns of the
respective user since these characteristic patterns vary between dif-
ferent subjects and even change over time within the same subject.
One option to achieve this kind of adaptability is to use supervised
machine learning (ML) to learn user-specific models (see e.g. [3]).
In order to apply supervised ML techniques, a training set with la-
beled examples is needed. A common approach for acquiring such a
training set is to perform a calibration procedure at the beginning of
each session, in which EEG data is recorded from the user who acts
in a controlled and supervised scenario. This means that the user has
to perform a time-consuming and potentially exhausting calibration
procedure each time he wants to use the system. Thus, it is desirable
to keep this calibration procedure as short as possible, i.e. to use a
system that requires only a small training set.
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One way to reduce the required amount of training data is to
reuse data recorded in previous sessions conducted by the same or by
other subjects in the same scenario. This approach necessitates deal-
ing with inter-session and, potentially, also with inter-subject vari-
ability. Two different approaches can be distinguished: In the first
approach, historic models are reused directly (see e.g. [4, 5]) while
in the second approach historic data is mixed with data from the
calibration procedure to train the adaptable components generating
hybrid models (see e.g. [6]).

In this work, we will focus on the first approach, more specif-
ically we investigate the transferability of so-called spatial filters.
Spatial filtering denotes a mapping of the original channels (that cor-
respond one-to-one to the electrodes) onto new pseudo-channels that
are a mixture of the signals recorded at different electrodes. It allows
to reduce the dimensionality of the problem which is important in
situations that require fast data processing but only limited comput-
ing power is available, such as e.g. in “portable” BR where the data
processing has to be performed on an embedded device. The goal of
this work is to investigate empirically under which conditions it is fa-
vorable to reuse spatial filters trained on data from historic sessions
compared to learning new spatial filters on the current session’s cal-
ibration data. Both approaches are compared for different sizes of
the training set and different degrees of dimensionality reduction.

2. LABYRINTH ODDBALL SCENARIO

The empirical evaluation was conducted on an EEG dataset recorded
in the Labyrinth Oddball scenario (see Figure 1). The Labyrinth
Oddball scenario is a testbed for the use of man-machine interfaces
in robotic telemanipulation and is well suited for evaluation of BR
(for more details we refer to Kirchner et al. [7]?). In this scenario, the
task for the BR system is to discriminate between the EEG patterns
associated with the successful cognitive processing of two specific
kinds of visual stimuli presented to the user, called ’standard’ and
’target’ stimulus. While ’standard’ stimuli are frequent (n = 720
presentations per run) but irrelevant for the user, ’target’ stimuli are
rare (n = 120) but require a reaction (pressing a buzzer) by the
user. Such a scenario is called “oddball discrimination paradigm”
and the successful cognitive processing of the rare ’target’ stimuli is
known to elicit a special kind of event-related potential, called P300
[8]. The visual presentation (shape and color) of standard and target
stimuli was very similar in order to avoid differences in early visual
processing and to make sure that differences in the EEG recorded
after the presentation of both stimuli types are actually due to higher
cognitive processing. In contrast to many BCIs (e.g. [2]), the clas-
sification has to be done based on the individual epoch (instance)
and not on an average over several repetitions of the same condition.
Note that no feedback sessions for subject training were performed.

The dataset used in this paper consists of the labeled EEG data



Fig. 1. Labyrinth Oddball scenario: Subject playing a physical sim-
ulation of the BRIO R© labyrinth and responding to rare “target” stim-
uli by pressing a buzzer. Target stimuli were mixed with more fre-
quent “standard” stimuli that differed only slightly in presentation.

recorded in ten sessions1 from five (male) subjects; each subject
performed two sessions and each session consisted of five repeti-
tions (called “runs”) of the Labyrinth Oddball paradigm. EEGs were
recorded continuously from 64 electrodes (extended 10-20 system
with reference at electrode FCz), using an actiCap system (Brain
Products GmbH, Munich, Germany). Two of the 64 channels were
used to record EMG (electromyography) signals of muscles of the
upper arm. EEG and EMG signals were amplified by two 32 chan-
nel BrainAmp DC amplifiers (Brain Products GmbH, Munich, Ger-
many) and sampled at 1000 Hz. The impedance was kept below 5kΩ
in order to minimize artifacts that are due to high impedance.

