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Abstract

In this paper we address two questions about dominance in the
AMI-IDIAP scenario meetings: (i) do the annotated most and
least dominant utterances correlate with different levels of vo-
cal effort? and if so (i) how quantitatively discriminative are
the vocal effort effects for prosody, voice quality and low level
acoustic features? For answering these questions we perform
supervised learning with dominance annotations in AMI-IDIAP
meetings and vocal effort annotations in controlled data. A lin-
ear discriminant analysis (LDA) classifier is used to optimise
class separability. We have found that the most and least dom-
inant utterances are acoustically correlated with loud and soft
vocal effort. We were able to quantify around 55% discrimina-
tion of equal distributions of most dominant, neutral and least
dominant utterances using low level acoustic measures.

Index Terms: prosody, voice quality, vocal effort, vocal social
signals, acoustic correlates

1. Introduction

In the literature high dominant persons have been characterised
by loud, tense voice and low dominance persons by soft, fearful
voice [1, 2]. In meetings, dominance has been studied with dif-
ferent purposes and means. For example: in [3] the most dom-
inant person in a group meeting is classified employing speak-
ing length and energy as audio cues, as well as video features;
in [2] dominance and role-based status in scenario meetings is
predicted using speaking energy and speaking status, along with
non-relational and relational cues derived from vocalic and vi-
sual cues; in [4] dominance is detected on the basis of easily
obtainable features, such as speaking time, number of turns in
a meeting, number of words spoken in the whole meeting, etc.
In contrast to the previous studies, the present work investigates
prosody, voice quality and low level acoustic features of dom-
inance in view of speech synthesis. The long term goal of our
investigation is automatic synthesis of expressive speech, so we
aim to extract from real data acoustic patterns that can be used
to model and re-synthesise different expressions suitable for a
range of social signals, like dominance.

In a previous work [5], we have investigated prosody and
voice quality of dominance in the AMI-IDIAP scenario meet-
ings and we were able to extract acoustic patterns for two lev-
els of dominance (most and least dominant) and correlate them,
to a certain extent, with acoustic patterns of project manager
and marketing expert roles. Although at human perception, the
project manager role has been found to be the most dominant
person and the marketing expert role the least dominant person
[2], not always the most and least dominant persons correspond
to these roles. Therefore in this work we analyse the voice of
the most and least dominant persons irrespective of the role, and
extend the study to consider not only prosody and voice quality

measures but also low level acoustic features, more suitable to
be used in speech synthesis.

Thus in this paper we address two questions about domi-
nance in the AMI-IDIAP scenario meetings: (i) do the anno-
tated most and least dominant utterances, irrespective of the
role, correlate with different levels of vocal effort? and if so
(i) how quantitatively discriminative are the vocal effort ef-
fects for prosody, voice quality and low level acoustic features?
For answering these questions we perform supervised learning
with dominance annotations in AMI-IDIAP meetings and vocal
effort annotations in controlled data. Sequential floating for-
ward selection (SFFS) and linear discriminant analysis (LDA)
are used to optimise class separability and find the best discrim-
inative features [6].

This paper is organised as follows. In Section 2 the
databases and methodology is explained. In Section 3 the differ-
ent acoustic measures are described. In Sections 4 vocal effort
is analysed on controlled data to verify the effectiveness of the
measures and in Section 5 dominance is analysed using differ-
ent groups of acoustic measures. In Section 6 conclusions are
drawn and future work is envisaged.

2. Data and method
2.1. The NECA vocal effort database

The NECA vocal effort database contains a full German di-
phone set for each of three levels of vocal effort (“soft”,
“modal” and “loud”) and two speakers (one male, one female).
Perception as the intended vocal effort was verified using stim-
uli generated using diphone synthesis voices built from the
recordings [7]. Out of the original recordings, 100 short words
per speaker and per vocal effort were used in this experiment
(600 in total). From this database we have extracted only low
level acoustic features (as explained in section 3).

