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Abstract
Classification of citations into categories
such as use, refutation, comparison etc.
may have several relevant applications for
digital libraries such as paper browsing
aids, reading recommendations, qualified
citation indexing, or fine-grained impact
factor calculation. Most citation classifi-
cation approaches described so far heavily
rely on rule systems and patterns tailored
to specific science domains. We focus on a
less manual approach by learning domain-
insensitive features from textual, physical,
and syntactic aspects. Our experiments
show the effectiveness of this feature set
with various machine learning algorithms
on datasets of different sizes. Further-
more, we build an ensemble-style self-
training classification model and get bet-
ter classification performance using only
few training data, which largely reduces
the manual annotation work in this task.

1 Introduction

Still in the current age of Semantic Web, struc-
tured repositories, ontologies and huge databases,
scientific knowledge is preserved and transported
in rather unstructured pieces of information, vulgo
scientific papers or other similar, textual represen-
tations. Except bibliographical metadata, (manu-
ally) assigned keywords or coarse-grained classi-
fications, there is no further, general method to un-
lock the written treasures without tedious reading,
while full-text search is generally considered too
imprecise and may be misleading.

Citations, spread over scientific text, are impor-
tant anchors that help to structure the broad pub-
lication space. They are of invaluable importance
to beginners in a scientific field as they ultimately
point to seminal, original work and knowledge
not explicitly available or repeated in every pub-
lication. Citations are also the primary discourse
links in scientific discussion which typically span

over years or even decades. Furthermore, citations
are helpful to understand and reproduce findings.
Thus, they form a predominant text feature for ev-
ery reader. Wan et al. (2009), e.g., present a study
on user needs for browsing scientific publications
and show that citations play an important role,
Schäfer and Kasterka (2010) suggest a novel user
interface for navigating in typed citation graphs.

Garfield (1965) is probably the first to discuss
an automatic computation of a citation classifica-
tion. Many studies on citation classification are
generally derived from the four-dimensional cita-
tion schema proposed by Moravcsik and Muruge-
san (1975). They distinguish between confirma-
tive vs. negational; conceptual (theory) vs. op-
erational (method); evolutionary (build on cited
work) vs. juxtapositional (alternative to cited
work); and organic (necessary to understand, re-
produce) vs. perfunctory (citation out of polite-
ness, policy, piety). The number of different pro-
posed classes (also called citation functions) varies
from 3 to 35 (Garfield, 1965; Garzone, 1996; Mer-
cer and DiMarco, 2004; Teufel et al., 2006; Har-
wood, 2009). Most approaches try to identify
more detailed dimensions and mutually exclusive
classes by making use of many different features,
such as the location of the citation sentence1, sur-
rounding POS tags, and the Boolean information
indicating self-citation. In (Teufel et al., 2006),
POS tags were employed to find grammatical sub-
jects and further classified as specific agent types,
while Mercer and DiMarco (2004) proved the ef-
ficiency of rhetoric cues in citation classification.
Both studies suggest the potential capability of
syntactic features in classifying citations.

Differently from previous work that mainly fo-
cuses on cue words and depends on large training
sets, our work has the following contributions:

1. Small but comprehensive feature set: we only
use a small set of features to describe a cita-

1We call the exact single sentence which contains the ci-
tation the citation sentence. There may be several citation
sentences for each reference listed at the end of a paper.
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tion sentence. It covers textual, physical and
syntactic aspects and is domain-independent,
which could help to make the adaptation to
different science domains minimal.

2. Robust supervised classification model: we
compare the performance of different ma-
chine learning algorithms with various sizes
of training data. The results show the robust-
ness of the classifiers on our feature set even
with a small training set.

3. Ensemble-style self-training classification
model: we design a semi-supervised learn-
ing algorithm to make use of unlabeled data.
Differently from standard self-training algo-
rithms, we use an ensemble learning model
to choose more reliable new labeled data and
achieve good performance. This approach
helps to reduce the manual annotation effort.

The paper is structured as follows. We describe
our corpus and annotation schema in Section 2,
the definition of features will be elaborated in Sec-
tion 3. We explain the classification experiments
in Section 4 and finally conclude in Section 5.