3. METHOD

3.1. Single-trial data processing

As a first step in the single-trial data processing system used for dis-
crimination of the ’standard’ and the ’target’ condition, the EEG sig-
nal recorded during the experiment was split into distinct time win-
dows. For each presented standard and target stimulus, one time
window was extracted beginning 0 ms and ending 1000 ms after the
stimulus presentation. Each of the resulting time windows was nor-
malized so that the mean value of each channel within the window
was 0. After this, the signal was low-pass filtered and downsampled
from 1000 Hz to 25 Hz and band-pass filtered with a pass-band of
(0.0, 4.0) Hz in order to focus on slow potentials like the P300.

Subsequently, the signal was spatially filtered (see Section 3.2)
and the values of the resulting pseudo-channels were used directly
as features, i.e. the 26 samples of each of the m retained channels
that fell into the time window from 0 to 1000 ms were used as fea-
tures, resulting in 26m features. Thereupon, each feature dimension
was normalized such that its 2.5th percentile on the training data was
mapped onto 0 and the 97.5th percentile was mapped onto 1. The

1Sessions have been recorded on different days and thus the positioning
of the EEG cap can vary between sessions of the same user.

resulting feature vectors were classified using a Support Vector Ma-
chine with linear kernel. The implementation of the data processing
system is mainly based on the “Modular toolkit for Data Processing”
[9], see also Kirchner et al. [7].

3.2. Spatial filtering

Spatial filtering denotes a mapping of the original n channels that
correspond one-to-one to the n electrodes onto new pseudo-channels
that are a mixture of the signals recorded at different electrodes. Spa-
tial filtering aims at cumulating class-correlated EEG patterns that
are superimposed by other, potentially stronger non-relevant com-
ponents and spatially distributed over several electrodes into a single
pseudo-channel. This allows to reduce the number of channels by
retaining only the subset of the m < n most promising pseudo-
channels. This has two advantages: first, dimensionality reduction
reduces computing time for subsequent processing stage and sec-
ondly, classifier overfitting is less likely in lower dimensional spaces.

Data-driven approaches based on unsupervised or supervised
ML allow to learn subject- (and session-) specific spatial filters.
While learning subject/session-specific filters is desirable since spa-
tial localization of patterns might vary between subjects and also
between different sessions of the same user (for example due to
slightly different EEG cap placements), it also requires a sufficient
amount of calibration data recorded in the current session. An al-
ternative is to reuse spatial filters trained on historic sessions of the
same or different users. While these filters have not been specif-
ically adapted for the current session, selecting an adequate filter
from a large ensemble of historic filters might still yield superior
performance when only a small calibration data set is available.

In this work, we use the supervised common spatial patterns
(CSP) algorithm (see for example Blankertz et al. [10]) for learn-
ing spatial filters. CSP maps the data onto axes such that the vari-
ance for instances of the first class is maximized and the variance
for the second class is minimized (or vice versa). This is achieved
by a simultaneous diagonalization of the two empirical intra-class
covariance matrices Σ1 = n−1

1

∑n1

i=0
(x

(1)
i − µ

(1))(x
(1)
i − µ

(1))T

and Σ2 = n−1
2

∑n2

i=0
(x

(2)
i − µ(2))(x

(2)
i − µ(2))T , i.e. by solving

Σ1W = ΛΣ2W where Λ is the vector of generalized eigenvalues
and W is the matrix of generalized eigenvectors corresponding to
the learned projections.

4. EVALUATION

4.1. Setup

We compared 4 different settings for spatial filtering (f ∈ {’NoFilter’,
’FromScratch’, ’LeaveOneSessionOut’, ’InterSubject’}): not us-
ing any spatial filtering (’NoFilter’), learning CSP filters based
solely on the session’s calibration data (’FromScratch’), selecting
a CSP filter from a historic set including sessions from the same
user (’LeaveOneSessionOut’) and a historic set without any ses-
sions of the current user (’InterSubject’). All four settings have
been tested for different numbers of retained pseudo-channels
(m ∈ {2, 4, 8, 16, 32, 62}) and different sizes of the calibration
data set (t ∈ {42, 84, 168, 252, 420, 840}, where t is the number of
instances and t = 840 corresponds to a calibration run of approx. 16
minutes). For the ’NoFilter’ condition, domain experts have selected
fixed electrode sets for the different values of m2.