2.2. The AMI meeting corpus

The AMI Meeting Corpus is a multi-modal data set consisting
of 100 hours of meeting recordings. Some of these meetings
are naturally occurring, and some are elicited, particularly us-
ing a scenario in which the participants play different roles. This
work focuses on the elicited meetings. In the scenario, four par-
ticipants play the roles of employees in an electronics company
that decides to develop a new type of television remote control.
Although the scenario is pre-defined and the roles assigned, the
conversations and discussions in the meetings reflect natural in-
teraction [8]. This corpus contains recordings of both video and
audio data, orthographic transcriptions and several levels of an-
notations, for example dominance. The transcriptions include
word level segmentation time-aligned to the audio recordings.
The analysis of dominance was performed with 5 AMI



meetings held at IDIAP for which dominance annotations are
available [3]. 11 sub-meetings (phases), from these five meeting
sessions, have been divided into 5 minute segments, and each
segment has been annotated by three annotators. The annota-
tors ranked the participation of each person in the segment from
highest to lowest, according to their level of perceived domi-
nance. As described in [9], from the annotations, a significant
number of the meeting segments, 34, showed full agreement of
the most dominant person; full agreement on the least dominant
person was found in 31 segments. There were additional seg-
ments where 2 out of 3 annotators, the majority, agreed on the
most or least dominant person. In this study we only used the
full agreement (34431 segments) annotations.

The distribution of data according to gender, role and dom-
inance of the data used in this study is presented in Table 1.
The total number of analysed utterances is 3869. The number
of participants is 20, 14 male and 6 female.

Table 1: AMI-IDIAP meetings: distribution of analysed data
(M: male and F: female). The roles of the participants are:
Project Manager (PM), Marketing Expert (ME), User Interface
designer (Ul) and Industrial Designer (ID)

Role | leastDominant | mostDominant neutral
M F M F M F
ID 42 4 0 153 627 102
ME 28 48 34 41 436 | 101
PM 0 0 516 320 316 | 106
Ul 111 29 0 0 680 | 175
181 71 550 514 2059 | 484

2.3. Method

For each annotated segment of five minutes, we extracted all the
participants’ utterances and performed acoustic analysis with
them. Acoustic measures are extracted for each utterance at
frame and utterance level (as explained in section 3). In this
work we consider as most dominant utterances all the utterances
of the participants rated as most dominant. The same apply for
least dominant utterances. The utterances of the participants
that were not consider most or least dominant are considered
neutral in this work.

Due to the distribution of the data we decided to study the
vocal effort effects according to gender. This will not be a prob-
lem for our long term objective of synthesis since for synthesis it
is always known the gender of the rendered voice. After extract-
ing the acoustic features on the NECA and AMI-IDIAP data, an
analysis of variance is performed, to discard features that are not
significantly different among the classes. Then the main tenden-
cies on low level acoustic measures on the controlled data are
compared with the main tendencies of the same measures ex-
tracted from the AMI-IDIAP data. This gave us an idea about
the correlation of loud, soft and modal vocal effort with most,
least dominant and neutral data. Finally, in order to quantify
this correlation, a SFFS-LDA classification is performed on the
AMI-IDIAP data. Here we used combinations of prosody, voice
quality and low level acoustic features in order to find the set of
features that optimise class separability.

3. Acoustic measures

We have selected three sets of acoustic measures: (1) low
level acoustic measures are mainly related with measures that

can be used directly in speech synthesis. For example, voic-
ing strengths, Fourier magnitudes and Melcepstrum coefficients
have been used on implementations of the mixed excitation lin-
ear prediction (MELP) vocoder [10]. Other low level acoustic
measures give information about the spectrum at sub-band level
(spectral entropy) or are articulatory-based. Low level acoustic
measures are extracted at frame level, with a frame length of
25 ms. and a frame shift of 5 ms. The frame based measures
are averaged per utterance. (2) prosody features are classical
features related to pitch, energy, duration, etc. And (3) voice
quality measures used mostly in emotion research. Prosody and
voice quality measures are extracted at utterance level.

3.1. Low level acoustic measures

o Voicing strengths: are estimated with peak normalised
cross correlation of the input signal [10]. The correlation
coefficient for a delay ¢ is defined by:
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In this study one full band (str) and five bandpass voic-
ing strengths are calculated (strl-str5), that is, the input
signal is filtered into five frequency bands, with pass-
bands 0-1kHz, 1kHz-2kHz, 2kHz-4kHz, 4kHz-6kHz and
6kHz-8kHz and voicing strengths are calculated for each
filtered signal.

e Pitch harmonics magnitude: corresponds to the Fourier
magnitude of the first ten pitch harmonics of the residual
signal obtained by inverse filtering (magl-magl0) [10].
The Fourier magnitudes capture the shape of the excita-
tion pulse, so it is expected that they capture variations
in phonation types.

e Spectral features:

— Melcepstrum coefficients, 25 coefficients (mcep0-
mcep24) [11].

