
Optimizing Situated Dialogue Management in Unknown Environments

Heriberto Cuayáhuitl1, Nina Dethlefs2

1German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
2University of Bremen, Germany

heriberto.cuayahuitl@dfki.de, dethlefs@uni-bremen.de

Abstract
We present a conversational learning agent that helps users nav-
igate through complex and challenging spatial environments.
The agent exhibits adaptive behaviour by learning spatially-
aware dialogue actions while the user carries out the navigation
task. To this end, we use Hierarchical Reinforcement Learn-
ing with relational representations to efficiently optimize dia-
logue actions tightly-coupled with spatial ones, and Bayesian
networks to model the user’s beliefs of the navigation environ-
ment. Since these beliefs are continuously changing, we induce
the agent’s behaviour in real time. Experimental results, using
simulation, are encouraging by showing efficient adaptation to
the user’s navigation knowledge, specifically to the generated
route and the intermediate locations to negotiate with the user.
Index Terms: spoken dialogue systems, situated interaction,
reinforcement learning, hierarchical control, Bayesian networks

1. Introduction
Adaptive conversational interfaces provide a human user with
information that is specifically suited to his or her own needs by
taking the situational environment and individual properties of
the user into account. Such interfaces need to perceive, reason
about and act in their environment of operation to adapt sensibly
to the user and conversational setting. This is especially true for
situated agents which need to keep track of (a) features of the
spatial setting, (b) the user’s beliefs about this setting, and (c)
dynamic changes of both occurring during the course of the in-
teraction. We suggest to use Hierarchical Reinforcement Learn-
ing (HRL) to infer the agent’s behaviour (or dialogue policy)
from interactions with the environment. Reinforcement Learn-
ing (RL) is an attractive framework for optimizing sequential
decision making, where situations are mapped to actions by
maximizing a longterm reward signal [1, 2, 3]. HRL has the ad-
ditional advantage of scaling up to large and complex problems
[4]. A key requirement of the in-situ interaction scenario that
we are addressing is that the user receives instructions as he/she
carries out the task, so that adaptation to unknown and contin-
uously changing user prior knowledge needs to occur ‘on the
fly’. This has a number of implications. Since not all properties
of entities in the environment are known in advance, due to new
world objects, navigational constraints, or the user’s changing
spatial knowledge, it is not possible to apply off-line learning.
Instead, learning is required to occur in real time, after each
user query. We tackle this problem by learning policies contin-
uously often from a simulated environment, constantly updated
with observations from the real environment.

Here we present a conversational agent for interactive route
guidance based on constantly changing user prior knowledge
to which the agent needs to adapt. To allow fast and flexible
adaptation to the dynamically changing environment, we learn

policies in real time, after each user query. This is achieved
by applying relational representations to the agent’s state-action
space to effectively constrain it. For the agent to adapt to newly
gained knowledge of the user online, we use Bayesian Net-
works (BNs) to track the user’s beliefs about the environment
during the navigation tasks. Finally, we follow and extend pre-
vious work [5] that has argued for a joint optimization of dia-
logue management and route planning into ‘spatially-aware di-
alogue management’. In this way, the dialogue manager can
draw on spatial knowledge to choose optimal dialogue actions,
and the route planner can find optimal route instructions, given
an unknown (or partially-known) and dynamic spatial environ-
ment. These aspects represent a substantial extension of previ-
ous work. In the rest of the paper we show that the combina-
tion of HRL with relational representations and Bayesian-based
user beliefs is attractive for optimizing situated conversational
behaviours into a unified, efficient and scalable framework.

2. Adaptive Situated Dialogue Management
The behaviour of situated dialogue managers is strongly influ-
enced by the domain in which they operate, in our case the
wayfinding domain. For instance, there can be multiple routes
to guide the user from an origin to a destination, e.g. the easi-
est/shortest route to follow, the route simplest to describe, etc.,
and it is not trivial to decide which route is the best, given the
current user and spatial environment. Such routes can be pro-
vided at different degrees of granularity, the best level will de-
pend on the users’ knowledge of the navigation environment
and the complexity of the route. In other words, in order to sup-
ply optimal route instructions for individual users, the system
not only needs information about the user’s prior knowledge of
the environment, but also about the space in which the user nav-
igates. In particular, the dialogue manager must deal with ques-
tions such as When to present information? When to ask for
users’ prior knowledge? What information to present accord-
ing to the dialogue history and spatial environment? Regarding
the first two questions, the system may, for example, provide all
instructions without taking the user’s prior knowledge into ac-
count. Alternatively, when the system updates the user’s beliefs
about known locations, the dialogue controller may decide to
first ask if the user recalls an intermediate location (e.g. ‘do you
remember how to get to the post room?’) in order to provide
information more efficiently. The third question is addressed
by system behaviour that takes the spatial environment into ac-
count, such as choosing a route that is easiest for the user to fol-
low or that goes past landmarks that the user is already familiar
with. In the wayfinding domain, the vast amount of possible
routes to follow prohibits the approach of policy learning in ad-
vance, and makes the approach of policy learning in real-time
preferable (which demands efficient learning techniques).

