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ABSTRACT

This paper presents the classification of two types of listener lin-
guistic vocalisations that occur during spontaneous interactions in
the AMI-IDIAP meeting corpus. In a first stage, principal com-
ponent analysis (PCA) of low level acoustic measures is used to
separate salient lower and higher acoustic events. We have found
that two types of linguistic vocalisations appear very often in salient
events. Among the lower salient acoustic events 44% correspond to
backchannel vocalisations whereas among the higher salient events
32% correspond to stall vocalisations. In a second stage, once
salient acoustic events are split into high and low two Support Vec-
tor Machine (SVM) classifiers are trained with different acoustic
features to classify these two sets separately. We have got a classifi-
cation accuracy of 81% and 80% for stall and backchannel linguistic
vocalisations. The approach can be applied on the development of
SAL (sensitive artificial listener) systems or interative systems in
general.

1. INTRODUCTION

Automatic understanding and synthesis of nonverbal communica-
tion is becoming increasingly important in computing technologies
like human computer interaction (HCI), embodied conversational
agents (ECAs), Social signal processing etc. [18]. Face-to-Face
meetings or small group conversations have been extensively used
for studying this type of communication, i.e. communication that
includes nonverbal behavioural cues like facial expressions, vocali-
sations, gestures, postures, etc. [6]. Vocal nonverbal behaviour cues
accounts for how something is said not what is said and accord-
ing to Richmond et al. includes five major components: prosody,
linguistic and non-linguistic vocalisations, silences and turn-taking
patterns [15]. Examples of typical linguistic vocalisations are:
“yeah”, “uh-huh”, “hm”, to signal that the listener hears what the
speaker is talking (backchannel) and “uh”, “um”, “so”, to indicate
that the speaker is about to speak or wants to keep or cede the
floor (stalling). Non-linguistic vocalisations includes cries, laughs,
shouts, yawns, sobbing etc. typically related to strong emotional
states or tight social bounds [18].

In this work we analyse the prosody, voice quality and spec-
tral characteristics of two types of annotated non-intentional dia-
logue acts in the AMI-IDIAP meeting corpus: backchannel and
stall. Backchannel utterances are expected to be not so acousti-
cally salient because most of the time this kind of utterances are
not intended to interrupt but simply signal to the speaker listen-
ing or attention [19]. On the other hand nonverbal vocalisations
intended to grab the floor or indicate that the speaker is about to
speak might be more acoustically salient. In fact Clark et al. [5]
has reported that speakers formulate “uh” and “um” with a prosody
that makes them distinguishable from the surrounding word when
placed within intonation units [5]. Therefore we have decided to
concentrate the analysis on salient lower and higher acoustic events.
In this work, salient lower and higher acoustic events are determined
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by a principal component analysis (PCA) of low level acoustic mea-
sures extracted from voiced frames. We have found that in fact the
acoustic and perceptual characteristics of backchannel and stall vo-
calisations are quite different and not only correlated with prosody
but also with voice quality and spectral characteristics. These two
types of vocalisations appear as the more frequent in salient acous-
tic events, 44% of the lower salient events correspond to backchan-
nel utterances and 32% of the higher salient events correspond to
stall utterances. Thus once salient acoustic events are split different
sets of acoustic features are used to train two Support Vector Ma-
chine (SVM) classifiers, one for higher salient events and another
for lower salient events. We have got a classification accuracy of
81% and 80% for stall and backchannel linguistic vocalisations.

Several works have reported on the detection of cues and con-
text of backchannel responses specially to train models for predict-
ing when an interactive system should generate backchannel [17, 7].
There exist few works on the detection and classification of different
types of listener linguistic vocalisations, related work is [2], where
the prosody of backchannels in American English is analysed. The
classification of this type of vocalisations would be of special inter-
est to improve the response of interactive systems, so for example,
an interactive system can simply acknowledge and continue talk-
ing when detecting backchannel and perhaps politely give the floor
when detecting stall.

