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Abstract. High Dynamic Range Images provide a more detailed infor-
mation and their use in Computer Vision tasks is therefore desirable.
However, the illumination distribution over the image often makes this
kind of images difficult to use with common vision algorithms. In par-
ticular, the highlights and shadow parts in a HDR image are difficult to
analyze in a standard way. In this paper, we propose a method to solve
this problem by applying a preliminary step where we precisely compute
the illumination distribution in the image. Having access to the illumina-
tion distribution allows us to subtract the highlights and shadows from
the original image, yielding a material color image. This material color
image can be used as input for standard computer vision algorithms, like
the SIFT point matching algorithm and its variants.

1 Introduction

While High Dynamic Range Images (HDRI) representing the real word’s range
of luminance are commonly used in the Computer Graphics community, their use
in machine vision tasks (e.g. Registration and Identification) is not widespread
in the Computer Vision community. HDRI can measure a high radiance and
illumination range for the real world scenes, thus providing more information
than the low dynamic range images (LDRI). Many applications, such as image-
based lighting [6], and BRDF measurement [14] require access to the whole
dynamic range of a scene. In this paper, we present a method to use HDR images
for computer vision tasks by estimating the illumination distribution first and
applying a suitable tone-mapping method for computer analysis. We apply this
concept to the matching problem, yielding a SIFT [16] method for the HDRI.

Illumination distribution estimation is an important task for the computer
vision. The appearance of objects depends greatly on illumination conditions.
Since substantial image variation can result from shading, shadows and high-
lights, there has been much research on dealing with such lighting effects for a
LDRI [3] [15] [13], but not much for HDRI [23]. Because of the significant effect
of lighting, it is often helpful to know the lighting conditions of a scene so that
an image can be more accurately analyzed. Recovery of illumination conditions
is also important for computer graphics applications, such as inserting correctly
shaded virtual objects into augmented reality systems [22] and lighting reproduc-
tion for compositing actors into video footage [7]. While these graphics methods
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introduce special devices into a scene to capture the lighting distribution, es-
timation of illumination in image has proven to be a challenge. In this paper,
we do not only estimate light source position (like e.g. [23]), but we provide the
illumination distribution as a Gaussian Mixture Model (GMM) over the image
for each different exposure layer in the HDR image.

The development of techniques for HDRI capture and synthesis have made
tone-mapping an important problem in computer graphics [9]. The fundamental
problem is how to map the large range of intensities found in an HDRI into the
limited range generated by a conventional display device. There are three main
taxonomies of tone-mapping operators. A primary distinction is whether an op-
erator is global or local. Global operators apply a single mapping function to all
pixels of the image, whereas local operators modify the mapping depending on
the characteristics of different parts of the image. A second important distinc-
tion is between empirical and perceptually based operators. A third distinction
is between static and dynamic operators. In this paper we suggest to use a new
tone-mapping method, more suited to computer vision tasks, and to get a “ma-
terial color” of the scene or the object without the illumination interference.In
all feature extraction methods, the invariance with respect to imaging conditions
represents the biggest challenge. More specifically, the local extracted features
should be invariant with respect to geometrical variations, such as translation,
rotation, scaling, and affine transformations. Furthermore, these features should
be invariant with respect to photometric variations such as illumination direc-
tion, intensity, colors, and highlights. SIFT [16] [17] has been proven to be
the most robust among the local invariant feature descriptors with respect to
different geometrical changes [20]. However, due to the color constancy prob-
lem, a lot of geometrical invariant approaches avoid dealing with illumination
problem. Therefore, illumination invariance is a crucial problem which has to be
solved for local features. While some researchers already focused on the color
constancy problem [2] [19], some attempts to make use of the color information
inside the SIFT descriptors have been proposed [5] [4] [10] [1]. In this paper, we
solve the illumination invariance problem for the HDR images, using result of
our illumination distribution estimation.

The paper provides three main contributions to the HDR image processing
research. First, we show that it is possible to estimate the illumination distribu-
tions in each exposure layer of HDRI with a Gaussian Mixture Model. Second,
we propose a new tone-mapping algorithm which is more suitable for the com-
puter analyzing through material color recovery. Third, as an application, we
show that the SIFT algorithm using the tone-mapped images performs better in
terms of robustness and number of matches.

