
Scene-based Image Retrieval by Transitive Matching
∗

Adrian Ulges
German Research Center for Artificial

Intelligence (DFKI)
Trippstadter Str. 122

Kaiserslautern, Germany
adrian.ulges@dfki.de

Christian Schulze
German Research Center for Artificial

Intelligence (DFKI)
Trippstadter Str. 122

Kaiserslautern, Germany
christian.schulze@dfki.de

ABSTRACT

We address scene-based image retrieval, the challenge of
finding pictures taken at the same location as a given query
image, whereas a key challenge lies in the fact that target
images may show the same scene but different parts of it. To
overcome this lack of direct correspondences with the query
image, we study two strategies that exploit the structure of
the targeted image collection: first, cluster matching, where
pictures are grouped and retrieval is conducted on clus-
ter level. Second, we propose a probabilistically motivated
shortest path approach that determines retrieval scores based
on the shortest path in a cost graph defined over the image
collection. We evaluate both approaches on several datasets
including indoor and outdoor locations, demonstrating that
the accuracy of scene-based retrieval can be improved dis-
tinctly (by up to 40%), particularly by the shortest path
approach.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Retrieval and Indexing

General Terms

Algorithms, Measurement, Experimentation

Keywords

content-based image retrieval, similarity search, scene-based
retrieval, image clustering

1. INTRODUCTION
Similarity search is a frequently studied challenge in content-

based image retrieval, where – given a query picture – vi-
sually similar images are to be retrieved from a dataset.
Applications range from copyright preservation over mobile
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Figure 1: In scene-based image retrieval, target pic-
tures (like B in this example) may show different
parts of a scene, sharing no local correspondences
with the query image. To retrieve them, we ex-
ploit the structure of the image collection using a
transitive matching (here, the fact that image A is
connected with B as well as the query image).

image retrieval and archive search to multimedia forensics.
With this diversity of application scenarios, the criteria for
what defines a “similar” image vary strongly: sometimes,
we want to discover content that is a re-encoded or other-
wise modified version of an original image or video scene,
for example to protect the interests of a copyright holder.
In other situations, similarity search is targeted at images
showing the same object as the query image.
In this paper, we address another type of similarity: our

goal is to retrieve images taken at the same location or scene
(e.g., an indoor room or an outdoor place) as the query
image. We will refer to this challenge as scene-based re-

trieval. Its applications are in organizing personal image
collections (imagine finding holiday snapshots taken at the
same spot) or in multimedia forensics, where police investi-
gators are interested in finding images associated with the
same crime scene (e.g., to uncover links between different
criminal cases).
One common approach towards addressing similarity search

is local feature matching, in which regions of interest in both
the target image and the query image are detected and cor-



respondences between the two feature sets are found. A fun-
damental challenge with scene-based retrieval is that target
images may show a different part of the same scene, and
thus not share any such correspondences with the query im-
age. This illustrated in Figure 1, where image A shares some
visual overlap with the query image but B does not.

To overcome this problem, we suggest to exploit the struc-
ture of image collections as an additional information source:
our first strategy will be cluster matching, where we cluster
the image collection and, – assuming that images in the
resulting clusters will belong to the same scene – we re-
trieve images in order of the clusters they belong to. Sec-
ond, we propose a probabilistically motivated shortest path

approach, in which we formulate costs between images de-
creasing with their correspondence strength. Retrieval is
conducted by finding images that can be reached via low-
cost paths, which allows a transitive matching (for example,
in Figure 1, a low-cost path from the query over A to B

allows us to retrieve image B).
This paper is organized as follows: we first review re-

lated work (Section 2), followed by a description of both ap-
proaches (Section 3) and quantitative experiments on several
datasets showing indoor and outdoor locations (Section 4),
in which we validate strong improvements, particularly by
shortest path retrieval. We finish with a conclusion (Section
5).

2. RELATED WORK

Patch-based Image Retrieval.
Since their introduction by Lowe [8], local features or

patches have widely been applied to object recognition and
other vision tasks. This local feature approach has also been
used for content-based image retrieval [3, 21]. Many special
purpose image retrieval systems have been developed for
domains like medical, document and tattoo images [7, 19,
4]. An evaluation of different local feature descriptors [11]
states that SIFT features outperform other local feature ap-
proaches regarding their matching quality. We relate to
patch-based image retrieval due to the fact that we use SIFT
features exclusively as our data source for the proposed ap-
proach. Here, we especially exploit the potential of local
features for detecting the occurrence of multiple objects in
different images in different constellations without the need
of prior segmentation.