2 Corpus and Annotation

2.1 Definition of Citation Functions

In this paper, we focus on the dimension of “or-
ganic or perfunctory” citations in Moravcsik and
Murugesan (1975)’s schema and divide the cita-
tions into the following four general categories:
• Background (class0): citations which de-

scribe background of the main topic on the
whole, or provide recent studies and state-of-
the-art approaches in a general way.
• Fundamental idea (class1): citations about

main previous work which inspired or gave
specific hints on the current work.
• Technical basis (class2): citations of impor-

tant tools, methods, data and other resources
used or adapted in the current work.
• Comparison (class3): citations comparing

methods or results with the current work.
We build these citation categories mainly due

to the following reasons. First of all, these cate-
gories cover the most general and mutually exclu-
sive citation functions. One could easily sketch
a picture of a typical, arbitrary scientific publi-
cation based on citations from these categories.
Secondly, rhetorical and syntactic characteristics
are comparatively obvious in terms of functions
in this basic level. Thus, our strategy might be

valuable for the construction of further detailed
automatic citation classification models with more
fine-grained categories.

2.2 Corpus
Our corpus comes from the ACL (Association for
Computational Linguistics) Anthology2 (Bird et
al., 2008), a comprehensive collection of scien-
tific conference and workshop papers in the area
of computational linguistics and language technol-
ogy. We randomly chose papers from proceedings
of the ACL conference in 2007 and 2008. Detailed
information on our corpus is provided in Table 1.
Corpus pre-processing and the annotation schema
will be elaborated in the next subsections.

2.3 Corpus Pre-processing
For each paper in the corpus, we extract cita-
tion and reference information from the original
PDF file by employing the citation parsing tool
ParsCit (Councill et al., 2008). The citation text
(a text snippet surrounding a citation) delivered by
ParsCit is usually not sensitive to paragraph and
sentence boundaries and may contain noise such
as page number and footnotes. Therefore, we de-
signed a text parser to get better citation sentences
and related information by the following steps:

1. From the HTML output of a commercial
PDF-to-text extraction tool, we generate a
well-organized file with explicit paragraph
and sentence boundaries.

2. We extract the titles of each section and
its corresponding subsections, and map
them into one of six predefined section
categories3: Introduction, Related work,
Method, Experiment, Evaluation, and Con-
clusion. We assign each sentence in the paper
its corresponding section category.

3. We extract the corresponding correct citation
sentence for a given reference based on its ci-
tation marker (denoted by authors and pub-
lishing year) and citation text from ParsCit.

2.4 Annotation Schema
Two annotators annotated the papers indepen-
dently following our guidelines. The annotators
not only focused on each citation sentence sepa-
rately, but also read the paragraph and the whole
section where the sentence is located, then made

2http://aclweb.org/anthology
3We associate section categories by means of synonyms

which usually occur in the corresponding section titles.
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ACL paper ID # of distinct citation function distribution remarkscitation sentences (class0 : class1 : class2 : class3)
P08-1009 ∼ P08-1050 731 485 : 160 : 52 : 34 long-paper set1
P07-1001 ∼ P07-1050 784 492 : 196 : 67 : 29 long-paper set2
P08-2001 ∼ P08-2030 253 173 : 65 : 8 : 7 short-paper set

Table 1: Annotated corpus

a decision on the function of the citation over the
whole paper, trying to be in the same perspective
as the authors. The inter-annotator agreement be-
tween these two annotators is 0.757 measured by
Cohen’s kappa coefficient (Cohen, 1960), with pa-
rameter n = 4, N = 1768, and k = 2. This is quite
high given the fact that a kappa value of 0.69 is
considered as marginally stable, and 0.8 is consid-
ered as stable (Teufel et al., 2006).

3 Feature Set Construction

In this work, we consider the features of each cita-
tion sentence in three views: textual, physical and
syntactic.

