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Abstract. Machine learning is increasingly used to autonomously adapt4 4

brain-machine interfaces to user-specific brain patterns. In order to min-5 5

imize the preparation time of the system, it is highly desirable to reduce6 6

the length of the calibration procedure, during which training data is7 7

acquired from the user, to a minimum. One recently proposed approach8 8

is to reuse models that have been trained in historic usage sessions of9 9

the same or other users by utilizing an ensemble-based approach. In10 10

this work, we propose two extensions of this approach which are based11 11

on the idea to combine predictions made by the historic ensemble with12 12

session-specific predictions that become available once a small amount of13 13

training data has been collected. These extensions are particularly use-14 14

ful for Brain Reading Interfaces (BRIs), a specific kind of brain-machine15 15

interfaces. BRIs do not require that user feedback is given and thus,16 16

additional training data may be acquired concurrently to the usage ses-17 17

sion. Accordingly, BRIs should initially perform well when only a small18 18

amount of training data acquired in a short calibration procedure is19 19

available and allow an increased performance when more training data20 20

becomes available during the usage session. An empirical offline-study in21 21

a testbed for the use of BRIs to support robotic telemanipulation shows22 22

that the proposed extensions allow to achieve this kind of behavior.23 23

1 Introduction24 24

Brain Reading Interfaces (BRIs) are one particular kind of brain-machine in-25 25

terface (BMI) that allow to provide the machine with information about the26 26

current mental state and intent of its user such that the machine can optimize27 27

its behavior accordingly. In contrast to active Brain-Computer Interfaces (BCIs,28 28

see [3,13] for a review of works), BRIs estimate the user’s mental state and intent29 29

based on passive, external observation of brain activity without requiring any30 30

active participation of the user. This observation can, e.g., be based on electroen-31 31

cephalography (EEG). Since no active participation of the user is required, BRIs32 32

are well-suited for scenarios like robotic telemanipulation where a sophisticated33 33

BMI is expedient but the user needs to be fully immersed in his task.34 34

Like active BCIs, BRIs must be adapted to the current brain patterns of the35 35

user since these characteristic patterns vary between different subjects and even36 36

change over time within the same subject. This can be achieved by using machine37 37

learning (ML) techniques (see, e.g., Blankertz et al. [4] for an example in an active38 38

BCI). The common approach for using ML in BCIs is to record labeled training39 39

data during a so-called calibration procedure that must be conducted prior to40 40
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each usage session. In this calibration procedure, the user acts in a controlled41 41

and supervised scenario. The labeled data acquired is then used to adapt the42 42

ML-based BCI system to the user’s current brain patterns. The drawback of this43 43

approach is that the user has to conduct this calibration procedure each time44 44

he wants to use the system. Thus, it is highly desirable to keep this calibration45 45

procedure as short as possible (or remove its necessity altogether).46 46

Different approaches for reducing the calibration time have been proposed:47 47

Krauledat et al. [9] proposed an algorithm targeted at long-term BCI users that48 48

allows to skip the calibration procedure. This is accomplished by inferring spa-49 49

tial filters and classifiers that generalize well across sessions based on reusing50 50

training data from historic sessions of the same user and clustering of historic51 51

spatial filters. Fazli et al. [6] proposed a method that allows to skip the cali-52 52

bration procedure for both long-term and novel users. Their approach is based53 53

on an ensemble of historic spatial-filter/classifier combinations that are trans-54 54

ferred to the current session and whose individual predictions are combined into55 55

a joint prediction by means of a gating function. Both approaches require that56 56

a large number of historic sessions be available. Further approaches for reducing57 57

calibration time are multi-task learning [2], semi-supervised learning [10], and a58 58

hybrid approach that mixes historic data with session-specific data [11].59 59

The main contribution of this paper is to propose two extensions of the “pure”60 60

ensemble-based approach of Fazli et al. and to present an empirical comparison61 61

of these approaches in a testbed for the use of BRIs to support robotic telema-62 62

nipulation. The two extensions we propose—Classification Augmentation and63 63

Feature Augmentation—are based on the idea of combining the predictions made64 64