Stitching and 3D Reconstruction.
Photo Stitching and 3D reconstruction are related to our

work, as they involve the linkage of unordered image sets
via sparse correspondences. In this area, impressive results
have been achieved recently [16] and 3D reconstructions have
been generated from large-scale diverse image sets [2]. How-
ever, while a full 3D reconstruction works reliably on well-
aligned images with strong correspondences, we focus on
more complex situations, involving significant occlusion, ob-
ject motion and articulation, and lighting changes. In these
complex situations, it is difficult to decide whether two im-
ages do show parts of the same scene, and we present a
light-weight robust solution for making this decision.

Object Recognition.
Object recognition is related to scene-based retrieval, as

keypoints on both objects and scenes may be visible only
from certain perspectives. Correspondingly, object views
form topological structures (or manifolds) that have already
been exploited as an information source [13]. Like object
recognition, scene-based retrieval is targeted at associating
test views with these manifolds. The main difference, how-
ever, is that object recognition is conducted in a supervised
setting (i.e., training views are labeled), and the focus is
usually on finding a single object view similar to the query
view [13, 8]. In contrast, scene-based retrieval is targeted at
discovering all views related to a scene, i.e. recover mani-
folds in an unsupervised fashion.

Image Clustering and Image Graphs.
Clustering has been used before as a strategy to exploit

the internal structure of image collections: Tuytelaars et
al. [20] evaluate a variety of clustering algorithms for an
unsupervised mining for object categories. Other work has
been targeted at finding outdoor locations: Quack et al. [17]
perform a multi-modal clustering taking geo-tags, visual and
textual clues into account. By linking clusters with wikipedia
articles and matching images with clusters, auto-annotation
is achieved. Philbin et al. [15] cluster large-scale image col-
lections using a hybrid approach, which first oversegments
the dataset and then recombines clusters of diverse views of
the same object. We validate improvements by such clus-
ter matching approaches for scene-based retrieval. Beyond
this, we suggest a novel approach that mines image collec-
tions for shortest paths. While previous graph-based ap-
proaches [6] were focused on estimating the importance of
target images based on their connection strength (similar to
Google’s PageRank), we exploit the image graph in a query-
dependent fashion by discovering transitive similarities with
the input image.

3. APPROACH
We first introduce some basic notation: a query image

Iq is assumed to be given, for which pictures showing the
same scene are to be retrieved from a dataset of other im-
ages I1, .., IN . We assume all pictures to belong to a finite
set of scenes (indoor or outdoor locations), which is formal-
ized by a latent scene mapping S from images Ii to their
respective scene S(i). Our goal is to retrieve images show-
ing the same scene as Iq, i.e. a perfect retrieval score would
be δS(i),S(q). Unfortunately, the scene mapping S is un-
known. Instead, a similarity measure sim between images
is given: for example, sim(q, j) denotes the similarity be-
tween Iq and Ij . We assume a full matrix of similarities
within the database to be given, i.e., sim(i, j) is known for
any choice of (i, j) ∈ {1, .., N}2. For large databases, ap-
proximations can be found to work around this condition –
see Section 5 for a discussion.

The similarity sim(i, j) is derived from local correspon-
dences (ormatches) between Ii and Ij . Based on the number
m(i, j) of these matches, different similarity measures have
been proposed in the literature (see [5] for a discussion). We
use a simple normalization: for each image Ii, we compute
the overall number of its correspondences with all other im-
ages: ni :=

∑

j
m(i, j). sim(i, j) is obtained by normalizing

m(i, j) with respect to ni and nj :

sim(i, j) =
N

2
·

(

m(i, j)

ni

+
m(i, j)

nj

)

(1)



This measure puts the number of matches m(i, j) in relation
to the average number of matches both images share with
all other pictures in the dataset. The factor N achieves a
normalization with respect to the dataset size. Note also
that the similarity measure is symmetric, i.e. sim(i, j) =
sim(j, i). Finally, as already indicated, we will employ clus-
tering as one strategy to improve retrieval. The resulting
clusters (which form a partitioning of the image indices) are
denoted with C1, .., CK ⊂ {1, .., n}.

