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Abstract

A new approach is developed for representing the
search space of reinforcement learning dialogue agents.
This approach represents the state-action space of a re-
inforcement learning dialogue agent with relational re-
presentations for fast learning, and extends it with belief
state variables for dialogue control under uncertainty.
Our approach is evaluated, using simulation, on a spo-
ken dialogue system for situated indoor wayfinding as-
sistance. Experimental results showed rapid adaptation
to an unknown speech recognizer, and more robust op-
eration than without Bayesian-based states.

Introduction
Reinforcement learning dialogue agents have a promising
application for adaptive conversational interfaces. Unfortu-
nately, three main problems affect their practical applica-
tion. The first, the curse of dimensionality, causes the state
space to grow exponentially in the number of state vari-
ables. This problem has been addressed by function approx-
imation techniques (Denecke, Dohsaka, and Nakano 2004;
Henderson, Lemon, and Georgila 2005; Chandramohan,
Geist, and Pietquin 2010); and by divide-and-conquer ap-
proaches (Cuayáhuitl et al. 2010; Lemon 2011). Second, the
dialogue agent operates under uncertainty (the most obvi-
ous source is automatic speech recognition errors, but not
the only source). This problem has been addressed by se-
quential decision-making models under uncertainty (Roy,
Pineau, and Thrun 2000; Williams 2006; Thomson 2009;
Young et al. 2010). Third, reinforcement learning meth-
ods usually require many dialogues to find optimal poli-
cies, resulting in slow learning. This last problem has been
addressed by incorporating prior knowledge into the de-
cision making process (Singh et al. 2002; Heeman 2007;
Williams 2008; Cuayáhuitl 2009). Because of such prob-
lems, the current practice in dialogue optimization consists
in inducing behaviour offline, from a corpus of real dia-
logues or from simulations.When the learnt policies are then
deployed they behave with frozen optimization. The rest of
the paper contributes to tackle these problems by proposing
a new approach to represent the agent’s state-action space.
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Dialogue Optimization Under Uncertainty
A human-machine dialogue can be defined as a finite se-
quence of information units conveyed between conversants,
where the information can be described at different levels
of communication such as speech signals, words, and dia-
logue acts. Figure 1 illustrates a model of human-machine
interaction. An interaction under uncertainty between both
conversants can be briefly described as follows: the machine
receives a distorted user speech signal x̃t from which it ex-
tracts a user dialogue act ũt and enters it into its knowledge
base; the machine then updates its belief dialogue state bt
(i.e. a probability distribution over dialogue states) with in-
formation extracted from its knowledge base; this dialogue
state is received by the spoken dialogue manager in order to
choose a machine dialogue act at, which is received by the
response generation module to generate the corresponding
machine speech signal conveyed to the user.
A conversation follows the sequence of interactions above

in an iterative process between both conversants until one
of them terminates it. Assuming that the machine receives
a numerical reward rt for executing action at when the
conversational environment makes a transition from be-
lief state bt to state bt+1, a dialogue can be expressed as
D = {b1, a1, r2, b2, a2, r3, ..., bT−1, aT−1, rT , bT }, where
T is the final time step. Such sequences can be used by a
reinforcement learning agent to optimize the machine’s di-
alogue behaviour. Although human-machine conversations
can be used for optimizing dialogue behaviour, a more com-
mon practice is to use simulations.
A reinforcement learning dialogue agent aims to learn its

behaviour from interaction with an environment, where sit-
uations are mapped to actions by maximizing a long-term
reward signal (see (Sutton and Barto 1998) for an introduc-
tion to reinforcement learning). Briefly, the reinforcement
learning paradigm works by using the formalism of Markov
Decision Processes (MDPs). An MDP is characterized by a
finite set of states S, a finite set of actions A, a probabilistic
state transition function, and a reward function that rewards
the agent for each selected action. Solving the MDP means
finding a mapping from observable states to actions corre-
sponding to π∗(st) = argmaxat∈A Q∗(st, at), where the
Q-function specifies the cumulative rewards for each state-
action pair. The optimal policy can be learnt by dynamic
programming or reinforcement learning algorithms.
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Figure 1: A pipeline model of human-machine interaction,
where observable dialogue state st or belief dialogue state
bt is used by the dialogue manager to choose action at.