The remainder of the paper is organized as follows: We first present illumina-
tion distribution with GMM in Sect. 2. In Sect. 3, we explain how to estimate the
GMM parameters in HDRI. We show how to recover the shadow and highlight
parts position in the image from the illumination distribution result in Sect. 4.
Finally, the SIFT method for HDRI and the results is presented in Sect. 5. We
conclude in Sect. 6 with directions for future work.
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2 Illumination distribution with GMM

We can assume that the illumination distribution in the 2D image is a Gaussian
mixture model (GMM) for several light sources. For a single light source, we
assume that the illumination distribution is a Gaussian model as Eq. (1)

e(x) = p(x| θ) =
1√
2πσ

exp

(
− (x− µ)T (x− µ)

2σ2

)
(1)

In the Eq. (1), x is the 2d image position, µ is the light source position,
σ stands for the light intensity and the distribution property, and we assume
that σ is same for the two direction, but different for each exposure layer in the
multi-exposure sequence of the HDRI. There are 11 exposure layers created from
one light source HDRI, as shown in Fig. 1a, the exposure times varied by powers
of two between f-stops from 1

32 to 32. Fig. 1b shows the Gaussian illumination
distribution results for each exposure layer with the method in Sect. 3, the light
source position µ is not changed, the variance σ increases from layer to layer.

Then we can assume that the GMM model for more than one light sources,
as the Eq. (2)

e(x) =
K∑
k=1

ρk∗p(x| θk) with x| θk ∝ N(µk, σk) (2)

In the Eq. (2), ρk is the mixture weight for the light source k, we assume that ρk
are same for the different exposure layer to the same light source. Fig. 1c shows
one exposure layer created from a two light sources HDRI, Fig. 1d expresses the
Gaussian distribution result as the method in Sect. 3.

Our hypothesis is that illumination can be estimated as a GMM for different
exposure layers.

3 Illumination distribution in HDRI

In this section we show how to estimate the GMM parameters for the illu-
mination distribution in each exposure layer. The input of our algorithm is a
HDRI. We first create a multi-exposure durations sequence with normal global
tone-mapping method. Equivalently, the input can be a number of digitized pho-
tographs taken from the same point with different known exposure durations tj .
Using diffuse body reflection Lambertian model [11]:

Ei = e(i)R∞ (λ, i) (3)

In the Eq. (3), where i denotes the position at the imaging plane and λ the
wavelength. Further, E(λ, i) denotes the illumination spectrum, the material
reflectivity is denoted by R∞ (λ, i), for this part, it’s the property of the material,
we call it “material color”, which is used in the feature extraction in Sect. 5.

For different exposure time layer j, as [8], we can get:
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(a) (b) (c) (d)

Fig. 1: (a) A multi-exposure sequence of HDRI with one light source. (b) Gaus-
sian distribution results for (a); (c) One HDRI exposure layer with two light
sources. (d) Gaussian distribution results for (c).

Mij = e(i)R∞ (λ, i) tj (4)

As presented in Sect. 2, we can estimate the e(i) part as GMM for the illumi-
nation distribution. Taking the GMM e(i) to the Eq. (4), the final illumination
distribution function for each pixel in each layer:

Mij =

(
K∑
k=1

ρk∗p( i| θk,j)

)
R∞ (λ, i, j) tj (5)

Finally, the “material color” R∞ (λ, i, j) part for each pixel can be expressed:

R∞ (λ, i, j) = Mij/

(
K∑
k=1

ρk∗p( i| θk,j)tj

)
(6)

For each exposure layer j, we can assume that the “material color”R∞ (λ, i, j)
part is the same. We define the energy function:

E (ρk, θk,j) =
L−1∑
j=1

N∑
i=1

 Mij+1
K∑

k=1
ρkp( i|θk,j+1)tj+1

− Mij

K∑
k=1

ρkp( i|θk,j)tj

2

(7)

In Eq. (7), L stands for the number of different exposure duration layers, N is
the number of pixels, and K is the number of the light source for each layer.
We assume that the light intensity σ in θ are different, but the light position µ
in θ and the light intensity weight ρ are same for each layer. We use iterative
Expectation Maximization (EM) procedure to find a solution to minimize the

energy function Eq. (7). Because
K∑
k=1

ρkp( i| θk,j)tj 6= 0 for each pixel in every

layer, then energy function turns to:

E (ρk, θk,j) =
K∑
k=1

L−1∑
j=1

N∑
i=1

ρk (p( i| θk,j)tjMij+1 − p( i| θk,j+1)tj+1Mij)
2 (8)
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With the EM algorithm, we can get the Q function:

Q (ρ, θ) =
K∑
k=1

L−1∑
j=1

N∑
i=1

ρold
k

(ln(p( i| θk,j)tjMij+1)− ln(p( i| θk,j+1)tj+1Mij)) (9)

ρold
k

=

L−1∑
j=1

N∑
i=1

(ln(p( i|θk,j)tjMij+1)−ln(p( i|θk,j+1)tj+1Mij))

K∑
k=1

L−1∑
j=1

N∑
i=1

(ln(p( i|θk,j)tjMij+1)−ln(p( i|θk,j+1)tj+1Mij))

(10)

We set the initial value ρold
k

= 1. During the minimization-step, we can esti-
mate σk,j to maximum Q function. Then during expectation-step, we estimate
the new ρ

k
for each alternative light source position. If the weight ρk < Tlight

(Tlight is a threshold defined by user), we consider this pixel is not the light
source position, and assign 0 to this weight ρk directly. For the experiments, we
set Tlight = 4.0.