3.1 Features and Matching
Following the frequently used patch-based approach, we

describe images as collections of local interest regions, which
are matched to discover correspondences between pictures.
For detecting local features, two different Interest Point (IP)
detectors are utilized, namely the DoG detector [9] and the
multi-scale Harris-Laplace detector [12]. Using these two
complementary IP detectors, a good coverage of differently
appearing image areas can be achieved. While the DoG
detector is attracted by blob-like image content, the Harris-
Laplace detector is strongly attracted by corners. The pa-
rameters of interest point detection were manually tuned to
threshDoG = 5.0 and harrisK = 0.08. For the description
of the local image content the SIFT descriptor [9] was used1.
Matching the descriptors of two images was done using the
SIFTGPU library2. The parameters distmax=0.75 and ra-

tiomax=0.85 were optimized by a grid search maximizing
the retrieval performance on a groundtruth dataset.

3.2 Approach 1: Cluster Matching
Our first approach to improve scene-based image retrieval

exploits the structure of the image collection using cluster-
ing, a powerful tool which has already been applied to im-
age datasets before [15, 20]. Our idea is that the resulting
clusters coincide with scenes, such that by retrieving im-
ages from the right cluster we retrieve images from the right
scene. We apply the following three-step procedure:

1. clustering: the image collection clustered into parti-
tions C1, .., CK .

2. cluster ranking: given the query image Iq, we com-
pute a similarity with each cluster, simc(Iq, Ck), and
order the clusters by descending similarity to Iq, ob-
taining a ranking r1, .., rK . The overall retrieval result
is then obtained by a ranking on cluster level, i.e. all
images from cluster Cr1 are ranked highest, then the
ones from Cr2 , and so on.

3. image ranking: images within a retrieved cluster are
ranked, too (which can have a strong influence on re-
trieval accuracy in case of large clusters).

Clustering.
We test different clustering methods for structuring image

collections:

• K-medoids: As a simple baseline, we employ the well-
known k-medoids clustering (using the implementation
from the C clustering library3).

1using the vlfeat library: http://www.vlfeat.org
2http://www.cs.unc.edu/˜ccwu/siftgpu/
3bonsai.hgc.jp/˜mdehoon/software/cluster/software.htm

• agglomerative clustering: We test different versions of
bottom-up agglomerative clustering, using the stan-
dard linkage methods “single”, “average”, and “com-
plete”. Again, the C clustering library was used.

• spectral clustering: We also test spectral clustering [10]
using a projection with the top K eigenvectors of the
normalized (asymmetric) graph laplacian, followed by
K-means clustering.

• ground truth: Finally, we also test a system where
the clusters coincide with the true partitioning of the
dataset, i.e. for each scene there is a cluster containing
all images from this scene (and only them). Though
this information is likely not available in practice, we
will use this setup as a control run indicating an upper
bound for the performance of cluster matching.

A key problem with clustering is to determine the number of
clusters K. To choose it, we test multiple choices of K and
adopt the one maximizing Pearson’s measure [14] (which has
been used for image clustering before by Philbin et al. [15]):
denoting with A(C1, C2) :=

∑

i∈C1

∑

j∈C2
sim(i, j) the sum

of similarities between two image sets, and with C = {1, .., N}
the whole image set, the quality of a cluster structure is de-
fined as:

Q(C1, .., Ck) =
K
∑

k=1

(

A(Ck, Ck)

A(C,C)
−

A(Ck, C)2

A(C,C)2

)

(2)

Cluster Ranking.
For cluster ranking, we define an image-cluster similarity

measure simc(Iq, Ck), which is based on the number of cor-
respondences between the query image Iq and images within
Ck. We test two variants:

• voting: the similarities between Iq and all images in
the cluster are accumulated (normalized by the cluster
size). Let sim denote the image similarity measure
from Equation (1):

sim
c(Iq, Ck) :=

1

|Ck|

∑

Ii∈Ck

sim(Iq, Ii)

• closest: this strategy adopts the similarity to the clos-
est image in the cluster as the cluster similarity

sim
c(Iq, Ck) := min

Ii∈Ck

sim(Iq, Ii)

Image Ranking.
Images Ii within a cluster can be ranked by employing

the similarity measure sim(Iq, Ii) (Equation (1)). An al-
ternative will be introduced in the following section, where
pictures are scored based on the minimal cost of reaching
them via a path through the image collection.