An alternative but more computationally intensive model
for sequential decision-making under uncertainty is the
Partially Observable Markov Decision Process (POMDP)
model. In a POMDP the dialogue state is not known with
certainty (as opposed to an MDP); i.e. since the agent does
not know the state s exactly, it must maintain a belief state
over the possible states S (Young et al. 2010). The charac-
terization of a POMDP extends an MDP with a set of obser-
vations or perceptions from the environment (e.g. keywords
from the user utterances) Ω = {o1, o2, ..., on}, and an ob-
servation function O(s, a, o) that specifies a perceived ob-
servation o from selecting action a in state s with probabil-
ity P (o|s, a). Thus, a POMDP can be seen as an MDP over
a belief space, where the observable states are replaced by
belief states. Solving the POMDP can be described as find-
ing a mapping from belief states to actions corresponding
to π∗(bt) = argmaxat∈AQ∗(bt, at), where the Q-function
specifies the cumulative rewards for each belief state and
action. The rest of the paper describes an approach that
extends MDP-based reinforcement learning conversational
agents with beliefs states, which can be seen as learning
agents with a characterization betweenMDPs and POMDPs.

A Bayesian-Relational Approach for Dialogue
Control Under Uncertainty

Figure 2 shows the presented approach which unifies two
concepts: (a) relational representations imposed on an MDP
state-action space; and (b) belief state variables extending
the fully-observed state variables by using partition-based
Bayesian networks.

Dialogue as a Relational MDP
An MDP is typically represented with propositional repre-
sentations (e.g. a set of binary features), which result into
exponential growth. A relational MDP mitigates that prob-
lem by using tree-based and high-level representations re-
sulting in the following benefits: (a) compression and more
expressive description of the state-action space, (b) straight-
forward incorporation of prior-knowledge into the policy, (c)
















Figure 2: Dynamics of an MDP-based dialogue manager us-
ing Bayesian Relational state representations.

generalization for reusable behaviours, and (d) fast learning.
A relational MDP is a generalization of an MDP specified

with representations based on a logical language (van
Otterlo 2009). A relational MDP can be defined as a 5-tuple
<S,A, T,R, L>, where element L is a language that pro-
vides the mechanism to express logic-based representations.
We describe L as a context-free grammar to represent for-
mulas compounded by predicates, variables, constants and
connectives similar to (Russell and Norvig 2003), Chaper
8. Whilst the state set S is generated from an enumeration
of all logical forms in grammar L, the actions A available
in a given state are constrained by the logical forms in L. A
sample relational state is expressed by a set of predicates:
‘Salutation(greeting)∧ Slot(x, confirmed) ∧
SlotsT oConfirm(none) ∧ DatabaseTuples(none)’.
This representation indicates that slot x has been con-
firmed, there are no slots to confirm and no database
tuples. A sample relational action is expressed as follows:
‘request ← Salutation(greeting) ∧ Slot(x, unfilled) ∧
SlotsT oConfirm(none)’. This expression indicates that
the action ‘request’ is valid if the logical expression is true.

Relational MDPs with Belief States
Because dialogue states are not known with certainty,
POMDPs have been adopted for policy optimization under
uncertainty (Roy, Pineau, and Thrun 2000; Williams 2006;
Henderson and Lemon 2008; Thomson 2009; Young et al.
2010). Moreover, because POMDPs are computationally in-
tensive and hard to scale up, in this paper we propose to
approximate the belief states of a relational MDP with be-
lief state variables. This approximation is used to scale up to
more complex conversational systems. The belief states can
be defined as b(s) = 1

ZΠp(Xi ∈ s), where p(Xi ∈ s) is the
probability distribution of predicateXi in state s, and Z is a
normalization constant.
For the belief states, we maintain a Bayesian Network

(BN) for each predicate Xi ∈ s. A BN models a joint
probability distribution over a set of random variables and
their dependencies based on a directed acyclic graph, where
each node represents a variable Yj with parents pa(Yj)
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Figure 3: Block diagram for generating N-best list. Whilst scored lists are based on beta distributions and ASR error rates (see
Fig. 5), re-scored n-best lists are based on posterior distributions (useful for the belief states) derived from Bayesian Networks.