The above EM procedure converges to a local minimum of the Eq. (7). Please
note that the variances σk,j are continuously recomputed, they’re increasing
from low exposure layer to high exposure layer, which is similar to an annealing
procedure in which support of the Gaussians is reduced when assignment 0 to
this weight ρk.

The first result are shown in Fig. 1b for one light source and Fig. 1d for two
light sources. For these two experiments, the lights and the scene are controled
strictly, the exposure times varied by powers of two between f-stops from 1

32 to
32. K is the alternative light sources, considering as the whole image size 1...N .
We can see the illumination changed for one light source in Fig. 1b, and the
illumination distribution for two light source in Fig. 1d.

In order to make the EM convergence fast, the initial light area can be calcu-
lated firstly, then the alternative light source number K in the energy function
becomes smaller than the whole image size. For the initial light area detection
for HDRI, there are known methods to solve this problem [23] [12]. However, for
our case, we need not to estimate the light source accurately. We can get the
initial light source from the low exposure time layer with a threshold. In the low
exposure time layer, the light densities are low, and if the pixel value is bigger
than a threshold, we can consider it as the initial alternative light position. When
the energy function is minimized with EM algorithm step by step, an accurate
light source position will be determined by the weight parameters ρk.

We test our approach for natural environments and complex light conditions
in two scenes: Church and Studio.

For the Church scene, a number of digitized photographs are taken from the
same point with different known exposure durations, there are 16 photographs
of a church taken at 1-stop increments from 1/1000 sec to 30 sec. Fig. 4 shows 5
samples from the sequence, the exposure times are 0.0146, 0.1172, 0.4688, 1.8750,
30.0 sec. The sun is directly behind the rightmost stained glass window, making
it especially bright. The initial light source is given by exposure 0.1172 layer, as
Fig. 2a. The final illumination distribution for these layers results are shown in
Fig. 5. The algorithm can detect three main light sources, window on the top of
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(a) (b) (c) (d)

Fig. 2: (a)Initial light sources for EM procedure. (b) Highlight and (c) Shadow
area for church of exposure time 1.8750 sec layer. (d)“Material color”

the church and three windows in the middle of the church. As the exposure time
increase, the illumination distribution is changed, but the light source position
is not changed. The light intensity is increasing layer to layer.

For the Studio scene, we can created 11 exposure layers by normal global tone-
mapping method, the exposure time increments from −11EV to 2EV . As Fig. 6
shows 5 samples from the sequence, the exposure times are −10, −8, −1.5, 0, 1.5
EV. The sun is outside the glass window, making it especially bright. The initial
light source is given by exposure −10EV layer, as Fig. 3a. The final illumination
distribution for these layers results are shown in Fig. 7. The algorithm can detect
the light sources from outside of the window and the lamp inside the room.

From the experiments, our algorithm not only can detect the point light
sources as the Fig. 1b and Fig. 1d, but also can detect the plane light source as
the natural case, as Fig. 5 and Fig. 7. Once we have computed the illumination
distribution information, we can compute highlight parts and shadow parts in
the image, as described in the Sect. 4

4 Shadow and highlight parts in HDRI

In this section, the shadow, highlight parts and the “material color” images are
calculated by the illumination distribution results in Sect. 3. In Eq. (4), e(i) is
the light sources distribution, in the real environment image, we can assume that
there is another light source (ambient light) that distributes evenly in the 2D
image. For our experiments, the ambient light A is constant, A = 0.001. We can
then derive the “material color” for each layer:

R∞ (λ, i, j) = Mij/ ((e(i) +A) tj) (11)

For each layer, we define two thresholds Tup and Tbelow, If the “material
color” R∞ (λ, i, j) > Tup, consider this area as the highlight part for this layer,
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(a) (b) (c) (d)

Fig. 3: (a)Initial light sources for EM procedure. (b) Highlight and (c) Shadow
area for Studio of exposure 0 EV layer. (d)“Material color”

Fig. 4: Church, exposure times sequence 0.0146, 0.1172, 0.4688, 1.8750, 30.0 sec.

Fig. 5: Church, illumination distribution results for the image layers above.