In Sections 2 and 3 the corpus and acoustic measures used in
this work are described. The detection of salient acoustic events
and their distribution among dialogue acts are explained in Section
4. Classification results for salient acoustic events and the types of
acoustic measures that better discriminate lower and higher salient
events are presented in Section 5. Conclusions and future work are
presented in Section 6.

2. CORPUS AND METHOD

The AMI Meeting Corpus is a multi-modal data set consisting of
100 hours of meeting recordings. Some of the meetings it contains
are naturally occurring, and some are elicited, particularly using a
scenario in which the participants play different roles. In this work
elicited meetings are studied. In the scenario four participants play
the roles of employees in an electronics company that decides to
develop a new type of television remote control. Each meeting is
organised in four phases (sub-meetings): (a) project kick-off, (b)
functional design, (c) conceptual design and (d) detailed design,
where the same group of four people participate [3].

This corpus contains recordings of both video and audio data,
transcriptions and several levels of annotations, for example di-
alogue acts. The transcriptions include word level segmentation
time-aligned to the recordings. The dialogue act (DA) annotations
in the AMI corpus code speaker intentions according to: acts about
the information exchange (inform, elicit-inform), acts about possi-
ble actions (suggest, offer, elicit-offer-or-suggestion), comments on
previous discussion (assess, comment-about-understanding, elicit-
assessment, elicit-comment-about-understanding), social acts (be-
positive, be-negative) and the classes other and fragment which are
bucket classes where the speaker is conveying an intention that do



not fit into any of the other classes. There is also a special class
of dialogue acts that are actually non-intentional acts: backchannel
and stall. Although these last two types of dialogue acts in the AMI
corpus do not convey a precise intention they are very important and
frequently used in spoken interaction. For example backchannel
signals understanding (whether the listener understands the utter-
ance of the speaker), attentiveness (whether the listener is attentive
to the speech of the speaker), attitude, affect etc. [14]. Some ex-
amples of backchanel utterances in the AMI corpus are: “uhhuh”,
“mm-hmm”, “yeah”, “yep”, “ok”, “ah”, “huh”, “hmm”, “mm”. Ex-
amples of stall are “uh”, “um”, “so”, these dialogue acts in the AMI
corpus are special sounds called “filled pauses”, used by people
when they start speaking before they are really ready, or keep speak-
ing when they have not figured out what to say, just to try to get or
keep the attention of the group [1].

2.1 Method

Nine meetings held at the IDIAP Research institute (IS1000-
IS1009, excluding IS1002) were selected from the AMI corpus,
corresponding to 36 speakers (26 male and 10 female). The audio
was taken from the individual headset. From these meetings just
the sections where the four participants interact or discuss actively
are selected. Acoustic analysis is performed for the utterances cor-
responding to each annotated dialogue act in these sections. All in-
tentional dialogue acts, except social dialogue acts (for which there
are very few examples), are grouped and considered in this study as
single classes. Among the non-intentional dialogue acts backchan-
nel and stall are selected, other and fragment are not considered
because they do not convey a clear intention. Table 1 presents the
total number of dialogue act utterances extracted from the meetings
and actually used in the analysis of salient events.

Intention | Dialogue Act Extr. | Used
Inform Inform 2541
Elicit-Inform 391 | 2932
Action Suggest 850
Offer 93
Elicit-Offer-Or-Suggestion 69 | 1012
Comment | Assess 1511
Comment-About-Underst. 214
Elicit-Assessment 157
Elicit-Comment-Underst. 32 | 1914
Social Be-Positive 173
Be-Negative 4 -
Backchannel 1506 | 1506
Stall 669 669
Fragment 809 -
Other 121 -
Total 9140 | 8033

Table 1: Distribution of dialogue act utterances in interactive sec-
tions of nine AMI-IDIAP meetings. Backchannel comprises 16.4%
of the total data and Stall comprises 7.3% of the total data.