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

1009

3. Learning Situated Dialogue Management
3.1. Learning Dialogue Policies with Hierarchical Control

We treat spatially-aware dialogue control as a discrete Semi-
Markov Decision Process (SMDP) in order to address the prob-
lem of scalable dialogue optimization. A discrete-time SMDP
M = <S, A, T, R> is characterized by a finite set of states
S; a finite set of actions A; a stochastic state transition func-
tion T (s′, τ |s, a) = P (s′, τ |s, a) that specifies the next state
s′ given the current state s and action a; and a reward func-
tion R(s′, τ |s, a) that specifies the reward given to the agent
for choosing action a when the environment makes a transition
from state s to state s′. The random variable τ denotes the
number of time-steps taken to execute action a in state s. We
distinguish two types of actions: (a) single-step actions roughly
corresponding to dialogue acts or spatial actions such as ‘turn
left’ or ‘turn around’, and (b) multi-step actions correspond-
ing to sub-dialogues or contractions of single-step spatial ac-
tions such as ‘go straight until the end of the corridor’. The
solution to a Semi-Markov decision process is an optimal pol-
icy π∗, which is a mapping from environment states s ∈ S to
single- or multi-step actions a ∈ A. In addition, we treat each
multi-step, spatially-aware dialogue action as a separate SMDP
as described in [4, 6]. In this way, an MDP can be decomposed
into multiple SMDPs that are hierarchically organized into L
levels and N models per level, denoted asM = {M i

j}, where
j ∈ {0, ..., N − 1} and i ∈ {0, ..., L − 1}. Thus, a given
SMDP in the hierarchy is denoted asM i

j = <Si
j , A

i
j , T

i
j , Ri

j>.
The goal of an SMDP is to find an optimal policy π∗ that max-
imizes the reward of each visited state. The optimal action-
value function Q∗(s, a) specifies the expected cumulative re-
ward for executing action a in s and then following π∗. The
optimal policy for each model in the hierarchy is defined by
π∗i

j (s) = arg maxa∈Ai
j
Q∗i

j (s, a), where the Q-function spec-
ifies the cumulative reward for each state-action pair. We use the
HSMQ-Learning algorithm [7] for hierarchical policy learning.

3.2. State-Action Spaces with Relational Representations

An MDP is typically represented with propositional represen-
tations (e.g. a set of binary features), which result into expo-
nential growth. A relational (Semi-) MDP mitigates that prob-
lem by using tree-based and high-level representations result-
ing in the following benefits: (a) compression and more expres-
sive description of the state-action space, (b) straightforward
incorporation of prior-knowledge into the policy, (c) general-
ization for reusable behaviours, and (d) fast learning. A rela-
tional MDP is a generalization of an MDP specified with re-
presentations based on a logical language [8]. It can be defined
as a 5-tuple <S, A, T, R, L>, where element L is a language
that provides the mechanism to express logic-based represen-
tations. We describe L as a context-free grammar to repre-
sent formulas compounded by predicates, variables, constants
and connectives similar to [3] (Chapter 8). Whilst the state
set S is generated from an enumeration of unique formulas
in grammar L, the actions A available in a given state are
constrained by the relational representations. A sample rela-
tional state is expressed as follows: ‘Salutation(greeting) ∧

Slot(x, confirmed)∧SlotsToConfirm(none)∧SalientLand-
markToAsk(none)’. This representation indicates that slot x
has been confirmed, there are no slots to confirm and no salient
landmarks to ask for. A sample relational action is ‘request ←

Salutation(greeting) ∧ Slot(x, unfilled)’. This indicates that
the action ‘request’ is valid if the logical expression is true.

�����
����	
���

��
���
��������

���	
����
�������

��

������
����	
���

����
����

�����
����	
���

��
���
��������

���	
����
�������

��

������
����	
���

!���"��#

!��$

��"
����$

��#

!���"��#

!���"��# !���"��#

Figure 1: BN for modelling the user’s prior knowledge about
known locations in the in-situ indoor navigation problem.