(Jensen 1996). The Markov condition implies that each
variable is only dependent on its parents, resulting in a
unique joint probability distribution expressed as p(Y ) =
Πp(Yj |pa(Yj)), where every variable is associated with a
conditional probability distribution p(Yj |pa(Yj)). Such a
network is used for probabilistic reasoning, i.e. the calcu-
lation of posterior probabilities given some observed evi-
dence. To that end, we use efficient implementations of the
variable elimination and junction tree algorithms (Cozman
2000). In addition, because the size of domain values D for
each variable can be large (which results in high compu-
tational expense), we use random variables with partitions
D = {D̃i} expressed as

D =






D̃0 ← item1, item2, item3 ... itemN , other
D̃1 ← itemN+2, itemN+3, itemN+4 ... itemN � , other
...
D̃M ← itemN �+2, itemN �+3 ... itemN �� , other

where |D̃k| ≤ max. The entry ‘other’ is initialized with
probability 1, which changes with belief updating during the
course of the interaction. At each time step, the networks and
corresponding posteriors are updated based on the perceived
observations (i.e. ASR N-best lists) from the environment.
The N-Best lists were generated according to the procedure
shown in Figure 3. Once the posteriors are updated, their 1-
best hypotheses are used in the relational states of the MDP.

Belief Updating of the Dialogue State
The partition-based Bayesian Networks (BNs) described
above use multiple minimal BNs defined by p(V i

k |Ri
k, P

i
k),

where index i denotes a predicate in the dialogue state and
index k denotes a partition in predicate i. The meaning of
such random variables is as follows: Ri

k is used for speech
recognition at time step t, P i

k is used for speech recognition
at time step t − 1, and V i

k is the belief of predicate i. The
belief updating procedure is as follows. First, compute an
N-best list for each keyword in the user utterance. For each
entry in the N-best list, get the partition of the current en-
try denoted as D̃i

k. Assign the corresponding probabilities
to the random variable Ri

k. Update the probability of entry
’other’ according the new observations. If t = 0 then as-
sign the probability distribution of Ri

k to P i
k, else assign the

probability distribution of V i
k to P i

k so that it can maintain
the previous beliefs. Finally, the state with the highest prob-
ability in the random variables V i

∀k—computed by combin-
ing partitions omitting the entry ‘other’ and redistributing
probability mass accordingly—is used in predicateXi of di-
alogue state s. This implies that there is a single belief for
each predicate, even if it appears in multiple dialogue states.

Figure 4: Map of the navigation environment including a su-
perimposed route graph specifying the navigational space.
The black circles represent origin and destination locations.

Experiments and Results
We tested our approach in a learning agent that collects
information for situated indoor navigation using simulated
speech-based interactions. The task of the user is to navi-
gate from an origin to a destination based on instructions
received from a dialogue system. After each instruction the
user has to say where he/she is and the agent has to guide
the user to the goal location (see Figure 4, and (Cuayáhuitl
and Dethlefs 2011a) for a dialogue system of this type but
without belief monitoring). This scenario represents at least
the following sources of uncertainty: What did the user say?
Where is the user? What does the user know? This paper
focuses its attention on the first source of uncertainty.

The Simulated Conversational Environment
The system and user verbal contributions are based on the
Dialogue Act (DA) types shown in Table 1 combined with
the attributes {origin, destination}. This makes a set of 10
user DAs and 14 system DAs. We used the conditional prob-
ability distribution p(u|a) for simulating user dialogue acts
u given the last machine dialogue acts a. The user responses
were coherent with probability 0.9 and random otherwise,
a speech recognition error rate of 20% was simulated and
ambiguity of domain values of 10%.
In addition, we modelled Automatic Speech Recogni-

tion (ASR) events from beta continuous probability distri-
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Figure 5: Beta probability distributions for modelling speech recognition events in simulation-based dialogue strategy learning.

butions (see Figure 5), which have been applied to statistical
dialogue modelling by (Williams and Balakrishnan 2009;
Williams 2010). The beta distribution is defined in the in-
terval (0, 1) and it is parameterized by two positive shape
parameters referred to as α and β. The probability density
function of a beta distribution is expressed as

f(x) =
xα−1(1− x)β−1

� 1
0 xα−1(1− x)β−1 dx

,

where the denominator represents the beta function, α and
β are positive real numbers (which can be estimated from
data), and 0 ≤ x ≤ 1. Our simulations used (α=2,β=5;
α=5,β=2) for bad and good recognition, respectively.