3.3 Approach 2: Shortest Path Retrieval
A key problem with scene-based retrieval is that target

images may share no direct correspondences with the query.
However, there may be indirect correspondences, as illus-
trated in Figure 1 (where image B shares strong correspon-
dences with A, which again is connected to the query). In
the following, we introduce a probabilistic model that makes



use of these indirect matches. We model the retrieval score
of a target image Ii by a probability that Ii shows the same
scene as Iq. To overcome the lack of direct correspondences
between Ii and Iq, this probability should be high if there
is a path of images Iq and Ii in which all pairs of neighbor
images are likely to show the same scene.

Probabilistic Image Similarity.
To realize shortest path search, we first model the proba-

bility that two subsequent images Ii, Ij in a path do show the
same scene. We base this probability on the correspondence
strength sim(i, j), i.e. we compute P [S(i)=S(j) | sim(i, j)].
An estimate of this probability is illustrated in Figure 2: the
higher the image similarity sim(i, j) (x-axis), the higher we
expect the target probability to be. The green solid curve
was obtained by dividing the range of image similarities into
bins and counting for each bin the percentage of associated
image pairs from a test dataset truly showing the same scene.
We see that our probability curve approximates a sigmoidal
shape (the dashed line shows a fitted sigmoid).
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Figure 2: An estimate of the probability Pij that
two images Ii, Ij show the same scene, given their
similarity sim(i, j). The solid line shows an estimate
on the “Porn 1” dataset (see Section 4), the dashed
line a fitted sigmoid.

This observation can also be motivated theoretically: let
us assume that if two images do not show the same scene, the
number of their correspondences (and with it the similarity
sim) is normally distributed, i.e. p[sim(i, j) |S(i) 6=S(j)] =
N (µ0, σ0). On the other hand, if both pictures do show the
same scene, they may share some visual overlap or not (e.g.,
if they show different parts). Therefore, we use a Gaussian
mixture: p[sim(i, j) |S(i) = S(j)] = P0 · N (µ0, σ0) + P1 ·
N (µ1, σ1). By applying Bayes’ rule, it can be shown that
P [S(i)=S(j) | sim(i, j)] follows a sigmoidal shape:

Pij := P [S(i)=S(j) | sim(i, j)] (3)

= (1− α) +
α

1 + exp{β + γ · sim(i, j)}

In the following, we will abbreviate this probability with Pij ,
and will assume that an estimate of its parameters α, β, γ

is given. We derive this estimate from the target dataset as
illustrated in Figure 2, i.e. a sigmoid is fitted to a line based
on estimates from all image pairs. Note that this requires

the scene distribution S(i) to be known – as this is unlikely
to be the case in a practical setting, Section 4 will also show
that learning the sigmoid generalizes well, i.e. we can fit it
on one dataset and apply the learned parameters to another
image collection with only minor performance loss.

Shortest Path Modeling.
Given an estimate of the probability that two images in

a path show the same scene, we can formulate probabilistic
retrieval scores based on shortest paths. We motivate this by
marginalizing over all possible paths over images starting at
Iq and ending at Ii. A path p = (i1, i2.., iL(p)) is defined as
a sequence of indexes associated with images. L(p) denotes
the length of this sequence, and the start and end indices
i1, iL(p) equal q and i. We now model the probability that
two images connected by a path p show the same scene,
using the sigmoidal probability estimate from Equation (3):

P [S(i)=S(j),p] ∝

L(p)−1
∏

l=1

Pilil+1

By denoting the set of all possible paths from Iq to Ii with
P(q, i), we can marginalize over all possible paths and com-
pute the final retrieval score:

simP(Iq, Ii) := P [S(q)=S(i)]

=
∑

p∈P(q,i)

P [S(q)=S(i),p]

∝
∑

p∈P(q,i)

L(p)−1
∏

l=1

Pilil+1
(4)

≈ max
p∈P(q,i)

L(p)−1
∏

l=1

Pilil+1

= min
p∈P(q,i)

L(p)−1
∑

l=1

− logPilil+1

i.e. we define a graph with images as nodes and edges wij

associated with costs (here, − logPij). Given this graph,
we compute the score simP(q, i) for a database image Ii
by detecting a minimum cost path from Iq to Ii. To find
these paths, an A∗ search is used, which may (for efficiency
reasons) be restricted to paths of a limited length.

3.4 Combining the two Approaches
We can apply shortest path retrieval globally on the whole

collection I1, .., IN by ranking images with the shortest path
similarity measure simP (Equation (4)). Alternatively, we
can combine it with cluster matching (Section 3.2) by re-
placing the standard similarity sim with simP in the image
ranking step. The resulting procedure matches the query
image first with all clusters, and then ranks pictures inside
each cluster by a shortest path search. This comes with scal-
ability improvements, as finding shortest paths is cheaper
within small clusters as compared to the whole collection.
We will evaluate this combined approach in Section 4.