For each utterance used in this work acoustic measures are ex-
tracted at frame and utterance level (as explained in section 3).
It has been reported that speakers formulate “uh” and “um” with
a prosody that makes them distinguishable from the surrounding
word when placed within intonation units [5], also it has been shown
that energy and fO are good indicators of “hot spots” or regions
in which participants are highly involved in the discussion [20].
Therefore in this work the first analysis intended to detect salient
vocal acoustic moments is concentrated on voiced frames, which
convey most of the energy in speech. Principal component analysis
of several low level measures is performed in order to find features
that contribute the most to the variance and determine a threshold
for salient higher and lower events. Thus salient higher and lower
acoustic events are defined as all the dialogue acts whose first prin-

cipal component value goes above and below a threshold that de-
pends on a factor k, empirically designed, and the quartile statistics
of PC1:

Eventlow<(K*Q1)<Q2<(K*Q3)<Eventhigh (D
where: Kk : factor empirically designed
0 : first quartile of PC1
0> : second quartile of PC1 = median(PC1)
Q3 : third quartile of PC1

Salient lower and higher points selected in this way are then used
to train two SVM classifiers with which to classify both sets of data
according to backchannel, stall or other dialogue acts.

3. ACOUSTIC MEASURES

The following acoustic measures have been extracted from all dia-
logue act utterances. Low level acoustic measures are extracted at
frame level, frame length 25 ms. and frame shift 5 ms. The frame
based measures are averaged per utterance. Prosody and voice qual-
ity measures are extracted at utterance level.

3.1 Low level acoustic measures

o Voicing strengths: [4, 11] are estimated with peak normalised
cross correlation of the input signal. The correlation coefficient
for a delay ¢ is defined by:

N—1
Z s(n)s(n+1)
o= ——=2 )
N—1 N—1
Zosz(n) Y s*(n+1)

n=0

In this study one full band and five bandpass voicing strengths
are calculated, that is, the input signal is filtered into five fre-
quency bands, with pass-bands 0-1kHz, 1kHz-2kHz, 2kHz-
4kHz, 4kHz-6kHz and 6kHz-8kHz and voicing strengths are
calculated for each filtered signal.

e Pitch harmonics magnitude: [4, 11] corresponds to the Fourier
magnitude of the first ten pitch harmonics of the residual signal
obtained by inverse filtering. The Fourier magnitudes capture
the shape of the excitation pulse, so it is expected that they cap-
ture variations in phonation types.

e Spectral features:

— Mel-cepstral coefficients [9].

— Spectral entropy, this is a kind of “peakiness” of the spec-
trum. This value is calculated as follows [12]: the spectrum
X is converted into a Probability mass function (PMF) nor-
malising it by:

Xi

Xi= —v—
ngzlxi

i=1 to N 3

where X; is the energy of the i/ frequency component of
the spectrum, x is the PMF of the spectrum and N is the
number of points in the spectrum. Entropy for each frame is
calculated by:

H(x)=— Z xi *logox; 4)
xeX

It is expected that spectral entropy is higher for voiced
frames than for unvoiced, therefore it has been used in
speech endpoint detection and in classification of emotions.
In this work spectral entropy is calculated for the full band
signal and for the five frequency bands filtered signals.
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Figure 1: First principal component (PC1) Vs Time for voiced frames of meeting IS1003, phase d. The roles of the participants are: Project
Manager (PM), Marketing Expert (ME), User Interface designer (UI) and Industrial Designer (ID)

e Articulatory-based features
— Formants: F,Fp,F3,Fy
— Formant bandwidths: By,B,,B3,B4
— Formant dispersion: calculated as:
(F2—F1)+(F3—F2)+(F4—F3)

FD = 3 Q)

3.2 Prosody acoustic measures

Fundamental frequency or pitch (f0)

Pitch entropy (calculated as the spectral entropy)

maximum, minimum, and range of fO

Duration of the utterance in seconds

Voicing rate calculated as the number of voiced frames per time
unit

e Energy, calculated as the short term energy ¥ x2

3.3 Voice quality acoustic measures

The following voice quality measures were originally developed by
[8] and have been also used in emotion research by [16] and [13].
These measures are based on the calculation of the long term aver-
age spectrum (LTAS) in three bands of frequency: LTAS between
0-2kHz (LTAS(_7%), LTAS between 2-5kHz (LTAS;_s;) and LTAS
between 5-8kHz (LTASs_g;). For each of these bands the maxi-
mum level is selected.