Characterization of the Learning Agent

Figure 6 shows the context-free grammar specifying the lan-
guage for the relational states in our learning agent. Whilst
the enumeration using a propositional representation repre-
sents a total of 1002×33 = 270 thousand states (1002 recog-
nized locations for each confidence score from 0.01 to 1.0; 3
values for unfilled, filled, confirmed origin; 3 values for un-
filled, filled, confirmed destination; and 3 values for ambigu-
ous user dialogue act), the relational representation only re-
quired 21 thousand combinations (7.7% of the propositional
representation). The actions constrained with the relational
states (i.e. logical forms in grammar L) are expressed as

A =

8
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:

Request(origin,destination) ← l01
Request(origin) ← l03 ∨ l12
Request(destination) ← l02 ∨ l08
Apology(origin,destination)+

Request(origin,destination) ← l04
Apology(origin)+Request(destination) ← l02 ∨ l11
Apology(destination)+Request(origin) ← l03 ∨ l09
ImpConf(origin)+Request(destination) ← l02
ImpConf(destination)+Request(origin) ← l03
ExpConf(origin) ← l02 ∨ l11
ExpConf(destination) ← l03 ∨ l09
ExpConf(origin,destination) ← l04
Clarify(origin)← l05 ∨ l13
Clarify(destination)← l04 ∨ l10
Clarify(origin,destination)← l08.

It can be observed that whilst the propositional state-
action space would use 1002 × 33 × 14 =3.8 million state-
actions, the constrained state-action space only uses 32 thou-
sand (less than 1% of the propositional one). The goal state
is defined when the origin and destination locations are con-
firmed (a sample dialogue is shown in Table 2). In addi-
tion, the Bayesian networks (with semi-hand-crafted struc-
ture and parameters based on the spatial environment) for
modelling the beliefs of predicates in the relational states
are shown in Figure 7. Since the posteriors can have a large
number of probabilities (e.g. the conditional probability ta-
ble for predicate ‘UserOrigin’ has 2003 × 2=16 million en-
tries), we partitioned large networks with entries based on
locations per navigation segment (from one junction to an-
other) allowing a maximum of domain values max ≤ 30
(i.e. multiple instantiations of a Bayesian net with smaller
conditional probability tables). Finally, the reward function
is defined by the following rewards: 0 for reaching the goal
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L := l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14
l1:= UserOrigin(unfilled) ∧ UserDestination(unfilled) ∧ AmbiguousUserDialogueAct(unknown)
l2:= UserOrigin(filled,score ) ∧ UserDestination(unfilled) ∧ AmbiguousUserDialogueAct(no)
l3:= UserOrigin(unfilled) ∧ UserDestination(filled,score ) ∧ AmbiguousUserDialogueAct(no)
l4:= UserOrigin(filled,score ) ∧ UserDestination(filled,score ) ∧ AmbiguousUserDialogueAct(no)
l5:= UserOrigin(filled,score ) ∧ UserDestination(unfilled) ∧ AmbiguousUserDialogueAct(yes)
l6:= UserOrigin(unfilled) ∧ UserDestination(filled,score ) ∧ AmbiguousUserDialogueAct(yes)
l7:= UserOrigin(filled,score ) ∧ UserDestination(filled,score ) ∧ AmbiguousUserDialogueAct(yes)
l8:= UserOrigin(confirmed) ∧ UserDestination(unfilled) ∧ AmbiguousUserDialogueAct(no)
l9:= UserOrigin(confirmed) ∧ UserDestination(filled,score ) ∧ AmbiguousUserDialogueAct(no)
l10:= UserOrigin(confirmed) ∧ UserDestination(filled,score ) ∧ AmbiguousUserDialogueAct(yes)
l11:= UserOrigin(filled,score ) ∧ UserDestination(confirmed) ∧ AmbiguousUserDialogueAct(no)
l12:= UserOrigin(unfilled) ∧ UserDestination(confirmed) ∧ AmbiguousUserDialogueAct(no)
l13:= UserOrigin(filled,score ) ∧ UserDestination(confirmed) ∧ AmbiguousUserDialogueAct(yes)
l14:= UserOrigin(confirmed) ∧ UserDestination(confirmed) ∧ AmbiguousUserDialogueAct(no)
score := 0.01 ∨ 0.02 ∨ 0.03 ∨ 0.04 ∨ 0.05 ∨ ... ∨ 0.97 ∨ 0.98 ∨ 0.99 ∨ 1