4. EXPERIMENTS
In the following, we evaluate the two proposed approaches

– cluster matching and shortest path retrieval – in quanti-
tative experiments. We will first describe the experimental



protocol (Section 4.1). After this, we evaluate cluster match-
ing (Section 4.2), followed by experiments with shortest path
retrieval and a combination of both (Section 4.3). Finally,
we test how well our approach – which requires some extra
supervision compared to plain similarity matching – gener-
alizes to entirely new datasets (Section 4.4).

4.1 Setup
We test our approach on several image datasets showing a

mix of indoor and outdoor locations. All benchmarks consist
of image series taken at the same indoor or outdoor location,
whereas the level of occlusion may vary strongly, as well as
scene texture and variations in perspective and illumination.

• Offices: We captured the first dataset ourselves by
panning and zooming with a video camera through
several offices in our lab. The dataset consists of 12
short clips corresponding to 12 offices, from which 576
keyframes were extracted by a regular sampling over
time. The number of keyframes per series ranges from
38 to 59.

• Rome: This dataset of outdoor locations contains
1, 400 pictures downloaded from panoramio.com. The
dataset contains 7 series corresponding to 7 places in
Rome (such as Piazza del Popolo or Piazza di Spagna).
Each series contains 200 images showing buildings from
the corresponding place. Illumination may vary strongly,
as well as occlusion and perspective.

As another target domain, we choose the forensic investi-
gation of crime scenes: here, an issue of particular interest
to investigators is to uncover links between different images
taken at the same crime scene. This allows to relate different
criminal investigations (e.g., cases of child sexual abuse).

• Porn 1+2: These two datasets were collected from
the web by different application partners in the foren-
sic area. They contain series of pornographic pictures,
whereas images from a series correspond to a shooting,
showing the same indoor scene from varying perspec-
tives and with varying occlusion. Pictures in a series
show the same persons, but pose and scale may vary
strongly. Logos (e.g., website names) were removed to
avoid a biased evaluation. The first (less challenging)
dataset Porn 1 consists of 562 pictures in 37 series
ranging from size 10 to size 18. Images show moderate
variation in pose and perspective, and contain many
highly textured scenes. The second (more challenging)
dataset Porn 2 contains 2, 000 pictures in 200 series
of size 10 [1]. As Figure 3(d) illustrates, this dataset
contains significant occlusion by foreground objects,
less textured backgrounds, and strong variation in pose
and perspective.

For efficiency reasons, we conducted our evaluation in a
leave-one-out fashion: for each dataset, the complete set
of images was used for clustering and for estimation of the
parameters of shortest path search α, β, γ (Equation (3)).
Then, different settings were tested by performing retrieval
for each image after removing it from the collection. We
measure retrieval accuracy by the precision at a rank adapted
to the series size (e.g., PREC@10 for Porn 2), averaged over
all images in the respective dataset.

(a) Office

(b) Rome

(c) Porn 1

(d) Porn 2

Figure 3: Sample pictures from our datasets, show-
ing mixed content of indoor and outdoor scenes
with varying occlusion and variation of perspective
and illumination (pornographic foregrounds were re-
moved for illustration only).

4.2 Cluster Matching
We first evaluate cluster matching (Section 3.2). As a

baseline, a standard approach based on direct correspon-
dences is used, which ranks result images Ii by their simi-
larity to the query image sim(q, i) (Equation (1)). We com-
pare this baseline with the extension described in Section
3.2, where clustering is applied and images are retrieved in
order of their clusters.

Figure 4 illustrates quantitative results on all datasets.
The dashed gray lines indicate the performance of our base-
line system (bottom). The red curves correspond to the per-
formance of cluster matching plotted over different values of
the number of clusters K. Average linkage clustering was
used, which was the most successful clustering technique.
We see that for very few large clusters, the performance of
cluster matching equals the baseline (which is not surprising,
as images within clusters are ranked by the same similarity
measure). The same holds true if the number of clusters
increases towards the number of images, where cluster rank-
ing is again based on the same similarity measure. For in-
termediate numbers of clusters, however, we observe that
cluster matching gives performance improvements, e.g. on
Porn 1 accuracy increases from 69.6% (baseline) to 84.2%.