3.1 Textual Features

From the perspective of natural language process-
ing, without any external information, the words in
a citation sentence provide the textual distinction
in classification. That’s the reason why most of the
previous work on citation classification is domi-
nated by cue words. We also extract cue words
representing certain citation functions, which are
listed in Table 2.

From the table, one can observe that firstly only
a few cue words exist in each group. Secondly,
most cue words in the same group are synonyms.
Thirdly, these cue words are domain-independent.
We define subjectcue to indicate if the agent of the
action described in the given citation sentence is
related to the current work. It plays an impor-
tant role in improving the distinguishing capabil-
ity of other cue words. Besides, as mentioned be-
fore, DiMarco et al. (2006) showed the frequency
of hedging cues in citation contexts and their im-
portance in citation classification. We also ob-
serve that some hedging words listed in hedgecue

and suggestcue occur more often in the class Back-
ground compared to other classes.

The textual features we defined are as follows:
• a Boolean feature for each group in Table 2,

which indicates the existence of any cue word
from the group in the citation sentence.
• a numerical weight for each group in Table 2,

denoting the number of cue words from the
group occurring in the citation sentence.

• a Boolean feature and corresponding weight
feature for subjectcue in neighbor sentences4.
Normally, the more frequently subjectcue oc-
curs in consecutive sentences, the more likely
the corresponding citation sentence is related
to the current work.

3.2 Physical Features

As observed by other researchers on this topic, e.g.
Teufel et al. (2006), the sentence location is an im-
portant feature, since it might be the most reliable
information on citation function one could obtain
from the paper directly. Specifically, we take the
following physical features into account to distin-
guish between different citation functions:
• Location: section category, belonging to one

of the predefined six categories described in
Section 2.3.
• Popularity: number of references cited in the

same sentence.
• Density: number of different references in the

citation sentence and its neighbor sentences.
• AvgDens: average of Density among neigh-

bor sentences surrounding the citation sen-
tence.

3.3 Syntactic Features

During annotation, we found that the sentence
structure of citation sentences varies according to
their function. For example, citation sentences de-
scribing background of work are usually in active
voice, while basic methods or tools used in the pa-
pers are in most cases introduced in passive voice.
When the authors review some previous work in a
general way, they tend to use present perfect tense,
while using simple present tense to elaborate on
their own work. These syntactic and writing styles
can be extracted based on the POS sequences of
citation sentences. In our work, the POS tags are
generated by TreeTagger (Schmid, 1994), trained
on the Penn Treebank (Marcus et al., 1994).

The typical syntactic patterns we defined are
listed as follows. All examples are extracted from
papers in our corpus, and the source paper id (ACL

4We define neighbor sentences as the sentences right be-
fore and after the given citation sentence.
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Function Group Cue words
subjectcue we, our, us, table, figure, paper, algorithm, here

Background

quantitycue many, some, most, several, number of, numerous, variety, range of
frequencycue usually, often, common(ly), typical(ly), traditional(ly)
tensecue recent(ly), prior, previous, early
examplecue such as, for example, for instance, e.g.

(class0) suggestcue may, might, could, would, will, can, should
hedgecue suppose, conjecture, want, possible

Fundamental ideacue following, similar to, motivate, inspired, idea, spiritidea (class1)
Technical basis basiscue

provided by, taken from, extracted from, based on,
(class2) use, run, apply, extend, measure, evaluate, modify, extract

Comparison comparecue
compare, differ, deviate, contrast, exceed, outperform,
opposed, consistent with, significant

(class3) resultcue result, accuracy, precision, performance, baseline

Table 2: Group of cue words corresponding to citation functions

ID) is denoted in square brackets following each
example sentence. We also mark the text corre-
sponding to each specific syntactic structure by
underlines. For the POS sequence of each citation
sentence, we delete the citation marker in paren-
theses for convenience.