Fig. 6: Studio, exposure times sequence −10, −8, −1.5, 0, 1.5 EV

Fig. 7: Studio, illumination distribution results for the image layers above.
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the highlight part are not included the light source positions. Similarly, if the
“material color” R∞ (λ, i, j) < Tbelow, we consider this area as the shadow part
for this layer. For the experiments, we set Tup = 240 and Tbelow = 20. The
highlight parts and shadow parts for the church exposure time 1.8750 sec layer
are shown in Fig. 2b 2c; The result for the studio exposure 0EV is shown in
Fig. 3b 3c. Furthermore, the “material color” can be determined by R∞ (λ, i, j)
in multi-exposure layers j = 1...L:

R∞ (λ, i) =

 L∑
j=1

w(j)R∞ (λ, i, j)

 /

L∑
j=1

w(j) (12)

Because the information in the middle exposure time layers are more reliable,
the weight parameters w(j) are assigned as 1-D Gaussian distribution, w(j) are
small for the lower and higher exposure time, and large for the middle exposure
time in the sequence. We can consider this step as a tone-mapping procedure. It
is worth noting that, different from the usual tone-mapping methods that try to
produce a pleasant visual effect, our tone mapped results are more suitable for
the computer analysis. We test the image feature extraction and corresponding
problem with SIFT with our tone-mapping algorithm in Sect. 5. The final “ma-
terial color” image results are shown in Fig. 2d of church image and Fig. 3d of
studio image. There is no highlight area in the final image.

5 Point matching in HDR images and results

In this section we will calculate the corresponding points with SIFT method for
two HDRI for a same scene and a same object. As Sect. 4, the “material color”
image can be calculated from one HDRI, without highlight area. The invariant
features can be detected. We use PC-SIFT method [5], which is motivated by
perception-based color space, instead of using the gray value as input image,
PC-SIFT approach builds SIFT descriptors in 3 channel color space, is more
robust than normal SIFT with respect to color and photometrical variations.

The main stages using local invariant features are interest points detection,
descriptor building and descriptor matching. Interest points should be selected
so that they achieve the maximum possible repeatability under different photo-
metric and geometric imaging conditions. As discussed in Sect. 3, our SIFT is
based on “material color” image, which is illumination invariance. In the same
time, the extrema in Laplacian pyramid, which is approximated by difference-
of-Gaussian for the input image in different scales, has been proven to be the
most robust interest points detector to geometrical changes [20] [4].

The experiment results are shown below. First, we test an object feature with
two different views, for each view, there are 12 exposure duration from 1

60 sec to
0.4sec. In Fig. 8a shows the 1

8 sec layer and the PC-SIFT result. The “material
color” and the PC-SIFT results are shown in Fig. 8b, from which we can notice
there is no highlight and shadow part on the object. Meanwhile the SIFT can
find the corresponding points without the light interference.
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Fig. 8: (a) One exposure time 1/8 sec and (b) 0.8EV layer of 12 multi-exposure
and PC-SIFT result, (b)(d) The “material color” and PC-SIFT result. (e)Total
matches and correct matches of different tone-mapping methods.

Second, we test a scene with two different views HDRI, 14 exposure layers are
created by normal tone-mapping method from −3EV to 9EV, In Fig. 8c, shows
the 0.8EV layer and the PC-SIFT result. The “material color” and the PC-SIFT
results are shown in Fig. 8d, there is not enough information to clear the shadow
part, because the shadow parts exist in each exposure layer. For the SIFT result,
our algorithm can detect the corresponding without the light source factor, find-
ing the correct corresponding near the window part. Further, the shadow part
can be extracted, as Fig. 2c shows, if we do not like the corresponding points in
the shadow area, they can be cleaned away.

Finally, we compare our method (red line) to the other tone-mapping al-
gorithm, global tone-mapping filter Reinhard [21] (blue line), local filter Man-
tiuk [18] (green line) and one exposure LDR image layer (black line) in Fig. 8e,
the dotted lines show the correct matches, and the solid lines show the total
matches for the 7 image paris of different scenes. As the result show, our method
can detect more matches and find more correct matches.

6 Conclusions

In this paper, we presented a robust point matching approach for HDR images.
Our method is based on a robust estimation of the illumination distribution in
the 2D image using a Gaussian Mixture Model. The parameters of the GMM
are recovered directly from the HDRI with EM-algorithm. With the estimated
illumination distribution in the 2D image, we can compute the highlight parts,
shadow parts and “material color” image, which is suitable for many computer
vision tasks. We show that we can successfully apply this method to the point
matching problem, using SIFT as underlying method. Our results show that a
better matching is achieved in terms of robustness and number of matches.
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