by the historic ensemble with session-specific predictions that become available65 65

once some amount of training data has been collected. We show that these ex-66 66

tensions achieve good performance when only a small amount of training data67 67

is available and—in contrast to the “pure” ensemble approach—also become in-68 68

creasingly better for more training data. This is particularly important for BRIs,69 69

since BRIs allow to interweave the acquisition of training data with the actual70 70

usage session. Thus, the system should initially perform well based on a small71 71

amount of training data acquired in a short calibration procedure but should also72 72

be able to improve performance when increasingly more training data is gathered73 73

during the usage session. Furthermore, in contrast to related approaches like [6]74 74

and [9], the proposed extensions perform well also when only a small number75 75

of historic sessions is available. The paper is structured as follows: In Section 2,76 76

a testbed for BRIs in robotic telemanipulation is presented. Subsequently, the77 77

baseline BRI as well as different ensemble-based extensions are proposed in Sec-78 78

tion 3. In Section 4, the experimental setup and a discussion of our results are79 79

given and a conclusion is drawn in Section 5.80 80

2 Scenario81 81

Labyrinth Oddball The empirical evaluation was conducted on an EEG dataset82 82

recorded in the Labyrinth Oddball scenario (see Figure 1), a testbed for the83 83
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Fig. 1. Labyrinth Oddball: The subject plays a physical simulation of the BRIOR©

labyrinth and has to respond to rare ’target’ stimuli by pressing a buzzer. Event-related
potentials (ERPs) evoked by ’target’ and more frequent ’standard’ stimuli are depicted.

use of BRIs in robotic telemanipulation. In this testbed, the operator has to84 84

simultaneously execute a manipulation task (playing the Labyrinth game) and85 85

to distinguish two different kinds of stimuli presented to him while playing the86 86

game. The BRI only needs to passively monitor whether the operator of the87 87

Labyrinth game correctly recognized and distinguished these stimuli. Since no88 88

user feedback is given, the testbed is well suited for evaluation of BRIs (for more89 89

details we refer to [1] and the video in the supplementary material). The task90 90

for the BRI is to discriminate between the EEG patterns evoked by recognizing91 91

so-called ’standard’ and ’target’ stimuli1. While ’standard’ stimuli are frequent92 92

(720 presentations per run) but irrelevant for the user, ’target’ stimuli are rare93 93

(120 presentations per run) and require him to press a buzzer. Such a scenario is94 94

called “oddball discrimination paradigm” and the successful recognition of the95 95

rare ’target’ stimuli is known to elicit an event-related potential (ERP) called96 96

P300 [12]. In contrast to many active BCIs (e.g., [13]), the classification has to97 97

be made based on the individual instance and not on an average over several98 98

repetitions of the same condition. To avoid differences in early visual brain ac-99 99

tivity and to make sure that differences in the EEG recorded and classified after100 100

the presentation of both stimuli types are actually due to higher cognitive pro-101 101

cessing, the visual presentation (shape and color) of standard and target stimuli102 102

was kept very similar. Note that neither during the calibration procedure nor103 103

during evaluation runs feedback was given to the subject.104 104

Data Acquisition EEG data was acquired in 12 sessions from 6 male subjects;105 105

each subject performed 2 sessions. Sessions were recorded on different days;106 106

accordingly, the EEG cap was fitted onto the subject’s head for each session107 107

1 This is a kind of proxy-task for the actual task of distinguishing between recognized
and missed target stimuli (see [1] for a discussion).
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anew. Each of these sessions consisted of five repetitions (called “runs”) of the108 108

Labyrinth Oddball paradigm. After each of the five runs there was a short break109 109

of 10 minutes. The EEG was recorded and stored along with information about110 110

which stimulus was presented at what time and whether the buzzer was pressed111 111

afterwards. EEG was recorded continuously from 64 electrodes (extended 10–20112 112

system with reference at electrode FCz), using an actiCap system (Brain Prod-113 113

ucts GmbH, Munich, Germany). Two of the 64 channels (replacing the electrodes114 114