2m = 2: Cz, Pz; m = 4: Fz, Oz additionally; m = 8: T7, T8, Fp1,
Fp2 additionally; m = 16: F3, F4, C3, C4, P3, P4, O1, O2 additionally;
m = 32: standard 32 electrodes cap setting



Historic spatial filters were trained using the CSP algorithm on
the EEG data of a whole session, resulting in 10 − 1 = 9 CSP fil-
ter matrices for the ’LeaveOneSessionOut’ setting and 10 − 2 = 8
for the ’InterSubject’ setting. Among these filter matrices, the most
adequate one for the current session and the selected m was deter-
mined by five-fold cross-validation on the available calibration data3.
In the same cross-validation loop, the complexity parameter C ∈
{0.01, 0.1} of the SVM and the relative weight wt ∈ {5, 10} of the
target-class to the standard-class were determined. Overweighting
the target-class was necessary since the ratio of standard and target
class instances in the data set was highly unbalanced (roughly 6 : 1).

A subset of the data recorded during the first run of a session was
used as calibration data while the remaining four runs were used as
test data (intra-session setting). Note that the EMG channels were
discarded prior to the data processing. The F1-measure on the target
class was used as performance metric to emphasize the role of the
minority class. For the given ratio of 6 : 1 between standard and
target class, the trivial classifiers “always standard”, “always target”,
and “uniform random guess” would obtain an F1-measure on the
target class of F1 = 0.0, F1 ≈ 0.25, and F1 ≈ 0.222 respectively.

4.2. Results

Figure 2 summarizes the results of the study. The results were an-
alyzed using repeated measures ANOVA with three within-subjects
factors: transfer of spatial filter (f ), training size (t), and number of
retained channels (“dimensionality” m). If needed, the Greenhouse-
Geisser correction was applied. For pairwise comparisons, Bonfer-
roni correction was applied. Additionally, linear regression analyses
were applied separately for each spatial setting.

In general, the more training data became available the better
the performance of the system got [main effect of t: F (5, 195) =
453.24, p < 0.001]. The effect of dimensionality [main effect of
m: F (5, 195) = 76, 617, p < 0.001] was different depending
on the spatial filter setting. In particular, the “NoFilter” condition
was strongly affected by the dimensionality, namely by an improv-
ing performance with increasing m. This positive correlation was
also present for small t [r = 0.273, p < 0.001 for t = 42]. In
contrast, for the other settings a negative correlation (decreasing per-
formance with increasing m) was observed for small t [“LeaveOne-
SessionOut”: r = 0.448, p < 0.001, “FromScratch”: r = 0.204,
p < 0.001 (for t = 42)]. Accordingly, the highest performance for
small t and large m was achieved by the “NoFilter” setting.

The session-specific filter (“FromScratch”) was strongly influ-
enced by t, but the effect of m was less pronounced compared to
“NoFilter”. For example, for small t, the “FromScratch” was the
worst among the four settings regardless of the value of m [p <
0.001 for t = 42]. In contrast, for large values of t and medium
values of m, the performance of the “FromScratch” setting was sig-
nificantly the best among the four settings [p < 0.003 for t = 840
combined with m = 8, 16].

The two settings that are based on reusing historic spatial fil-
ters (“LeaveOneSessionOut” and “InterSubject”) were least affected
by both m and t [main effect of f : F (3, 117) = 32, 846, p <
0.001]. Thus, for small m, these two “reusing” settings outper-
formed “NoFilter” and ”FromScratch“ for all values of t [p < 0.026
for m = 2]. However, for larger values of m, the performance
of the “reusing” settings did not benefit as strong as the other two
settings from increasing t. Accordingly, for m = 4 the “reusing”

3Note that cross-validation only affects the runtime of the method during
training but not during prediction and thus does not counteract the reduction
of runtime achieved by dimensionality reduction.

0.1
0.2
0.3
0.4
0.5
0.6
0.7 Channels: m=2 Channels: m=4

0.1
0.2
0.3
0.4
0.5
0.6
0.7

F-
M

ea
su

re
(T

ar
ge

ts
)

Channels: m=8 Channels: m=16

200 400 600 800
Size calibration dataset (t)

0.1
0.2
0.3
0.4
0.5
0.6
0.7 Channels: m=32

200 400 600 800
Size calibration dataset (t)

Channels: m=62

InterSubject
LeaveOneSessionOut
NoFilter
FromScratch

Fig. 2. Average F1-measure on target class for the four spatial filter-
ing settings for different sizes of the training set and different num-
bers of retained channels after spatial filtering (“dimensionality”).

settings outperformed the other settings only for small t [p < 0.017
for m < 4 combined with t < 252] but not for larger values of t.