Figure 6: Context-free grammar defining the language L for collecting information in the wayfinding domain. See (Cuayáhuitl
and Dethlefs 2011b) for a more complete state representation of the wayfinding interaction (including information presentation).
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Figure 7: Bayesian networks for modelling the beliefs of
predicates in the relational states. The domain values of each
random variable is shown in curly brackets. Notice that the
top and bottom left networks use multiple networks (parti-
tions) to handle smaller conditional probability tables.

state and -10 otherwise. We used the Q-Learning algorithm
(Sutton and Barto 1998). The learning rate parameter α de-
cays from 1 to 0 according to α = 100/(100 + τ), where
τ represents elapsed time-steps. The action selection strat-
egy used �-Greedy with � = .01, undiscounted rewards, and
Q-values initialized to 0.

Experimental Results
Figure 8 shows the learning curves of induced behaviour
with the proposed approach. One thing to notice is that re-
inforcement learning with relational representations using
a constrained state-action space is dramatically faster than
without constraints. Whilst the latter requires five orders of
magnitude to learn a stable policy, the former only requires
three orders of magnitude. Two key characteristics of rela-

tional state-action spaces are (1) they are easy to specify
and to read, and (2) they offer the mechanism to generate
coherent dialogues (even before learning). Surprisingly, the
relational representations have been ignored in the learn-
ing dialogue systems field. Another thing to notice is that
learnt policies with belief state variables help to improve
performance more (due to more accurate recognitions) than
without tracking beliefs from the environment.We measured
the average system turns of the last 1000 training dialogues
and found that constrained learning with belief states out-
performs its counterpart (constrained learning without belief
states) by an absolute 15% in terms of average system turns.
We also compared the average system turns of the first 1000
training dialogues and the last 1000 training dialogues for
the best policy (with beliefs), and found that the latter phase
outperformed the first one by 2 system turns. This indicates
that the hand-coded policy with relational representations
was improved by policy learning.
Furthermore, our approach scales up to larger domain val-

ues because (a) the size of the relational state-action space is
location-independent, and (b) even when the Bayesian Net-
works (BNs) are slot-dependent, the partitioned approach
makes them scalable. It remains to be investigated the scal-
ability limits of our approach with larger and more complex
BNs. Nonetheless, the partition-based BNs reduce compu-
tational demands for loading, updating and querying beliefs
in comparison to non-partitioned BNs. Although the results
above require an evaluation in a realistic environment, the
proposed approach is promising for optimizing dialogue be-
haviour in unknown and uncertain environments (which re-
quire fast learning with continuous belief tracking).

Conclusions and Future Work
We have described a unified approach for representing
search spaces of reinforcement learning dialogue agents,
which aims for efficient and robust operation combined with
straightforward design. To this end we use logic-based rep-
resentations in the state-action space, and extend them with
belief states by using partition-based Bayesian networks.
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Dialogue Acts Sample Utterance
Provide(ori) I am in front of room B3090
Provide(des) How do I get to Dr. Watson’s office?
Provide(ori,des) How do I get from room B3090 to

Dr. Watson’s office?
Reprovide(ori) I said in front of room B3090
Reprovide(des) I meant to Dr. Watson’s office?
Reprovide(ori,des) I asked how do I get from room

B3090 to Dr. Watson’s office?
Confirm(ori) Yes, I did.
Confirm(des) Yes, I said that.
Confirm(ori,des) Yes, please.
Silence() [remain in silence]
Request(ori,des) What is your origin and destination?
Request(ori) Where are you?
Request(des) Where would you like to go?
Apology(ori,des)+ Sorry,

Request(ori,des) from where to where?
Apology(ori)+ Sorry,

Request(ori) where are you?
Apology(des)+ Sorry,

Request(des) what is your destination?
ImpConf(ori)+ Okay, from room B3090,

Request(des) to where ?
ImpConf(des)+ Okay, to room B3090,

Request(ori) where are you?
ExpConf(ori,des) Yes
ExpConf(ori) No
ExpConf(des) Yes I did
Clarify(ori) Do you mean James Watson

or Peter Watson?
Clarify(des) Do you mean Copy room

or Post room?
Clarify(ori,des) Do you want to go to

the Copy room or Post room?