3.3. Bayesian Networks for Tracking User Beliefs

The learnt spatial behaviour of the agent is also strongly in-
fluenced by an unknown user, for whom we maintain beliefs
as he/she interacts with the environment. To achieve this, we
use Bayesian networks, which model the dynamics of a set of
random variables (e.g. user type, known locations, saliency)
and their dependencies. A BN models a joint probability dis-
tribution over a set of random variables and their dependencies
based on a directed acyclic graph, where each node represents
a variable Yj with parents pa(Yj) [9]. The Markov condition
implies that each variable is only dependent on its parents, re-
sulting in a unique joint probability distribution expressed as
p(Y) = Πp(Yj|pa(Yj)), where every variable is associated
with a conditional probability distribution p(Yj|pa(Yj)). Such
a network is used for probabilistic reasoning, i.e. the calcu-
lation of posterior probabilities given a set of query variable-
value pairs. To that end, we use efficient implementations of
the variable elimination and junction tree algorithms [10]. The
BN’s conditional probability tables are updated based on the
perceived observations from the environment. After each user
query (e.g. How do I get to the copy room?, I’m in front of
the lifts), the agent re-learns—using simulation—the dialogue
policy using the current user beliefs of the environment.

4. Experimental Setting
Our experiments are based on a spoken dialogue system for in-
situ indoor navigation, i.e. route instructions are not given in ad-
vance, instead, they are given one by one as the user navigates to
the goal. The agent’s task is to learn to navigate the user—after
each user query—from an origin location to 200 destinations
(map available in [5]). The user’s task is to ask for route in-
structions and to navigate each received instruction1. For such
a purpose, we use a simulated environment derived from a real
building that is complex to navigate. We used spatial data de-
rived from a single floor of this building, and represented it as
an undirected acyclic graph with 400 equally distributed nodes.
This route graph and the stochastic behaviour described in the
following subsection form the agent’s learning environment.

4.1. The Simulated Environment

The simulated environment has a navigation space with 200 lo-
cations (35 are salient), and a simulated user. The latter has four
sources of uncertainty: confusions at junctions when navigating
to the goal occur 10% of the time, coherent user responses
with probability .9 and random otherwise, speech recognition

1Sample instruction: Go to the post room first, then facing the main
entrance, turn left and go straight until the next corridor on your right.