1. “.*\\(\\) VV[DPZN].*”: Fox () showed
that cohesion is held in the vast majority of
cases for English-French [P08-1009]

2. “.*(VHP|VHZ) VV.*”: while Cherry and
Lin () have shown it to be a strong feature for
word alignment [P08-1009]

3. “.*VH(D|G|N|P|Z) (RB )*VBN.*”: In-
ducing features for taggers by clustering
has been tried by several researchers ().
[P08-1048]

4. “.*MD (RB )*VB(RB )* VVN.*”: For ex-
ample, the likelihood of those generative pro-
cedures can be accumulated to get the likeli-
hood of the phrase pair (). [P08-1010]

5. “[∧IW.]*VB(D|P|Z) (RB )*VV[ND].*”:
Our experimental set-up is modeled af-
ter the human evaluation presented in ().
[P08-1009]

6. “(RB )*PP (RB )*V.*”: We use Conditional
Random Fields (CRFs) () to perform this tag-
ging. [P08-1047]

7. “.*VVG (NP )*(CC )*(NP ).*”: Following
(), we provide the annotators with only short
sentences: those with source sentences be-
tween 10 and 25 tokens long. [P08-1009]

Figure 1 illustrates the distribution of these pat-
terns in different classes (we consider class1 and
class2 together, denoted as class1+2) in long-
paper set1 and short-paper set (long-paper set2 is
used separately for further validating the feature
sets). Among these syntactic patterns, the figures
showed that the distribution of these patterns in the
set of short papers and the set of long papers are

consistent, i.e., the first 4 patterns are representa-
tive for class Background, while the other 3 pat-
terns are typical for the other 3 classes.
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Figure 1: Distribution of syntactic patterns
We define a Boolean feature for each syntac-

tic pattern indicating whether the pattern matches
the POS sequence of the citation sentence. Com-
bined with the cue words defined in Table 2, espe-
cially with subjectcue and typical verbs in class1 to
class3, the contribution of these patterns to overall
performance increases significantly.

Thus, our final feature set is the collection of
these textual, physical and syntactic features.

4 Citation Classification

4.1 Effectiveness of Syntactic Features

First of all, we build a set of experiments to
test the effectiveness of syntactic features in ci-
tation classification. We compare the classifica-
tion performance of our feature set with and with-
out syntactic features on different machine learn-
ing algorithms, and with various training-testing
ratios. We employ the meta class AttributeSe-
lectedClassifier in Weka (Hall et al., 2009), and
set ChiSquaredAttributeEval and Ranker (thresh-
old 0) as evaluator and search method for attribute
selection. The following 5 machine learning al-
gorithms provided in Weka are employed as ba-
sic classifiers: BayesNet, NaiveBayes, SMO (Poly-
Kernel is chosen as support vector kernel), J48 and
RandomForest.
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We randomly split our whole corpus (includ-
ing long-paper set2) into training dataset and test
dataset with training instance ratios of 80%, 60%,
20% and 10%, respectively. For each of these
four training-testing ratio configurations, we use
20 different random seeds to generate 20 different
datasets. With each dataset, we measure the test-
ing result by Macro-F (the mean of the F-measures
of all classes), following Teufel et al. (2006). Then
the final performance is measured by the average
Macro-F of these 20 experiments with the same
training-testing ratio configuration.
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Figure 2: Performance of feature sets with and
without syntactic features

Figure 2 illustrates the performance of feature
sets with and without syntactic features on differ-
ent sizes of training data. Syn80 and NonSyn80
denote feature sets with and without syntactic fea-
tures when the ratio of training data is 80% re-
spectively, analogously for other training data ra-
tios. We can see that the feature sets with syntactic
features can always beat the ones without syntac-
tic features for all the datasets with different sizes
of training data, independently of the classification
model used. Besides, for all these datasets in dif-
ferent configurations, BayesNet and NaiveBayes
are not very sensitive to the size of the training
data. That is, these two supervised classification
models can well learn our feature sets and make
a good classification performance with only few
training data (training ratio as 10% here, about 170
instances). It proves the effectiveness of our fea-
ture set to some extent.