— Spectral entropy, this is a kind of “peakiness” of
the spectrum [12]. This value is calculated as fol-
lows : the spectrum X is converted into a proba-
bility mass function (PMF) normalising it by:

- N
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where X is the energy of the i*" frequency com-

ponent of the spectrum, x is the PMF of the spec-

trum and N is the number of points in the spec-
trum. Entropy for each frame is calculated by:
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It is expected that spectral entropy is higher for
voiced frames than for unvoiced, therefore it has
been used in speech endpoint detection and in clas-
sification of emotions. In this work spectral en-
tropy is calculated for the full band signal (spec-
entropy) and for the five frequency bands filtered
signals (spec-entropy1-spec-entropyS5).



o Articulatory-based features

— Formants: Fy, Fy, F3, Fy
— Formant bandwidths: B1, B2, B3, Bs

— Formant dispersion:

(F2— F1) + (F3 — F2) + (F4 — F3)
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3.2. Prosody acoustic measures

e Fundamental frequency or pitch (f0), extracted with
snack [13]

e Pitch entropy (calculated as the spectral entropy)
e maximum, minimum, and range of f0
e Duration of the utterance in seconds

e Voicing rate calculated as the number of voiced frames
(frames for which fO > 0) per time unit

e Energy, calculated as the short term energy > z?

3.3. Voice quality acoustic measures

The following voice quality measures were also used in the
study presented in [5]. These measures are based on the cal-
culation of the long term average spectrum (LTAS) in three
frequency bands: 0-2kHz, 2-5kHz, 5-8kHz. For each of these
bands the maximum level is selected.

o Hamm_effort = LTASs_ 5

° Hamm,breathy = (LTASp_21 - LTASs_5%) - (LTAS 5
- LTAS5_s%)

e Hamm_head = (LTAS()_Qk - LTAS5_3k)
e Hamm_coarse = (LTASg—_2x - LTAS2_51)
e Hamm_unstable = (LTAS2_55 - LTAS5_gk)

e slope_ltas: least squared line fit of LTAS in the log-
frequency domain (dB/oct)

e slope_ltaslkz: least squared line fit of LTAS above 1 kHz
in the log-frequency domain (dB/oct)

e slope_spectrumlkz: least squared line fit of spectrum
above 1 kHz (dB/oct)

4. Testing the measures on controlled data

After extracting low level acoustic features on the NECA
database an analysis of variance (one-way ANOVA) was per-
formed on the measures. All the measures were significantly
different at 0.1% level (p<0.001), except for Melcepstrum coef-
ficients 3, 9 and 10 for male data and Melcepstrum coefficients
3, 5 and 7 for female data. The LDA 10-fold cross validation
classification error for all the data (male and female) was around
3%. This showed that for this “easy” data the low level features
capture very well the vocal effort, this is also shown in Figure 1
were the first two components of a principal component analy-
sis (PCA) of low level features is presented. The separation of
clusters for female data is more clear than for male data.

In Table 2 the main tendencies of low level acoustic mea-
sures for loud and soft vocal effort in the NECA DB are sum-
marised. The arrows in this table show that, for example, the
levels of voicing strengths for both male and female data, are
increasing on loud voice and decreasing on soft voice. This
table shows clear tendencies on both male and female data for
Fourier magnitudes, voicing strengths on higher bands and Mel-
cepstrum for higher coefficients.
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Figure 1: NECA DB vocal effort discrimination using PCA of
low level features. Left: male data (51% of variance explained
by the first two PCs). Right: female data (66% of variance
explained by the first two PCs).

Table 2: NECA DB main tendencies of loud and soft vocal effort
according to low level acoustic measures. 1 indicates increas-
ing level and |} decreasing level. (The opposite tendency applies
for measures not included in this table).

Measures Male Female loud| soft
Voicing str. str2-strS str3-strS T U
Fourier mag. | magl-maglO | magl-maglO | | T
Formants F1-F4 F1-F4 3 T
Formant BW | B1,B4 B1-B4 i3 M
Spec. entropy | entropy 1,5 entropy 1-5 T (2
Melcepstrum | mcep 1, 7-24 | mcep 3, 5-24 | { U

5. Acoustic correlates of dominance

After extracting prosody, voice quality and low level acoustic
measures from the AMI-IDIAP data an analysis of variance
(one-way ANOVA) was also performed on the measures. The
following are the measures that were not significantly different
(p>0.001) in each set and therefore were not included on the
classification experiment:

e Male: F1, F3, B2, B3, spectral_entropy 1, 4, 5, mag 1, 3,
8, mecep 0, 2, 12, 14, 15, 18, 19, 20, 22, 23, 24, max_{0,
range_f0, Hamm_breathy, Hamm_coarse.