TP7 and TP8) were used to record electromyography signals of muscles of the115 115

lower arm and have been discarded in this study. EEG signals were amplified116 116

by two 32 channel BrainAmp DC amplifiers (Brain Products GmbH, Munich,117 117

Germany) and were sampled at 1000 Hz. The impedance was kept below 5 kΩ.118 118

3 Methods119 119

Baseline BRI As a first step of the baseline BRI system used for discrimination of120 120

the ’standard’ and the ’target’ condition, rectangular time windows starting 0 ms121 121

and ending 1000 ms after stimulus presentation are extracted from the continuous122 122

signal recorded during the experiment. Thereupon, the extracted time windows123 123

are normalized so that the mean value of each channel becomes 0 within this124 124

window. Subsequently, the signal is low-pass filtered (cutoff frequency 12 Hz),125 125

downsampled from 1000 Hz to 25 Hz, and again low-pass filtered for a cutoff126 126

frequency of 4 Hz in order to focus on slow ERPs like the P300.127 127

After this, the signal is spatially filtered. Spatial filtering denotes a mapping128 128

of the original n channels x(t) (that correspond one-to-one to the n electrodes)129 129

onto new pseudo-channels x̃(t) = WTx(t) that are a (linear) mixture of the130 130

signals recorded at different electrodes (see Blankertz et al. [5] for a discussion131 131

of why spatial filtering is an important step). In this work, we have generated132 132

spatial filters based on the common spatial patterns (CSP) algorithm [8]. CSP133 133

maps the data onto axes such that the variance for instances of the first class134 134

is maximized and the variance for the second class is minimized (or vice versa).135 135

This is achieved by a simultaneous diagonalization of the two empirical intra-136 136

class covariance matrices Σ1 = n−1
1

∑n1

i=1(x
(1)
i − µ(1))(x

(1)
i − µ(1))T and Σ2 =137 137

n−1
2

∑n2

i=1(x
(2)
i −µ(2))(x

(2)
i −µ(2))T , i.e., by solving Σ1W = ΛΣ2W where Λ is the138 138

vector of generalized eigenvalues and W is the matrix of generalized eigenvectors139 139

corresponding to the learned filters.140 140

The values of the resulting pseudo-channels, i.e., the 26 × 62 samples of141 141

the 62 pseudo-channels that fall into the time window from 0 to 1000 ms, are142 142

used as features. Thereupon, each feature dimension is normalized such that its143 143

2.5th percentile on the training data is mapped onto 0 and the 97.5th percentile144 144

is mapped onto 1. The resulting feature vectors are classified using a support145 145

vector machine (SVM) with linear kernel and complexity 0.01. Since the ratio146 146

of standard and target class instances in the dataset is highly unbalanced due147 147

to the oddball paradigm, the weight for class ’target’ has been set to 2.0, while148 148

the weight of class ’standard’ was set to 1.0. The feature set and all mentioned149 149

parameters have been chosen based on a preliminary investigation conducted on150 150
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a hold-out dataset. The implementation of the data processing system is based151 151

on the “Modular toolkit for Data Processing” [14].152 152

Ensemble approach The baseline BRI outlined above adapts to the specific user153 153

by supervised training of subject- (and session)-specific spatial filters, feature154 154

normalization, and classifiers. Once trained, these three components form a155 155

subject- and session-specific classification system cs (subsequently called a clas-156 156

sification flow) that maps preprocessed time series x onto the scalar classifier157 157

prediction cs(x) ∈ R. Unfortunately, training of a classification flow requires a158 158

large training dataset that needs to be recorded at the start of each session. In159 159

order to reduce the required amount of training data (possibly even to zero), Fa-160 160

zli et al. [6] proposed to reuse classification flows trained on N historic sessions161 161

from the same and other subjects; such a set h = (ch1
, . . . , chN

) of historical162 162

classification flows chi is called an ensemble. An ensemble can be used to gen-163 163

erate a vector of class predictions h(x) = (ch1
(x), . . . , chN

(x)) ∈ RN for a given164 164

time series x.165 165

Thereupon, a so-called gating function g combines the ensemble’s predic-166 166

tions h(x) ∈ RN into a joint prediction g(h(x)) ∈ R (in the linear case g(x) =167 167∑N
i=1 wichi