1010

L := g01 g02 g03 g04 g05 g06 g07 g08 g09 g10 g11 g12 g13 g14 ... g41 g42
g01:= Information(null) ∧ Salutation(none)
g02:= Information(null) ∧ Salutation(greeting)
g03:= Information(collected) ∧ Salutation(greeting)
g04:= Information(presented) ∧ Salutation(greeting) ∧ AnotherQuestion(null)
g05:= Information(presented) ∧ Salutation(greeting) ∧ AnotherQuestion(empty)
g06:= Information(presented) ∧ Salutation(greeting) ∧ AnotherQuestion(yes)
g07:= Information(presented) ∧ Salutation(greeting) ∧ AnotherQuestion(no)
g08:= Information(presented) ∧ Salutation(closing)
g09:= UserOrigin(unfilled) ∧ UserDestination(unfilled) ∧ AUDA(unknown)
g10:= UserOrigin(filled,score) ∧ UserDestination(unfilled) ∧ AUDA(no)
g11:= UserOrigin(unfilled) ∧ UserDestination(filled,score) ∧ AUDA(no)
g12:= UserOrigin O(filled,score) ∧ UserDestination(filled,score) ∧ AUDA(no)
g13:= UserOrigin(filled,score) ∧ UserDestination(unfilled) ∧ AUDA(yes)
g14:= UserOrigin(unfilled) ∧ UserDestination(filled,score) ∧ AUDA(yes)
g15:= UserOrigin(filled,score) ∧ UserDestination(filled,score) ∧ AUDA(yes)
g16:= UserOrigin(confirmed) ∧ UserDestination(unfilled) ∧ AUDA(no)
g17:= UserOrigin(confirmed) ∧ UserDestination(filled,score) ∧ AUDA(no)
g18:= UserOrigin(confirmed) ∧ UserDestination(filled,score) ∧ AUDA(no)
g19:= UserOrigin(filled,score) ∧ UserDestination(confirmed) ∧ AUDA(yes)
g20:= UserOrigin(unfilled) ∧ UserDestination(confirmed) ∧ AUDA(yes)
g21:= UserOrigin(filled,score) ∧ UserDestination(confirmed) ∧ AUDA(yes)
g22:= UserOrigin(confirmed) ∧ UserDestination(confirmed) ∧ AUDA(yes)
g23:= Instructions(unknown) ∧ SalientLandmarkToAsk(none)
g24:= Instructions(unknown) ∧ SalientLandmarkToAsk(one) ∧LKBU(null)
g25:= Instructions(unknown) ∧ SalientLandmarkToAsk(one) ∧ LKBU(empty)
g26:= Instructions(unknown) ∧ SalientLandmarkToAsk(one) ∧ LKBU(yes)
g27:= Instructions(unknown) ∧ SalientLandmarkToAsk(one) ∧ LKBU(no)
g28:= Instructions(known) ∧ InstructionsStatus(nonintroduced)
g29:= Instructions(known) ∧ InstructionsStatus(introduced) ∧ RI(null)
g30:= Instructions(known) ∧ InstructionsStatus(introduced) ∧ RI(empty)
g31:= Instructions(known) ∧ InstructionsStatus(introduced) ∧ RI(yes)
g32:= Instructions(known) ∧ InstructionsStatus(introduced) ∧ RI(no)
g33:= Instructions(known) ∧ InstructionsStatus(provided)
g34:= Location(goal)
g35:= Location(start) ∧ Orientation(orientation) ∧ SLTA(none)
g36:= Location(start) ∧ Orientation(orientation) ∧ SLTA(one)
g37:= Location(corridor) ∧ Corridor(segment) ∧ Orientation(orientation)
g38:= Location(junction) ∧ Junction(graphnode) ∧ Orientation(orientation)
g39:= Location(nextofgoal) ∧ Orientation(orientation)
g40:= Location(other) ∧ Orientation(orientation)
g41:= Location(start) ∧ Orientation(orientation)
g42:= Location(corridor) ∧ Orientation(orientation)
score:= 0.1 | 0.2 | 0.3 |0.4 |0.5 |0.6|0.7 | 0.8 | 0.9 | 1
orientation:= north | south | east | west
graphnode:= junction1 | junction1 | ... | junction35
segment:= corridor1 | corridor2 | ... | corridor82

Figure 2: Context-free grammar defining the language L for
the situated indoor wayfinding spoken dialogue system. Abbre-
viations: AUDA=AmbiguousUserDialogueAct, LKBU= Land-
markKnownByUser, RI=RepeatInstructions, SLTA= Salient-
LandmarkToAsk , g?=state groups (predicates use variables).

error rate of 20%, and beliefs about known locations. The user
beliefs about known salient locations in the environment are
modelled with the BN shown in Figure 1. The conditional
probability distribution of a user knowing locations is therefore
p(KnownLocation|Salience,WalkedThrough,MentionedBefore,
UserType). We keep track of this user knowledge so that the
agent can optimize its behaviour accordingly. When the user is
guided past a landmark, its prior probability of walking through
and being mentioned is updated according to 1 − (1/3v),
where v is the number of visits. The prior probability of a
salient landmark is .9 and .1 otherwise. In addition, the prior
probability of the user type being familiar with the environ-
ment is updated similarly as the prior probability of walking
through a landmark. In this way the simulated user gradually
accumulates knowledge of the environment (we assume that a
landmark belief is no longer updated if its posterior is ≥ .99).

4.2. Characterization of the Learning Agent

Figure 2 presents a context-free grammar specifying the seman-
tics of the dialogue state for our situated dialogue agent. Dia-
logue and spatial features are included so as to inform the agent

2
6664

M
0

0

2
666666664

S [g01,g02,g03,g04,g05,g06,g07,g08]

A

2
666664

Greeting()← g01
Closing()← g07
Ask(anotherQuestion)← g04
Apologize(anotherQuestion)← g05
CollectInformation(M1

0
)← g02 ∨ g06

ProvideInformation(M1

1
)← g03

3
777775

G [g08]

3
777777775

M
1

0

2
6666666666666666666666664

S [g09,g10,g11,g12,g13,g14,g15,g16,g17,g18...g20,g21,g22]

A

2
666666666666666666664

Request(origin,destination)← g09
Request(origin)← g11 ∨ g20
Request(destination)← g10 ∨ g16
Apology(origin, destination)+