e Female:str, strl, F1, F2, F3, B1, B2, B3, spectral_entropy
1,3,5,mag2,4,6,mcep0, 3,4, 8,9, 11, 14, 19, 23.

e All: F1, F2, spectral _entropy, spectral_entropy 1, mag 2,
3,5,6,8,9,10, mcep 2, 5, 8, 9, 10, 18, Hamm_breathy.
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Figure 2: AMI-IDIAP dominance: boxplot of voicing strengths
on five frequency bands.



Comparing tendencies of significantly different measures
on the AMI-IDIAP data and tendencies of the same measures on
the NECA data (Table 2), we have found that voicing strengths
and Fourier magnitudes have the same tendencies in both data
bases. Most of these measures are also significantly different
for the three classes (most, least dominant and neutral). The ten-
dencies on Spectral entropy and Melcepstrum are not so clear.
In Figure 2 means and quartile statistics of voicing strengths for
male and female levels of dominance are presented. It is clear
from this Figure that in general (without considering str1 for fe-
male, which was found to be not significant) voicing strengths
separate quite well the two levels of dominance. The mean
value of the neutral utterances is also shown, there is no clear
tendency on neutral means in comparison with dominance.

In the following we checked how well the most dominant,
least dominant and neutral classes discriminate with different
sets of features. Table 3 shows classification results after a
SFFS-LDA classifier for all, male and female data sets. In each
case, and due to the very different distribution of the data (see
Table 1), we have randomly selected M equal number of utter-
ances for each class and performed the classification 20 times,
the averaged classification rate is presented on the table. Ad-
ditionally the LDA classification is N-fold cross validated. For
male data M=100 and N=5, for female data M=60 and N=3,
and for all the data M=200 and N=10. So every time the same
number of utterances (20) is used for validation (testing) and
the remaining data for training.

The discrimination results obtained with low level features
(mcep + voiced/frame based) are comparable to the best results
obtained for this data, in particular for male and all data. The
features that better discriminate the data were voicing strengths
and Melcepstrum.

Table 3: AMI-IDIAP dominance: SFFS-LDA classification re-
sults for three utterance classes, most and least dominant and
neutral. Voiced/frame based measures are low level acoustic
measures (except Melcepstrum) where just voiced frames are
averaged, that is frames for which f0 > 0.

Measures All | Male | Female
prosody 45.0 | 43.8 50.8
vq 419 | 442 48.9
vq + prosody 443 | 430 51.2
vq + prosody + mcep 50.5 | 56.2 61.7
vq + prosody + mag + mcep 51.8 | 56.2 51.6
voiced/frame based 472 | 50.9 52.6
mcep + voiced/frame based 57.8 | 55.1 554
prosody + voiced/frame based 49.8 | 47.7 48.4
vq + voiced/frame based 56.8 | 49.2 49.9
all features 554 | 56.1 58.1

6. Conclusions

Regarding the research questions addressed in this paper we can
conclude that: (i) based on a comparison of vocal effort in con-
trolled data and dominance in AMI-IDIAP meetings with the
same acoustic measures, we have found that there exist a corre-
lation between the tendencies of voicing strengths and Fourier
magnitude measures of loud and soft vocal effort and most and
least dominance. (ii) The discrimination of these dominance
tendencies on the AMI-IDIAP meetings was quantified with a
SFFS-LDA classifier, showing that in general the discrimination
using low level features is around 55%. The results also show

that other measures like prosody and voice quality can be also
useful to discriminate dominance, but it is clear that not all the
variability in dominance can be explained by acoustic features.
This means that other cues like visual or textual might help to
obtain a better classification as it was shown in [3, 2].

From the viewpoint of speech synthesis, the results are very
important. First of all we have shown that low level acoustic
features discriminate very well among different levels of vo-
cal effort, so the effects can be modelled and controlled at this
level. And secondly, we have probed that it is possible to detect
dominance (and maybe other social effects) in more realistic
data without the need of complex and difficult to calculate mea-
sures, like the ones used in [5]. What is clear, is that we need to
combine low level acoustic features with other cues like visual
or textual to obtain better prediction.

As future work, we will test at level of synthesis and percep-
tion, how much vocal effort can be controlled with variations on
the low level features analysed in this paper.
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