e Hamm_effort = LTAS,_5;

[ ] Hamm_breathy = (LTASO,Zk - LTA82,5]() - (LTA82,5]( -

LTASs_gr)

e Hamm_head = (LTASO,Z/{ - LTASS,gk)

e Hamm_coarse = (LTAS(y_o; - LTAS, _s;)

e Hamm_unstable = (LTA82,5]( - LTASS,gk)
LTAS defined as:

L
LTAS45(f) = 10Logiol Y PSDi(/)] ©)
i=1

where PSD;(f) is the power spectral density of the i-th windowed
frame of the signal.
Other voice quality measures used in this study are:
e slope_ltas: least squared line fit of LTAS in the log-frequency
domain (dB/oct)
e slope_ltaslkz: least squared line fit of LTAS above 1 kHz in the
log-frequency domain (dB/oct)
e slope_spectrumlkz: least squared line fit of spectrum above 1
kHz (dB/oct)

4. SALIENT ACOUSTIC EVENTS DETECTION

A first PCA was performed to find the low level acoustic features
that contribute the most to the variance, this is determined by the

1S1003d-voiced-1000-1200
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1100 1120 1140 1160 1180
Time
Role| StartT | EndT | DialogueAct PC1 Transcription
Ul 1085.2| 1089.6| Assess -1.8 Okay.
Ul 1109.7| 1109.9 Backchannel -1.6 | Mm.
Ul 1111.3] 1111.5| Backchannel -0.6 | Okay.
Ul 1133.9] 1134.3| Backchannel -4.0 | Mm-hmm.
Ul 1136.2| 1136.5| Backchannel -9.6 | Mm-hmm .
PM | 1136.4| 1141.1| Suggest -0.3 | And if not if it’s not the
case y you would have ...
Ul 1140.6| 1140.7| Backchannel -1.1 Yeah.
PM | 1172.0] 1175.4| Elicit-Inform 2.0 | Do you think one would
be enough, or such as
PM | 1176.7 1178.4| Suggest 2.9 | asnumber of branches?
PM | 1178.4| 1181.3| Elicit-Assess. 1.8 | Three?
PM | 1181.3| 1182.4| Stall 6.8 | So,
PM | 1182.4| 1183.1| Elicit-Off-Sugg. -0.0 | electronic.
PM | 1185.1| 1186.9| Elicit-Assess. 1.9 | Single simple chip on
print?

Figure 2: First principal component (PC1) points and corresponding
transcriptions in segment 1000-1200 seconds of meeting 1S1003d:
the transcription corresponding to the lower Ul point and the higher
PM point are indicated in bold.

strongest positive and negative loadings of the first principal com-
ponent. Among the strongest positive loaded features are the five
sub-band voicing strengths and among the strongest negative loaded
are the five sub-band spectral entropy features. The 23 more loaded
features were selected to perform the PCA with which the data is
split, these features account for 29% of the variance on the first
principal component.

4.1 Temporal analysis

After performing a principal component analysis with the features
that more contribute to the variance, the distribution of the first prin-
cipal component points over time for the four participants in the
meetings can be analysed. Figure 1 shows a plotting of the first
principal component versus time for the phase “d” of the IS1003
meeting. As can be observed most of the points appear in the midle
(approx. —5 < PC1 < 5), but there are also clear points that appear
as salient lower (PC1 < —5) or higher (PC1 > 5). As an example,
let us consider the transcriptions corresponding to the same phase
“d” of the meeting IS1003 between the times 1000 and 1200 sec-



onds, Figure 2. The lower PC1 point with value -9.6 at time 1136.2
seconds corresponds to a backchannel utterance “Mm-hmm”; the
higher PC1 point with value 6.8 at time 1181.3 corresponds to a
stall utterance “So”.