Request(origin,destination)← g12
Apology(origin)+Request(destination) ← g10 ∨ g19
Apology(destination)+Request(origin) ← g11 ∨ g17
ImpConf(origin)+Request(destination) ← g10
ImpConf(destination)+Request(origin) ← g11
ExpConf(origin,destination)← g12
ExpConf(origin) ← g10 ∨ 19
ExpConf(destination)← g11 ∨ g17
Clarify(origin,destination) ← g16
Clarify(origin) ← g13 ∨ 21
Clarify(destination) ← 12 ∨ 18

3
777777777777777777775

G [g14]

3
7777777777777777777777775

M
1

1

2
666666664

S [g23,g24,g25,g26,g27,g28,g29,g30,g31,g32,g33]

A

2
666664

AskIntermediateLandmark()← g24
AskRepeatInstructions()← g30
InformQueryStatus() ← g28
ProvideRouteInstructions() ← g29 ∨ 31
RankIntermediateLocations(M2

0
)← g27

GenerateRouteInstructions(M2

1
)← g25 ∨ 27

3
777775

G [g11]

3
777777775

M
2

0

2
6666664

S [g34,g35,g36,g37,g38,g39,g40]

A

2
6664

TurnLeft()← ¬g38)
TurnRight() ← ¬g38)
TurnAround() ← g36 ∧ g37) ∨ g41
AskIntermediateLocation(landmark{1..25})← g36
RouteGeneratorArea{0..81}(M3

j)← g36 ∨ g39

3
7775

G [g35]

3
7777775

M
2

1

2
666664

S [g34,g37,g38,g39,g40,g41]

A

2
64
TurnLeft()← ¬g37
TurnRight() ← ¬g37
TurnAround() ← g37 ∨ g41
RouteGeneratorArea{0...81}(M3

j)← g38 ∨ g41

3
75

G [g42]

3
777775

M
3

j

2
66664

S [g34,g38,g39,g40,g41,g42]

A

2
64
GoStraight() ← no constraints
TurnLeft()← ¬g37
TurnRight() ← ¬g37
TurnAround() ← g29 ∨ g41

3
75

G [g48]

3
77775

3
7775

Figure 3: Definition of the Semi-MDPs M i
j for our situated

dialogue agent (Section 4.2 explains these feature structures).

of possible situations in the interaction. Notice that our rela-
tional representations abstract away from coordinates and refer
to higher level descriptions such as ‘corridorX’, ‘junctionY’ and
‘nextofgoal’. If we consider each predicate (e.g. Location(x))
in order to specify the state space of our agent with a proposi-
tional representation, it corresponds to the order of 1011 states.
In contrast, our approach based on hierarchical relational repre-
sentations used only 2875 states. This dramatic compression of
the state space shows that our hierarchical relational approach is
indeed scalable to larger and more complex dialogue systems.

Figure 3 specifies the hierarchy of learning agents with
states S, actions A2 and goal states G, characterized by 87
SMDP models: one parent (M0

0), two children (M1

0 ,M1

1), two
grandchildren (M2

0 ,M2

1), and 82 grand-grandchildren (M3

i).
The latter were induced automatically from turning points in
the spatial environment using a random walk approach. Briefly,

2Actions can be either primitive (executed within the same SMDP)
or composite shown in bold-font (invoke a child SMDP).

1011

101 102 103 104
−104

−103

−102
A

ve
ra

ge
 R

ew
ar

d

Episodes (Dialogues)

Unconstrained learning without belief updating
Constrained learning without belief updating
Constrained learning with belief updating

101 102 103 104
0

1

2

3

4

5

6

7

8

Le
ar

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

Episodes (Dialogues)

Unconstrained learning without belief updating
Constrained learning without belief updating
Constrained learning with belief updating

Figure 4: Learning curves in terms of average rewards (top)
and learning time (bottom) of the wayfinding dialogue system.

the models at the two top layers unify dialogue and spatial be-
haviour, the models in the following layer provide high-level
navigation behaviour (they navigate from one junction to an-
other), and the models in the bottom of the hierarchy pro-
vide low-level navigation behaviour (they behave with primi-
tive actions such as ‘straight’, ‘turn left’, ‘turn right’ and ‘turn
around’). Notice that the actions are constrained with the rela-
tional states, resulting a set of valid actions for each state.