4.2 Ensemble-style Self-training for Citation
Classification

As in many other natural language processing
tasks, large training datasets need to be annotated
manually in order to improve the performance of
citation classification. That is, a good annota-
tion schema and abundant annotated training data
are the basis for building a good automatic ci-
tation classification model. Because annotation
is time-consuming, we design a semi-supervised

learning algorithm to make use of unlabeled data
under small training datasets in citation classifi-
cation. Specifically, we adopt the idea of self-
training (Zhu and Goldberg, 2009) to employ un-
labeled data, but select new labeled data in the pro-
cess of self-training in a more reliable way by tak-
ing advantage of the ensemble learning (Opitz and
Maclin, 1999) algorithm.

4.2.1 Basic Self-training Algorithm
As a typical algorithm in semi-supervised learn-
ing, the self-training algorithm tries to extend the
training dataset by changing some unlabeled data
to labeled data with its own current predicted la-
bels. We describe the basic self-training pro-
cess in detail in Algorithm 15. There are two
main approaches to select the unlabeled data: one
is to select the instances with highest predictive
confidence (prob-selfTrain), which is the origi-
nal approach; the other is to randomly select
some instances from unlabeled dataset (random-
selfTrain), which has been shown to be effective in
some applications. As shown in line 6 and line 7,
we implement these two approaches in parallel.
Three different basic classifiers are used in this al-
gorithm. From the main procedure of this algo-
rithm, one can see that each classifier maintains
its own labeled and unlabeled datasets in each it-
eration independently. This algorithm is set to be
our baseline algorithm.

4.2.2 Ensemble-style Self-training Algorithm
Every supervised learning algorithm tries to
search for the best hypothesis through a hypoth-
esis space, therefore makes good predictions with
a particular problem, i.e, based on given training
data. Taking advantage of this property, ensemble
learning tries to improve the prediction accuracy
by combining different supervised learning algo-
rithms. In self-training, each prediction process
is actually supervised learning, therefore the qual-
ity of the training data is very important. Further-
more, self-training is based on the assumption that
one’s own high confidence predictions are correct,
i.e. the final results could be worse if the model
repeatedly learns from its own previous wrong
decisions. To avoid such a situation, we devise
an ensemble-style self-training algorithm by using
ensemble learning to choose reliable new labeled

5Set {a,b,c,d} denotes the number of instances in class0,
class1, class2 and class3 as a, b, c, d, respectively. Analo-
gously for set {m,n, p,q} for indicating the number of added
instances in each iteration.
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Algorithm 1 Baseline: basic self-training algorithm
Require:

Whole dataset D ; training set ratio α ; Basic classifiers Base1, Base2, Base3;
Iteration times K; Initial number of labeled instances {a,b,c,d};
Number of instances added to labeled dataset in each loop: {m,n, p,q};

Pre-process:
Training dataset Train with number of instances |D| ∗α; Test dataset Test with instances {D}−{Train};
Labeled dataset L with initial number of instances {a,b,c,d} randomly selected from Train;
Unlabeled dataset U with instances {Train}−{L};
Labeled dataset L1 = L, L2=L and L3=L; Unlabeled dataset U1 = U , U2=U and U3=U ;

Procedure:
1: for k = 0 to K do
2: for each classifier Basei (i = 1,2,3) do
3: Use Li to train classifiers Basei
4: Obtain the test results on Test by classifier Basei
5: Make prediction for each instance in Ui by classifier Basei
6: a. prob-selfTrain: Select {m,n, p,q} instances which have highest prediction confidence from U , denoted as Li−add
7: b. random-selfTrain: Randomly select {m,n, p,q} instances from U , denoted as Li−add
8: Li = Li + Li−add ; Ui = Ui - Li−add
9: end for

10: end for

Algorithm 2 Ensemble-style self-training algorithm
Require: configuration of Train, Test, L, U , and value of parameters {a,b,c,d}, {m,n, p,q}, K as well as basic classifiers

Base1, Base2, Base3 are the same as those in Algorithm 1;
Procedure:
1: for k = 0 to K do
2: Use L to train classifiers Base1, Base2, Base3, respectively
3: Obtain the test results on Test by classifier Base1, Base2, Base3 respectively
4: Obtain the test results on Test by ensemble model Ensemble, consist of Base1, Base2 and Base3
5: Make prediction for each instance in U by Ensemble
6: Randomly select {m,n, p,q} instances from U , denoted as Ladd
7: L = L + Ladd ; U = U - Ladd
8: end for

data in each iteration. The detailed procedure is
displayed in Algorithm 2. Here, the datasets and
parameters are set to be the same as those in Al-
gorithm 1, in order to compare the performance
of both algorithms. In this ensemble-style self-
training algorithm, one can see that all the ba-
sic classifiers and ensemble model Ensemble share
the same labeled dataset L and unlabeled dataset
U , which is maintained by Ensemble via choosing
new labeled data in ensemble way (line 5 and 6).

