
Hybrid Control for Embodied Agents
Applications

Jan Miksatko and Michael Kipp

DFKI, Embodied Agents Research Group, Saarbrücken, Germany
{jan.miksatko, michael.kipp}@dfki.de

Abstract. Embodied agents can be a powerful interface for natural
human-computer interaction. While graphical realism is steadily increas-
ing, the complexity of believable behavior is still hard to create and
maintain. We propose a hybrid and modular approach to modeling the
agent’s control, combining state charts and rule processing. This allows
us to choose the most appropriate method for each of the various behav-
ioral processes, e.g. state charts for deliberative processes and rules for
reactive behaviors. Our long-term goal is to architect a framework where
the overall control is split into modules and submodules employing ap-
propriate control methods, such as state-based or rule-based technology,
so that complex yet maintainable behavior can be modeled.

1 Introduction

Embodied agents (or anthropomorphic agents or avatars) can be a powerful user
interface. The characters communicate with the human user using verbal and
nonverbal channels (such as gaze, gestures or facial expressions), they efficiently
handle turn-taking and can express their emotions and personality [1]. Virtual
characters have already been applied to education, computer games, training
environments, sign language communication, interactive drama, and therapy.
With the rise of the 3D internet and social online platforms and games they
may become a universally present device in the near future.

Virtual character applications must control all aspects of agent behavior,
from low-level reactions to higher level reasoning. Low-level behaviors include
gesture, gaze behavior, distance regulation or avoiding obstacles. Higher-level
reasoning includes path planning, dialogue management or managing emotions.
This modeling of the agent’s mind has been approached in different fields like
virtual characters, multi-agent systems, robotics and cognitive sciences. The ap-
proaches differ in how far they integrate a theory (cognitive architectures) or re-
main completely generic (multi-agent systems). Highly generic approaches leave
the whole development work to developers and are unsuitable for non-experts,
and theory-driven approaches may necessitate cumbersome workarounds for sit-
uations not covered in the theory. Since in our previous work we have created ap-
plications with heterogeneous control paradigms – using plan-based, rule-based
and state-based approaches – we are now aiming at creating a unified frame-
work where various technologies can be used in a complementary yet integrated



2

fashion to allow intuitive and maintainable authoring of complex, interactive
behavior. The modules we suggest for implementing different aspects of control
are: extended state charts (XSC), rule-based modules and a hybrid module that
combines the two former ones. Since our approach is highly motivated by prag-
matic concerns, we plan to iterate through a number of interactive applications
that will serve as a testbed for our framework. The first of these applications
is an e-learning system since pedagogical scenarios have been shown to benefit
greatly from the presence of virtual characters [2, 3]. ITeach, a virtual vocab-
ulary trainer, which we will introduce in this paper. While ITeach has specific
requirements (e.g. managing linguistically rich representations and a pedagogical
module) we derive a first sketch of a general architecture from it.

2 Related Work

In robotics, the dichotomy between reactive and deliberative behavior has be-
come much more obvious early on. While Brooks’ subsumption architecture
[4] made a radical shift toward reactive behaviors, Gat [5] suggested a three-
layered architecture to unify reactive and deliberative tasks. The three layers
are the controller (reactive behaviors), the deliberator (planning), and the se-
quencer (managing the realization of actions). These architectural entities find
their counterparts in our approach, however we do not restrict the developer in
how many modules (e.g. multiple reactive modules) to implement and in which
programming paradigm (rules, finite state, scripting).

To clarify what we mean by ”different paradigms” we will briefly review
our previous work in this respect. The CrossTalk [6] system was a multi-party
interaction between a human user and three virtual characters. Part of the in-
teraction was modelled with finite state machines, another part was natively
plan-driven, but both parts ran seamlessly in a final plan-based system. It was
an early attempt to integrate plan-based processing with FSMs. COHIBIT [7] is
an edutainment exhibit for theme parks in an ambient intelligence environment.
Visitors interact with two virtual characters whose dialogue is controlled by a
large hierarchical finite state machine (HFSM). ERIC is an affective embodied
agent for realtime commentary on a horse race [8], based on parallel rule engines
for reasoning about dynamically changing events, generating natural language
and emotional behavior. In IGaze [9], a semi-immersive human-avatar interac-
tion system of an interview scenario, it was shown that finite state machines can
nicely model reactive gaze behavior.

The Scenemaker authoring tool facilitates the development of embodied agents
systems [10]. In Scenemaker, the control flow of the interaction is separated from
content, such as speech utterances, gestures, camera motion etc. The content is
organized into indexed scenes that are controlled by a scene flow, a hierarchi-
cal finite state machine, similar to state charts [11]. Parts of our approach (see
Sec. 4.1) can be seen as a direct continuation and extension of the Scenemaker.