(x)). A gating function can be defined without requiring session-168 168

specific training data by, e.g., training it on historic data (compare Fazli et169 169

al. [6]) or, alternatively, without any training by predicting according to the170 170

equally-weighted mean of the ensemble’s predictions (wi = 1/N). Furthermore,171 171

in situations where a small amount of session-specific training data is available,172 172

it is possible to train a gating function such that higher weights wi are assigned173 173

to historic flows chi
that have high predictive performance for the current ses-174 174

sion. In this paper, we focus on the latter approach since it can be combined175 175

naturally with the proposed augmentation approaches (see below). We use an176 176

SVM with linear kernel for learning the gating function’s parameters wi since177 177

this SVM-based gating function achieved superior performance on hold-out test178 178

data of the given scenario compared to other common methods for learning gat-179 179

ing functions. The outlined “pure” ensemble approach is depicted as the middle180 180

layer in Figure 2.181 181

Augmentation approaches While ensemble approaches have been successful in182 182

achieving good performance when only a limited amount (or even no) training183 183

data from the current session is available (see, e.g., [6]), it is unlikely that they184 184

can achieve competitive results when more session-specific training data becomes185 185

available since they can not exploit novel patterns or shifts present in the current186 186

session that have not been observed in any of the historic sessions. We propose187 187

to use the ensemble approach presented above not instead but in addition to188 188

the training of a session-specific flow cs, i.e., to augment the session-specific189 189

flow cs by the predictions of the ensemble h. In this approach, the available190 190

training data is used for two purposes: training of a session-specific flow cs and191 191

training of the gating function g which determines the final classification based on192 192

the ensemble’s predictions and the session-specific information. We propose and193 193
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Fig. 2. Different ensemble and augmentation approaches. Feature Augmenta-
tion and Classification Augmentation are two alternative approaches for augmenting
the ensemble’s predictions by session-specific information. TS denotes a time-series,
FV a feature vector, and CL a scalar classifier prediction.

compare two alternative approaches: Classification Augmentation and Feature194 194

Augmentation (see Figure 2).195 195

In the classification augmentation approach, the prediction of the session-196 196

specific classification flow cs(x) is treated like any of the ensemble flow’s pre-197 197

dictions chi
(x): An augmented ensemble h̃ = (ch1

, . . . , chN
, cs) is generated and198 198

the gating function g chooses the joint prediction g(h̃(x)) based on h̃’s output199 199

(h̃(x) ∈ RN+1). Both cs and g need to be trained based on data acquired in the200 200

current session; using the same data for both tasks, however, would result in a201 201

too strong reliance of the gating function on cs since the predictive performance202 202

of cs would be evaluated on its own training data. Thus, the available training203 203

data needs to be split into two parts. Empirically, we have found that using 2/3204 204

for training of cs and 1/3 for training of g is a good compromise.205 205

In contrast, in the feature augmentation approach, the session-specific in-206 206

formation added to the ensemble’s predictions is not the classifier’s prediction207 207

cs(x) but the values of the n most informative features f1(x), . . . , fn(x), i.e.,208 208

h̃(x) = (ch1
(x), . . . , chN

(x), f1(x), . . . , fn(x)) ∈ RN+n. Thus, h̃(x) consists of209 209

two very different kinds of values: classifier predictions and CSP-pseudo-channel210 210

values (the selected features). However, this does not impose a problem and has211 211

the advantage that the available training data can be used more efficiently than212 212

in classification augmentation (note that while in principle feature selection and213 213

training of the gating function should be done on disjoint training sets, we have214 214

found empirically that it is favorable to train both on the same data). The choice215 215

of n is one additional parameter of this approach. The determination of the most216 216

informative features is made using the RELIEF feature selection algorithm [7].217 217