Table 1: Comparing different clustering techniques for cluster matching. Only average linkage clustering
gives stable improvements over the baseline.

Offices Rome Porn 1 Porn 2
- PREC@50 - - PREC@200 - - PREC@10 - - PREC@10 -

clustering K true K est. K true K est. K true K est. K true K est.
baseline 0.315 0.244 0.696 0.300
ground truth 0.882 — 0.812 — 0.902 — 0.624 —
k-medoids 0.189 0.404 0.172 0.264 0.418 0.436 0.177 0.172
single linkage 0.377 0.373 0.244 0.319 0.697 0.811 0.298 0.318
average linkage 0.414 0.415 0.244 0.287 0.806 0.818 0.343 0.332
complete linkage 0.278 0.358 0.219 0.246 0.693 0.693 0.292 0.274
spectral clustering 0.352 0.352 0.263 0.273 0.785 0.639 0.285 0.213
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Figure 4: Cluster matching with average linkage
gives performance improvements over a standard
baseline, particularly if using the “closest” cluster
ranking.

Comparing both cluster ranking strategies, we see that the
“closest”matching strategy works better in most cases (with
the “Rome” dataset being the only exception). Obviously,
we can often find a single very similar image for matching to
the right scene, while the “voting” strategy is influenced by
matching with other images from the cluster showing differ-
ent scenes or different parts of the right scene. We observed
this across all clustering techniques, which is why results in
the following will be presented for “closest” cluster ranking
only.

Figure 4 also indicates the true number of clusters and an
automatic estimate using Pearson’s index (Equation (2)).
We see that the estimate is reasonably close to the true
number of clusters, and that stable improvements can be
achieved with it. However, we also observe that in all cases
performance could be improved further by a stronger over-
segmentation of the dataset into even more clusters. This
may be due to inaccuracies of clustering, as matching large
clusters tends to retrieve significant amounts of mixed con-
tent while small, low-entropy clusters show higher purity.

Table 1 illustrates results when using different cluster-

ing techniques (the “closest” matching strategy was used).
We see that performance depends strongly on the clustering
approach: K-medoids and complete linkage fail (as images
from the same scene may share no common objects, we can-
not expect compact clusters). Spectral clustering and single
linkage give improvements in some cases, but only average
linkage clustering gives stable improvements over the base-
line on all datasets.

4.3 Shortest Path Retrieval
In the next experiment, we evaluate shortest path retrieval

(Section 3.3), i.e. we do not only retrieve images most sim-
ilar to the query image, but images which are connected to
the query image via a low-cost path through the image col-
lection. We start with a retrieval example in Figure 5, which
illustrates correspondences between a query and a target im-
age showing the same scene. Direct retrieval fails, as the
two pictures share only a few false positive matches. On the
other hand, shortest path search discovers a path via an in-
termediate image with strong correspondences to both query
and target. The resulting path comes with low costs, such
that the target image can be retrieved. As already outlined
in Section 3.4, we can either apply shortest path retrieval
by itself (i.e., on the whole collection), or we can combine
it with cluster matching by employing it for ranking images
within a cluster. Figure 6 gives quantitative retrieval results
for either of these setups (average linkage clustering was used
with K set to the estimate in Figure 4, and the maximum
path length set to 5). We observe that shortest path retrieval
leads to improvements, both when ranking images globally
and within clusters. These improvements range from 3.2%
(“Rome”, with clustering) to 40.6% (“Office”, no clustering).
No clear statement can be made whether combining both
approaches is beneficial – on “Porn 1+2”, clustering com-
bined with shortest paths gives the best results, while on
“Offices” and “Rome” it is beneficial to apply shortest paths
on the whole collection.

4.4 Generalization to Different Datasets
Compared to a plain direct matching, shortest path re-

trieval requires some extra supervision, as the parameters
of the sigmoidal Pij (Equation (3)) are learned from image
series. In this section, we investigate how robust the learned
parameters are with respect to a change of the dataset:
shortest path retrieval is applied by not learning the pa-
rameters of Pij on the respective dataset but on another
one.
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Figure 7: Top: Sigmoids learned on different
datasets for modeling Pij. Bottom: When training
the system on a different dataset than testing it on,
performance remains stable.

consistency of feature positions into account, ranging from
global geometric transformations [9] to local patch constella-
tions [18]. These approaches might be extended to transitive
matching, requiring feature positions to be consistent over
the complete path of images from query to target.
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