3

3 Use Case: The ITeach Application

Our control framework is motivated from an example e-learning application,
ITeach, where an interactive vocabulary trainer presents flash cards with vocab-
ulary using speech, gesture and images (Figure 1). The user interacts face-to-face
with the life-size agent.

Fig. 1. The ITeach agent ”Gloria” (left) and a simplified hybrid module (right).

The flash card learning system is a question/answer game where a card with
an expression in a foreign language is presented by the agent and the user answers
with an equivalent in his/her native language (or vice versa). The user then rates
the answer with respect to how well the word was known. A simple yet effective
pedagogical model now moves the cards between multiple bins depending on this
rating and regulates the time interval between repetitions.

The ontological vocabulary representation connects linguistic information
(e.g. grammar, categorical relations) with meaning. Such knowledge allows the
agent to generate gestures from semantic components of the word and to answer
additional user questions about, e.g., the past tense or synonyms. The agent’s
believability is increased by employing gaze strategies [9] and regulating the
agent-user distance based on the user’s location. The pedagogical module moni-
tors the user’s progress and gives feedback using verbal comments, facial expres-
sions and gestures. The agent is equipped with an emotion model that allows to
generate surprise, joy, disappointment etc. depending on user performance and
the agent’s personality. Furthermore, we are planning to increase the setup’s in-
strumentation by giving the user pen and tablet for writing the words. Pen and
tablet are being tracked for automatic recognition of user actions (start/finish
writing) and steering the agent’s gaze (looking at tablet).

In this scenario, we identified the following requirements for the control task:

– Dialogue Management: How to specify the overall user-agent interaction,
e.g. QA dialogues, taking the past interaction history into account.

– Interactivity: The ”regular” interaction can be interrupted at any time,
(e.g. user questions), must be met by an appropriate reaction and then return
to the previously interrupted sequence.



4

– Domain Intelligence: The agent has background knowledge about the
topic, maintains knowledge about the world and is aware of the past actions.
For instance, the agent knows that the currently presented word, an apple,
is a fruit and can enumerate not yet presented fruits with similar shape.

– Reactive Behavior: Behaviors, that respond immediately to changes in the
environment (e.g. user’s position), make the user-avatar interaction a tightly
coupled feedback loop and ultimately increase believability.

– Varied and non-repetitive behavior: The agent’s behavior should be
varied and non-repetitive using composition and randomization.

– Multimodal Input Processing: Continuously monitor several input chan-
nels such as user position, button events or pen/tablet writing, fusing the
input information and reacting to it.

– Multimodal Output Generation: Based on the current state of the sys-
tem, the agent’s emotional state and user’s input, generate character’s ges-
tures, facial expression, speech, camera position, gaze plus graphics and text
relevant to the presented word.

– Visual Authoring Tool: In order to make the development accessible to
non-experts (i.e. pedagogical advisors, professional authors), the authoring
tool should have an intuitive visual interface.

Each requirement implies a different, best suited modeling technique. For
instance, basic reactive behaviors (e.g. looking at user if user moves) are best
implemented as a set of rules, whereas the overall flow of the interaction (welcome
– learning – repetition – . . . ) is best modeled as a state chart. Our framework
allows to combine different techniques, encapsulated in modules.

4 System Framework

The ITeach system is a processing pipeline as depicted in Fig. 2. Inputs like user
location, button events, hand/pen position are pre-processed by the Input In-
terpretation modules (e.g., translate to system coordinates) and passed through
the Input Fusion Module (e.g., recognize writing begin/end events) to the rel-
evant Control module(s). The Control Modules are divided into a deliberative
and a reactive layer. The reactive layer contains gaze control, implemented as an
extended state chart (XSC, cf. Sec. 4.1), and distance regulation, implemented
using rules (Sec. 4.2). The deliberative layer contains the main control module,
a hybrid between XSC and rules (Sec. 4.3), which models the dialogue between
user and agent, manages the vocabulary ontology and the pedagogical model,
and handles interrupt events such as user asked a question or user pressed rating
high button. Another deliberative module is an OCC emotion model implemented
in JESS [12]. It receives emotion eliciting conditions (e.g. user knows right word
→ good event) and outputs an emotion state (joy, disappointment, satisfaction
etc.) that is used for behavior generation (smile, frown, body posture etc.). Both
reactive and emotion modules can be easily reused in another application.

The Output Generation module receives functional commands from the Con-
trol modules, such as present a question, play a scene script or avert gaze and



5

Fig. 2. Overall architecture of the ITeach system.

translates them to low-level behavior commands for the Avatar engine. The play
a scene script command executes a script [10] that resembles a movie script with
dialogue utterances and stage directions for controlling, for instance, gestures or
facial expressions. Scenes can be clustered into groups, where one is randomly
chosen each time the group is called, to increase variety and avoid repetitive
behavior. Note that the functional commands are independent from the Avatar
engine so that different avatar engines can be connected. Currently, we use both
a commercial engine from Charamel 1 and our own research prototype engine
called EMBR (Embodied Agents Behavior Realizer) [13].