Table 1: Dialogue Acts for collecting information in
the situated navigation domain, where ori=origin and
des=destination. The groups correspond to user and system
dialogue acts, respectively.

Our experimental results provide evidence to conclude that
our method is promising because it combines fast learning
with robust operation. By proposing relational state-action
spaces, it makes a concrete contribution to conversational
interfaces which learn their dialogue behaviour. Although
this approach scales up to large domain values, it can be
extended with hierarchical control to deal with large rela-
tional states and optimization of large-scale conversational
interfaces; e.g, hierarchical reinforcement learning dialogue
agents such as (Cuayáhuitl et al. 2010; Cuayáhuitl and Deth-
lefs 2011a) can be extended with Bayesian relational repre-
sentations.
Related work closest to ours is the following. (Lecoeuche

2001) used reinforcement learning with relational represen-
tations, but he did not model beliefs. (Horvitz and Paek
1999; Paek and Horvitz 2000; Bohus and Rudnicky 2005;
2006; Skantze 2007) modelled beliefs in dialogue systems,
but they did not optimize conversations using reinforce-
ment learning. In general, our approach lies between the

Agent Dialogue Act Utterance
Sys Request(ori,des) What is your origin and destination?
Usr Provide(ori,des) I want to go from room B3090 to

Dr. Watson’s office?
Sys ImpConf(ori) Okay, from room B3090,

+Request(des) to where?
Usr Reprovide(des) Dr. Watson’s office?
Sys Clarify(des) Do you mean James Watson

or Peter Watson?
Usr Reprovide(des) Peter Watson
Sys [provides a route instruction]
Usr [executes the route instruction]

Provide(ori) I am in front of the lifts
Sys Apology(ori) Sorry, where are you?

+Request(ori)
Usr Reprovide(ori) In the corridor of the lifts
Sys Clarify(des) Do you mean the lifts next to

the language learning center?
Usr Confirm(ori) Ehhh, yes
Sys [provides a route instruction]
Usr [executes the route instruction]

Provide(ori) Okay, now I can see offices
B3280 and B3285

Sys [provides a route instruction]
... [and so on until reaching the goal]

Table 2: Fragment of a conversation in the situated wayfind-
ing domain. This dialogue focuses its attention on collecting
information as the user carries out the navigation task. We
assume that the user carries a hand-held device with him/her
to communicate with the system using spoken interaction.
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Figure 8: Learning curves of induced dialogue behaviour
(averaged over 10 runs), where all agents started to learn
after 100 episodes (to plot the performance before learn-
ing). Learning with constraints and belief states (i.e. the best
learning curve) outperforms its counterpart (learning with
constraints and without belief states) by an absolute 15% in
terms of average system turns due to more accurate speech
recognition. The best learnt dialogue policy improved the
hand-coded constraints from 5 to 3 system turns, derived
from a comparison of the first and the last 1000 dialogues.
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MDP and POMDP models (Roy, Pineau, and Thrun 2000;
Williams 2006; Thomson 2009; Young et al. 2010). Since
we model beliefs of predicates (with short histories) in the
dialogue state instead of beliefs of entire dialogue states
(with long histories), our approach is expected to be less ro-
bust than the POMDP model but at the same time more scal-
able. A theoretical and experimental comparison between
our and a POMDP-based approach is left as future work.
Another future direction is to use (non-)linear function ap-
proximation for tackling very large relational state-action-
spaces, when hierarchical control would not be sufficient to
control the rapid state space growth. Finally, the proposed
approach can be assessed in larger, more complex systems.
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Cuayáhuitl, H., and Dethlefs, N. 2011b. Optimizing sit-
uated dialogue management in unknown environments. In
INTERSPEECH.
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