The reward function addressed efficient and effective in-
teractions by penalizing turning instructions more strongly than
going straight. The agent receives a reward of 0 for reaching
the goal state, −10 for a turning action, −10 for an already
executed subtask, −100 for asking for an intermediate loca-
tion farther than the goal, and −1 otherwise. During train-
ing, the learning rate parameter α decays from 1 to 0 accord-
ing to α = 100/(100 + τ), where τ represents elapsed time-
steps. Each model M i

j had its own learning rate with undis-
counted rewards. The action selection strategy used ε-Greedy
with ε = 0.01, and Q-values initialized to 0.1.

5. Experimental Results
Figure 4 compares three RL agents for six example naviga-
tion tasks, each curve averaged over 30 training runs of 104

episodes: (a) unconstrained learning (action sets without con-
straints), (b) constrained learning without belief updating (the
user doesn’t know about locations), and (c) constrained learning
with belief updating (the user accumulates knowledge as he/she
navigates to the given destinations). The learning curves are
provided according to average reward and learning CPU time
in seconds3. We can observe that unconstrained learning takes
longer to learn a stable behaviour (i.e. more prone to get lost).
In contrast, constrained learning finds optimal policies faster
and with more stable performance. In addition, we measured
the average reward of the last 1000 training dialogues and found
that constrained learning with belief updating outperformed its
counterpart by an absolute 13% in terms of average reward. The

3Experiments used a MacBook Intel Core 2 Duo with 2GB in RAM.

agent with belief updating learned to ask for intermediate loca-
tions. Our main experimental result shows that our proposed
method is promising for fast policy optimization, for its applica-
tion in real-time, and therefore suitable for optimizing dialogue
behaviour during the course of the interaction with real users.
As evidence of the quality of our route instructions, please refer
to the human user study reported in [5], where users achieved
a binary task success of 93%. The instructions reported were
semantically equivalent, even though that system did not track
user beliefs, and used propositional state representations.

6. Conclusion and Future Work
We have described an approach for optimizing the behaviour
of situated dialogue systems, using a combination of HRL with
relational representations and BNs. The former was used to
optimize dialogue and spatial behaviours entirely in real time,
which was possible due to the way that relational representa-
tions reduce the agent’s search space. BNs were used to track
dynamically changing user beliefs during the interaction. This
allows flexible and fast adaptation to changing knowledge or
arising confusions of the user. The proposed approach makes a
contribution to conversational interfaces which learn their di-
alogue behaviour. These three components (HRL, relational
representations and BNs) complemented each other in order to
provide optimal guidance: they produced efficient interactions
through the use of salient landmarks. Our experimental results
provide evidence to conclude that our approach is promising
by combining fast learning with adaptive and reasonable be-
haviour. This research can be extended by (1) an evaluation with
real users using spoken interaction with more complex user be-
liefs, (2) joint optimizations with other behaviours (such as nat-
ural language generation and multimodal interaction), and (3)
by investigating more complex behaviours in different domains.

7. References
[1] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement learn-

ing: A survey,” Journal of AI Research, vol. 4, pp. 237–285, 1996.
[2] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.

MIT Press, 1998.
[3] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-

proach. Pearson Education, 2003.
[4] H. Cuayáhuitl, “Hierarchical reinforcement learning for spoken

dialogue systems,” Ph.D. dissertation, School of Informatics, Uni-
versity of Edinburgh, 2009.

[5] H. Cuayáhuitl and N. Dethlefs, “Spatially-aware dialogue control
using hierarchical rienforcement learning,” ACM Transactions on
Speech and Language Processing, vol. 7, no. 3, pp. 5:1–5:26,
2011.

[6] H. Cuayáhuitl, S. Renals, O. Lemon, and H. Shimodaira, “Eval-
uation of a hierarchical reinforcement learning spoken dialogue
system,” Computer Speech and Language, vol. 24, no. 2, pp. 395–
429, 2010.

[7] T. Dietterich, “An overview of MAXQ hierarchical reinforcement
learning,” in Symposium on Abstraction, Reformulation, and Ap-
proximation (SARA), Jul 2000, pp. 26–44.

[8] M. van Otterlo, The Logic of Adaptive Behaviour: Knowledge
Representation and Algorithms for Adaptive Sequential Decision
Making under Uncertainty in First-Order and Relational Do-
mains. IOS Press, 2009.

[9] F. Jensen, An Introduction to Bayesian Networks. Springer Ver-
lag, New York, 1996.

[10] F. G. Cozman, “Generalizing variable elimination in Bayesian
networks,” in IBERAMIA/SBIA, Workshop on Probabilistic Rea-
soning in Artificial Intelligence, 2000, pp. 27–32.

1012

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