In general, the underlying framework of the ITeach application is a system
that loosely integrates modules of different technologies. The modules run in
parallel and communicate via messages. Each module can be implemented us-
ing a control technology described in the following sections and the framework
transparently handles data conversions among them.

4.1 Extended State Chart (XSC) Module

Our extended state charts (XSC) extend traditional state charts [11] with transi-
tion types from the SceneMaker system[10]: probabilistic, timeout and interrupt
transitions. Our extensions are fully embedded in the SCXML standard2, an
emerging W3C standard for describing Harel’s state charts.

Behavior is represented by states and transitions. Actions are attached to
either state or transition and executed as the graph is traversed. A state can
be a superstate containing another state chart. The transitions may have an
event and/or a condition attached. An incoming message triggers a transition
with a satisfied condition, a matching event or with both satisfied condition and
matching event. If no transition can be selected for the current state, transitions
of the parent superstate will be checked. The state chart maintains a context
memory containing variables scoped by the state hierarchy. These variables are
used in the conditions and the actions. Inspired by the SceneMaker [10] we added
three new transition types: Timeout edges model wait behavior. If mixed with
1 http://www.charamel.de
2 http://www.w3.org/TR/scxml/



6

standard edges, either an event arrives and/or a condition is satisfied until the
timeout expires, or the timeout edge is taken. Probabilistic edges model random
branching by randomly selecting an outgoing transition; they cannot be mixed
with standard edges. Interrupt edges are attached to supernodes and handle
interruptive events. The execution of the supernode is terminated if an event
matching the interrupt edge arrives and a conditional constraint is satisfied.

In the ITeach application, the main deliberative module is modeled using an
XSC. The visual nature of the XSC intuitively models the dialogue. Interrupt
edges can handle unexpected user events for increased interactivity. Probabilistic
edges are used to add variability. Additionally, the gaze module of ITeach is also
modeled with an XSC according to [9]. Advantages of the XSC are that they are
fast and easy to debug. The drawbacks are the need to model all possible varia-
tions as states, although this is alleviated with the help of superstates that wrap
complex functionality and interruptive edges that are inherited by all substates.

4.2 Rule-Based Module

In a rule-based system the behavior is declaratively encoded in a knowledge base
containing initial facts and condition-action rules. Our framework uses JESS
(Java Expert System Shell) [14] as a rule processor. An incoming message in-
serted into the working memory as a fact and processed by JESS. Triggered rules
can dispatch commands to the Output Processor. Rule-based systems are partic-
ularly useful for two task types. First, for encoding and using expert knowledge.
The ITeach system uses JESS along with an ontology in Protégé 3 to reason
about vocabulary (e.g. selecting the next word depending on the topic of the
current word). Second, for behavior systems that are based on intensive if-then
branching, it is easier to understand and maintain them if written in a rule-
based language. This is the case for some kinds of low-level behavior such as
Distance regulation module of the ITeach system. However, if the knowledge
base becomes large rule-based technologies can be difficult to maintain and de-
bug. For such cases it is better to use state charts (Section 4.1). However, in
some cases one may want to use both state charts and rules in an integrated
fashion (Section 4.3).

4.3 Hybrid Module

A hybrid module is an XSC module (Section 4.1) with rules written in JESS (see
Fig. 1). The framework transparently updates the JESS knowledge base (KB)
from/to the XSC context memory before and after executing a JESS action. The
synchronization is designed in such a way that the JESS rules can reason about
XSC variables and, in the other direction, the conditions and actions of the XSC
can use variables that mirror JESS facts. The mapping is done as follows:

3 http://protege.stanford.edu



7

XSC variable type JESS type

primitive type (integer, float...) ordered fact: (varName value)

boolean simple fact: (varName)

struct unordered fact with struct fields as slots:
(varName (field1 val1) (field2 val2) ..)

set (struct type) set of unordered facts:
(varName (field1 valA1) ..)

(varName (field1 valB1) ..) ..

This data synchronization preserves the state hierarchy of the XSC: the JESS
facts are scoped in the same way as the XSC variables and the JESS facts are
organized into modules corresponding to (i.e. named after) the (super)states of
the XSC. In the ITeach system, various actions in the main deliberative module
are implemented in JESS, for instance, card selection (reasoning based on card
history and ontological representation of vocabulary) or user rating of cards
(intensive if-then branching). The hybrid approach offers two advantages: (1)
an appropriate technology for actions that involve reasoning or intensive if-then
branching, and (2) runtime modifications of the actions since JESS is a scripted
language.