4.3. Discussion

As expected, making available more calibration data improves the
performance of the system. In all settings, a better adapted classifier
is one explanation for this increased performance. In the “From-
Scratch” setting, better adaptation of the spatial filter to the specific
subject/session can also contribute to the increased performance,
while in the “reusing” settings, increased performance might be at-
tributed to a more robust selection of the historic spatial filter that
fits optimally to the current session. The significantly better per-
formance of the “reusing” settings compared to the “FromScratch”
setting for small values of m and t shows that it is easier to select
an appropriate historic filter than to learn from scratch a new fil-
ter that cumulates the relevant information into the most prominent
pseudochannels.

Figure 3 summarizes in which situations which kind of approach
can be recommended: In situations when the calibration run must be
short and the dimensionality has to be reduced (m ≤ 8) for compu-
tational reasons, reusing historic filters is recommended. In partic-
ular, if only m = 2 channels can be retained, reusing spatial filters
is significantly the best approach regardless of t. If the calibration
run must be short but a larger number of channels can be retained
(m ≥ 32), spatial filtering should be discarded altogether. A pos-
sible explanation for the harmfulness of any kind of spatial filtering
under this condition is that most of the pseudochannels do not con-
tain any relevant information and the number of “noise” features is
thus very large. If the training set is very small, this may result in se-
vere overfitting. When a longer calibration run is possible, learning
a new spatial filter tends to be the best approach even though reusing
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Fig. 3. The figure shows which method achieves the highest F1-
measure for a given combination of retained channels and size of
calibration dataset. Filled symbols denote settings where the “win-
ner” method is significantly better than each of the other two meth-
ods. The “InterSubject” setting is omitted since it is mostly on par
with the “LeaveOneSessionOut” setting.

historic filters is usually only slightly and not significantly worse.
Under a few conditions, the “LeaveOneSessionOut” setting is

slightly superior compared to the “InterSubject” setting but largely,
the two different types of spatial filter transfer are on par. This shows
that spatial filter transfer is also feasible for novel users (correspond-
ing to the “InterSubject” setting) while experienced users might have
a small advantage under certain conditions.

We would like to point out that the results for the “NoFilter” con-
dition are specific for the respective electrode selections and other
electrode selections might perform better for a given m. However,
this only indicates that choosing a good electrode set is a non-trivial
problem. In contrast, spatial filtering allows for an automatic selec-
tion of pseudo-channels based on their corresponding eigenvalues.

5. RELATED WORKS

In this section, we classify the proposed method into the related
work. Related work has been done mainly in the field of BCIs; thus a
direct comparison between our and related work in terms of achieved
performance and duration of calibration procedures is not possible.
Instead, we focus on a delineation of concepts and preconditions of
the individual methods.

A method targeted at long-term BCI users was proposed by
Krauledat et al. [4]: for each historic session conducted by the user
and each class, the three top CSP filters were stored. A clustering
in the CSP space was used to select six prototypical CSP filters
from this historic CSP set. Furthermore, the data from the historic
sessions was pooled and six CSP filters were learned based on this
data. The main difference to our work is that single CSP filters were
transferred and not whole filter matrices and that these filters were
selected using unsupervised learning. Furthermore, the evaluation
of the approach was restricted to intra-subject transfer and thus only
long-term BCI users were addressed.

A method that is also feasible for novel subjects was proposed
by Lotte and Guan [6]: In order to reduce the calibration time for
novel subjects, EEG data recorded from known subjects was reused
for the adaptation to a novel subject. The BCI system discussed by
the authors was based on CSP and linear discriminant analysis. Both
methods require to estimate covariance matrices; Lotte and Guan
proposed to compute the covariance matrices as a mixture of the es-
timates obtained from data recorded during the calibration procedure
and of the data recorded from other subjects. They gave a procedure

for selecting a subset of the subjects whose data can be well trans-
ferred onto the current subject and a procedure for determining the
mixture coefficients. The main differences to our work are that not
models but data was transferred and that the effect of varying the
number of retained CSP channels was not investigated.

6. CONCLUSION

We have presented an empirical study in a Brain Reading scenario
that indicates that spatial filtering is recommendable for single-trial
discrimination of classes in an oddball-like scenario. Furthermore,
we have shown that reusing spatial filters trained on historic sessions
achieves superior results compared to learning a session-specific fil-
ter anew in situations when the training set is small or when the
number of channels must be reduced. This holds true also for novel
users for which spatial filters of other users need to be reused.
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