4 Evaluation218 218

Experimental Setup One historic classification flow has been trained for each his-219 219

toric session, resulting in 12 historic classification flows. Each of the 12 sessions220 220
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has been used once as evaluation session with the remaining 11 sessions being221 221

considered accordingly as historic sessions. Two different settings have been com-222 222

pared: In the “LeaveOneSessionOut” setting, the classification flows belonging to223 223

all but the current evaluation session have been used in the ensemble (resulting224 224

in ensembles of N = 11 flows), while in the “LeaveOneSubjectOut” setting, all225 225

classification flows that have not been generated from usage sessions of the cur-226 226

rent subject are used in the ensemble (resulting in ensembles of N = 10 flows).227 227

For each evaluation session, the data recorded in the first run has been used as228 228

training data and each of the remaining four runs has been used once as test229 229

dataset (intra-session setup), resulting in 4 ∗ 12 = 48 performance samples per230 230

method. Training datasets of six different sizes t ∈ {42, 84, 168, 252, 420, 840}231 231

have been randomly sampled from the 840 labeled instances of the first run,232 232

where t = 840 corresponds to a calibration time of approximately 16 minutes.233 233

We refer to “experimental design.pdf” in the supplementary material for more234 234

details.235 235

Parameters of the SVM gating function have been selected using 5-fold inter-236 236

nal cross-validation on the training data (complexity C ∈ {0.001, 0.01, 0.1, 1.0}237 237

and target class weight wt ∈ {1, 2, 5, 10} for standard class weight 1). The param-238 238

eter n of the feature-augmentation approach has been linearly increased from239 239

n = 2 for t = 42 to n = 50 for t = 840 to account for a stronger influence240 240

of the session-specific information when more training data becomes available.241 241

The scalar output of the gating function g is mapped onto the binary classes by242 242

choosing a threshold that maximizes the performance on the training data. For243 243

comparison, the results of the “zero-training” gating function that predicts ac-244 244

cording to the equally-weighted ensemble mean are given for the pure ensemble245 245

for t = 0. The performance of the session-specific flow cs is given as “baseline”.246 246

No value for classification augmentation is given for t = 42 since not enough tar-247 247

get class training examples were available for the two-stage training procedure.248 248

Because of the large class-skew of the classification task, standard mea-249 249

sures such as accuracy are not well suited as performance metric. Instead, per-250 250

formance is measured according to the mutual information metric I(T ;Y ) =251 251

H(T )−H(T |Y ) with H(T ) = −
∑n

i=1 p(xi)log2p(xi) being the Shannon entropy252 252

of the class label T and H(T |Y ) the conditional entropy of the class label T253 253

given the classifier’s prediction Y . The values of the metric correspond to the254 254

bits of information about the true class label conveyed by the classifier. The255 255

main advantage of this metric is that any kind of random classifier has mutual256 256

information 0. Note that the class label’s entropy (and thus I(T ;Y )) is upper257 257

bounded by H(T ) ≈ 0.533 for the given class ratio of 6 : 1. The optimally258 258

achieved performance (mutual information of 0.22) corresponds roughly to 94%259 259

correct classifications.260 260

Results and Discussion We compared the four different approaches (factor e)261 261

for different training set sizes (factor t) by repeated measures ANOVA with t262 262

and e as within-subjects factors. This statistic model was separately performed263 263

for each setting s ∈ {”LeaveOneSessionOut”, ”LeaveOneSubjectOut”} because264 264

of the different ensemble sizes N for the two settings. Whenever the results of265 265
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Fig. 3. Effect of training set size. Comparison of baseline, ensemble, and augmenta-
tion approaches for maximal N (LeaveOneSessionOut: N = 11, LeaveOneSubjectOut:
N = 10) and for different training set sizes t.

the two different settings were compared, the additional factor s was added to266 266

the statistic model. Furthermore, in order to avoid that the different values of267 267