4.2 Salient events distribution

Figure 3 shows the percentage distribution of salient higher and
lower events in the AMI-IDIAP meetings. It has been found empiri-
cally that with K = 2 there exist a tendency of two types of dialogue
acts to appear as the more frequent in salient acoustic events: 44%
of the lower salient events correspond to backchannel utterances
and 32% of the higher salient events correspond to stall utterances.
A more detailed distribution of salient events for the other dialogue
act groups is presented in Table 2.

voiced points < k*1st Quartile voiced points > k*3rd Quartile

Backchannel 50.7%, Comment 19%

Backchannel 6.8%

Action 9.5%
Inform 27.6%

Inform 13.9%

Comment 23.6% Stall 37.1%

Figure 3: Distribution of lower and higher salient PC1 points corre-
sponding to 17.8% of the total data, split with x = 2.

Dialogue Act Higher salient | Lower salient | Total
Inform 145 128 273
Action 50 44 94
Comment 100 217 317
Backchannel 36 465 501
Stall 195 64 259
Total 526 918 | 1444
% Total data 6.5 11.4 17.9

Table 2: Distribution of higher and lower salient acoustic vocal
events in the AMI-IDIAP meetings, split with K = 2.

4.3 Main acoustic features of salient events

PCA of the two sets of salient acoustic events was performed to
determine which features discriminate better each set. The more
loaded features for each set are presented in Table 3, including for
comparison some prosody features (dur_seconds, fO and energy) for
which the loadings were very low. It is interesting to notice that
prosody features are not so important, as discriminator features, for
both sets, specially for lower salient events. Voice quality features in
combination with spectral features seem to be the more discriminant
features in both sets, specially for lower salient events. This might
be expected since backchannel responses like “Mm”, “Mm-hmm”
are mostly unvoiced speech.

5. SALIENT ACOUSTIC EVENTS CLASSIFICATION

As it has been shown the acoustic characteristics of backchannel
and stall dialogue acts in the AMI-IDIAP corpus are quite different
at level of voiced frames. In this section classification of these two
types of vocalisations is performed using prosody, voice quality and
spectral features where the best combination of features is investi-
gated. Three dialogue act categories are considered: backchannel,
stall and other; here the other class includes all the intentional dia-
logue act groups except social (see Table 1). The classification of
these three categories is performed in two stages. In a first classifi-
cation stage the data is split into higher and lower acoustic events as

PC1 Higher salient PC1 Lower salient
Feature loading || Feature loading
slope_ltas1lkz 0.29 || slope_ltas 0.22
slope_spectrumlkz 0.28 || mcepl? 0.22
slope_ltas 0.28 || mcepl9 0.21
Hamm_breathy 0.24 || mcepl5 0.20
mcep2 0.20 || mcep20 0.20
mcep/ 0.19 || mcepl8 0.19
dur_seconds 0.12 || dur_seconds 0.18
fO 0.10 || energy 0.01
energy 0.07 || fO 0.0002
voicing_rate -0.16 || voicing_rate -0.22
mcepl -0.23 || Hamm_coarse -0.23
Hamm_head -0.26 || mcepl -0.25
Hamm_unstable -0.28 || Hamm_head -0.27

Table 3: First principal component loadings for PCA of higher and
lower salient events sets, split with kK = 2.

presented in section 4. In a second stage, higher and lower events
are classified separately using two SVM classifiers trained with dif-
ferent feature sets. In the higher events classifier stall and other dia-
logue acts are classified and in the lower events classifier backchan-
nel and other dialogue acts are classified.

This approach is motivated by the finding that the two types
of vocalisations are the most frequently higher or lower acoustic
events (kK = 2) on the studied meetings and also by the investiga-
tions of [10] where several stages of classification, with different
features in each stage, have been shown to perform better in dis-
criminating emotions. Of course the classification of the first stage
introduce errors because not all the backchannel dialogue acts are
in the lower salient events set and those that appear in the higher
events set will be miss-classified. The same is the case for stall dia-
logue acts, but it is expected that in an application, for example, the
miss-classification of these not so salient events in each class can
be ignored as long as the more salient events are better detected and
classified.