One of the challenges is maintaining the knowledge of the hybrid model
(partly represented as JESS facts, partly as XSC variables, partly synchronized)
and keeping track of activated rules when a rule in state A actives rules in state
B of the XSC. Making this more robust and intuitive (e.g. by visual feedback)
is part of ongoing work.

5 Conclusion and Future Work

Controlling interactive embodied agents is a challenging problem requiring di-
alogue management, interactivity, domain intelligence and reactive behavior.
Different programming paradigms are appropriate for implementing low-level re-
active behavior on the one hand and high-level reasoning on the other hand. We
try to console these different requirements in a hybrid and modular architecture.
This means splitting the control into independent modules, each implemented
using a control technology appropriate for the given task: Extended state charts
(XSC) allow intuitive and visual coding of low-level reactive behaviors such as
gaze. Rule-based systems can elegantly process knowledge items and represent
behaviors with intensive if-then branching, in our case reactive behaviors, or
input fusion/output fission procedures. We propose a third hybrid module, an
XSC with rule processing useful for implementing the deliberative module, i.e.
modeling the overall flow of the application, including the user-agent dialogue,
along with simple reasoning and knowledge management at certain states of the
interaction. The architecture and application presented in this paper is the first
step in a long-term iterative development and research towards an authoring
framework for embodied agents. In future work, we want to extend our control
approaches by a planning module, e.g. for generating dialogue. Additionally, we
will design a visual interface, that simplifies the development and debugging,
and enables non-experts users to author embodied agents applications.



8

Acknowledgements. This research has been carried out within the framework
of the Excellence Cluster Multimodal Computing and Interaction (MMCI), spon-
sored by the German Research Foundation (DFG). We would also like to thank
to Charamel GmbH for providing us with their Avatar engine.

References

1. Vinayagamoorthy, V., Gillies, M., Steed, A., Tanguy, E., Pan, X., Loscos, C., Slater,
M.: Building Expression into Virtual Characters. In: Eurographics Conference
State of the Art Report, Vienna (2006)

2. Lester, J.C., Converse, S.A., Kahler, S.E., Barlow, S.T., Stone, B.A., Bhogal, R.:
The persona effect: Affective impact of animated pedagogical agents. In: Proceed-
ings of CHI’97 Human Factors in Computing Systems, New York, ACM Press
(1997) 359–366

3. Bailenson, J., Yee, N., Blascovich, J., Beall, A., Lundblad, N., Jin, M.: The use
of immersive virtual reality in the learning sciences: Digital transformations of
teachers, students, and social context. The Journal of the Learning Sciences 17
(2008) 102–141

4. Brooks, R.A.: Intelligence without representation. Artificial Intelligence (47) (1991)
139–159

5. Gat, E.: Integrating reaction and planning in a heterogeneous asynchronous archi-
tecture for mobile robot navigation. In: Proceedings of the National Conference
on Artificial Intelligence (AAAI). (1992) 809–815

6. Klesen, M., Kipp, M., Gebhard, P., Rist, T.: Staging exhibitions: Methods and tools
for modeling narrative structure to produce interactive performances with virtual
actors. Virtual Reality. Special Issue on Storytelling in Virtual Environments 7(1)
(2003) 17–29

7. Ndiaye, A., Gebhard, P., Kipp, M., Klesen, M., Schneider, M., Wahlster, W.: Am-
bient intelligence in edutainment: Tangible interaction with life-likeexhibit guides.
In: Proceedings of the first Confernce on INtelligent TEchnologies for interactiveen-
terTAINment (INTETAIN), Berlin, Heidelberg, Springer (2005) 104–113

8. Strauss, M., Kipp, M.: Eric: A generic rule-based framework for an affective em-
bodied commentary agent. In: Proceedings of the 7th International Conference on
Autonomous Agents and Multiagent Systems. (2008)

9. Kipp, M., Gebhard, P.: Igaze: Studying reactive gaze behavior in semi-immersive
human-avatar interactions. In: Proceedings of the 8th International Conference on
Intelligent Virtual Agents (IVA-08). (2008)

10. Gebhard, P., Kipp, M., Klesen, M., Rist, T.: Authoring scenes for adaptive, inter-
active performances. In: Proceedings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems. (2003) 725–732

11. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput.
Program. 8(3) (1987) 231–274

12. Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cam-
bridge University Press (1988)

13. Heloir, A., Kipp, M.: Embr - a realtime animation engine for interactive embodied
agents. In: Proceedings of the 9th International Conference on Intelligent Virtual
Agents (IVA-09). (2009)

14. Friedman-Hill, E.J.: Jess, the java expert system shell. Distributed Computing
Systems, Sandia National Laboratories, Livermore, CA (2000)