N for the two settings s affect these comparisons, one randomly selected session268 268

of another subject was removed from the “LeaveOneSessionOut” setting such269 269

that N = 10 in both cases. If needed, the Greenhouse-Geisser correction was270 270

applied. For pairwise comparisons, Bonferroni correction was applied. All tests271 271

have been performed for a significance level of p < 0.05 (see “statistics.pdf” in272 272

supplementary material for more detailed results).273 273

Figure 3 summarizes the results of the study. In the “LeaveOneSessionOut”274 274

setting, the ensemble approach is significantly better than the baseline for t ≤275 275

252 and worse for t = 840. This supports the hypothesis that historic predictors276 276

provide good performance when only a small amount of training data is available277 277

but are outperformed by session-specific predictors when larger amounts of train-278 278

ing data have been acquired. Among the two augmentation approaches, feature279 279

augmentation is clearly better with statistical significance for t ∈ {42, 84, 168, 420}.280 280

This may be attributed to the inefficient usage of training data in the classifi-281 281

cation augmentation approach where it is necessary to split the training data282 282

into two disjoint parts (see Section 3). Furthermore, feature augmentation can283 283

be considered to be superior to both the ensemble and the baseline approach284 284

since performance is never significantly worse than any of the two, but signif-285 285

icantly better than the ensemble for t ≥ 420 and better than the baseline for286 286

t ∈ {42, 84, 168, 420}. This indicates that feature augmentation provides an ef-287 287

ficient way of combining historic and session-specific information by adaptively288 288

learning which source of information should be trusted more.289 289

Results in the “LeaveOneSubjectOut” setting are qualitatively similar, with290 290

the notable difference that the ensemble’s performance is significantly worse than291 291

in the “LeaveOneSessionOut” setting for all t. This shows that a historic session292 292
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setting. For comparison, the baseline performance is shown for the same values of t.

of the same user helps to increase the performance of the ensemble approach.293 293

As a result, in the “LeaveOneSubjectOut” setting, the ensemble is significantly294 294

better than the baseline only for t ≤ 168 but worse for t = 840. Performance295 295

of the feature augmentation approach deteriorates significantly as well in the296 296

“LeaveOneSubjectOut” setting for all t 6= 252; however, this deterioration is less297 297

strong since the session-specific flow compensates partly for the missing historic298 298

session of the same user. Accordingly, the feature augmentation approach is still299 299

never significantly worse than the baseline but significantly better for t ≤ 168.300 300

Figure 4 shows how the size N (N ∈ {1, 2, 4, 6, 8, 10, 11}) of the historic en-301 301

semble and the size of the training dataset t mutually affect the performance of302 302

the pure ensemble and the feature augmentation approach (in the “LeaveOneSes-303 303

sionOut” setting). These results have been separately analyzed for each setting304 304

by repeated measures ANOVA with the within-subjects factors N , t, and e. The305 305

performance of the pure ensemble approach depends strongly on the ensemble’s306 306

size: Even for large t, no performance above 0.17 is achieved for N ≤ 2 and307 307

no performance above 0.19 for N ≤ 6. This dependence on N is even stronger308 308

in the “LeaveOneSubjectOut” setting (see “ensemble size LOSubjectO.pdf” in309 309

supplementary material). On the other hand, the feature augmentation approach310 310

depends less strongly on N , outperforming the baseline for small t significantly311 311

even when N is very small (t < 84 for N = 1; t < 168 for N ∈ {2, 4}) but never312 312

being significantly worse than the baseline.313 313

5 Conclusion314 314

We have presented two alternative approaches for combining predictions made by315 315

an ensemble trained on historic sessions with a flow that has been trained on data316 316

acquired in the current usage session. This hybrid approach allows to achieve a317 317
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better performance than the session-specific predictor when only small amounts318 318

of training data are available and a better performance than the historic ensemble319 319

when more training data becomes available. The proposed approach performs320 320

well for subjects for which historic sessions exist but also for novel subjects321 321

for which no historic sessions have been conducted. Furthermore, in contrast322 322

to related approaches like [6] and [9], the proposed method also achieves good323 323

performance when only a small number of historic sessions is available, where it324 324

still outperforms the session-specific predictor for small training datasets. Future325 325

work is to conduct online studies in which the acquisition of training data is326 326

performed concurrently to the usage session.327 327
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