We have split the data as higher and lower acoustic events with
different values of k. The classification results presented in Table 4
corresponds to a K = 0, that is, the median of PC1 is used to split
the data. The table shows classification results for three SVM clas-
sifiers:ALL, HIGH and LOW trained with different feature sets. ALL
classifies all the data as backchanel, stall or other; HIGH classifies
the salient higher acoustic events as stall or other; LOW classifies the
salient lower acoustic events as backchannel or other. In each case
20 trials of classification leaving-one-speaker-out cross validation
with 200 randomly selected samples for each class are performed.
The average classification after 20 trials is shown.

Features % Avg. accuracy
Type No. || ALL HIGH | LOW
prosody 9 639 || 76.3 | 75.7
vq 11 57.8 || 724 | 739
vg+prosody 20 64.9 || 78.7 | 77.6
vg-+prosody+spectral 55 66.7 || 79.9 | 79.0
more discriminant features 23 61.0 (| 79.0 | 70.4
PCA all features 14 66.3 81.2 | 76.7

Table 4: Classification accuracy of all dialogue acts and lower and
higher salient events according to: Backchannel, Other and Stall.
Data split with k = 0 i.e. the median of PC1 is used to split the
data.

The classification results show that the average classification of
all the data without separation of salient events gives lower results
(67.1%) than classifying the two sets separately (without taking into
account the miss-classification introduced by the initial splitting of



ALL HIGH LOW
Back.| Other| Stall Other| Stall Back.| Other
Back.| 72.6 | 13.6 | 19.1 - - 80.7 | 22.7
Other| 9.7 66.6 | 19.9 78.3 | 18.6 19.3 | 77.3
Stall | 17.5 | 19.7 | 60.9 21.7 | 81.5 - -

Table 5: Confusion matrix for best classification results in Table 4
using vg+prosody+spectral features. Data split with k¥ = 0 i.e. the
median of PC1 is used to split the data.

the data). The best discrimination for higher and lower events is ob-
tained when prosody, voice quality and spectral features are used. In
this case the classification accuracy of each class is: 81.5% for stall
utterances and 80% for backchannel utterances (see more detailed
results in Table 5). The more discriminant features used to split the
data into two sets, give a good average classification result for HIGH
but not so good for LOW. In this last case the addition of spectral
features produce a better classification result. It has been observed
that the best results can be obtained by using the first 14 principal
components of a PCA performed with all the features. This makes
a significant reduction on the number of features used. The clas-
sification results for the classifiers HIGH and LOW were repeated
with k¥ = 1 and k¥ = 2, that is, with a reduced number of salient
events. The classification results shown similar tendencies, so in an
application the level of precision with which salient vocalisations
are “attended” can be controlled by a particular value of .

6. CONCLUSIONS

In this study, we have presented a novel approach for detection and
classification of two types of linguistic vocalisations that occur dur-
ing spontaneous interactions in meetings. The approach is based on
first detecting salient acoustic events using PCA of low level acous-
tic features extracted from voiced frames, and then classifying sep-
arately higher and lower acoustic events with two SVM classifiers
trained with prosody, voice quality and spectral acoustic features.
We have obtained an average classification of 80% for higher events
and 79% for lower events.

The approach is motivated by the finding that the two types of
vocalisations are the most frequently higher or lower acoustic events
on the studied meetings and also by investigations that demonstrate
that discrimination and classification of emotions (which can be
considered salient acoustic events) is better performed when using
several classification stages, being the first one binary classification
according to two activation levels: high and low [10].

The first stage classification introduce errors because a few per-
centage of vocalisations will be miss-classified on the first split-
ting of the data, but it is expected that in an application the miss-
classification of these not so salient events in each class can be
ignored as long as the more salient events are better detected and
classified. The initial splitting of the data has been tested using
various thresholds x = 0, 1,2, giving similar results for the classi-
fication of salient higher and lower events. This property can be
useful in an application where it would be interesting to control the
level with which salient vocalisations are “attended”, for example
in a sensitive artificial listener (SAL) system. As future work, the
generalisation of the approach will be tested in other meeting cor-
pus and the possible co-occurrence of salient acoustic events with
other nonverbal behaviour cues like gestures will be investigated.
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