4.2.3 Ensemble Learning
Normally, there are two main combination rules
in ensemble learning to make the final prediction
for a given instance. One is probability-based,
that is, choosing the decision of the basic classi-
fier which produces the highest prediction confi-
dence for the instance. Another is to use majority
voting. In our experiments, we choose BayesNet,
SMO and NaiveBayes as the basic classifiers in
our ensemble model and adopt the majority voting
combination rule, due to the following reasons:
1) these three models have better overall perfor-
mance according to Figure 2; 2) Usually, the more
diverse the member algorithms, the more effective
their ensemble model can be (Rokach, 2010). The

classification mechanisms of BayesNet and SMO
are totally different, which can ensure the perfor-
mance of the ensemble model to some extent; 3)
it is impossible to use probability-based combi-
nation rules due to the uninterpretable prediction
probability in SMO. Thus, using a classifier with
good overall performance such as NaiveBayes in
majority vote could ensure the accuracy of ensem-
ble learning to a certain degree.

4.2.4 The Class Imbalance Problem
From previous research on citation classification,
independently of how many different functions
were defined, one can observe that the dataset is
class-imbalanced. For example, in a sentiment-
oriented classification schema, negative citations
are much less frequent than positive citations.
Conversely, a high volume of citations actually is
used to describe the background. Thus, class im-
balance is actually a key issue in automatic cita-
tion classification. Previous research often ignored
this fact, possibly because pattern-driven or rule-
based models are less sensitive to such a distribu-
tion of datasets. Usually, standard classifiers try to
get the overall accuracy with the cost of misclas-
sifying the instances in small classes (Zhou and
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Liu, 2006), while small classes are always those
classes people are most interested in. Taking our
citation classification as an example, “organic” ci-
tations are more attractive than the “perfunctory”
ones. In our experiments, we try to balance the
instances of these classes to protect small classes.

4.2.5 Experiments
In this set of experiments, we also wrap these three
base classifiers with the meta class AttributeSelect-
edClassifier in the same configuration as in the
last experiments in Section 3.1. As listed in Ta-
ble 1, the average ratios among these 4 classes are
imbalanced, around 16:6:1.8:1. On the one hand,
we try to keep the natural distribution to some ex-
tent (number of instances in the two bigger classes:
class0:class1≈2:1; number of instances in the two
smaller classes: class2:class3≈2:1). On the other
hand, we slightly reduce the intensity of the class
imbalance to avoid misclassifying too many in-
stances from the small classes (here, we limit the
ratio of class0 and class3 to be less than 5). To
protect the small classes, we set the distribution
of the initial labeled dataset to around 5:2.5:2:1.
A few new labeled data with similar distributions
are added in each iteration to avoid introducing too
much noise. We conduct two experiments.
Exp-a: We set the number of instances in the
smallest class class3 as 5, in order to ensure the
accuracy. The iteration time K is 10. So α is
set to be 0.3 in case insufficient unlabeled data to
be added as labeled data. That is, 30% of the in-
stances are randomly extracted as training set and
the remaining instances are set as test data. Thus,
according to our predefined class distribution, we
set initial labeled data {20,10,8,5}, and the rest
of the training data are regarded as unlabeled data.
The number of new labeled data in each iteration
is {6,4,3,1}.
Exp-b: In this experiment, we use 3 labeled
instances in class3 to conduct the self-training
process, initial labeled data {a,b,c,d} is set to
be {15,8,6,3} following predefined class distri-
bution. Less new labeled data is added each
time, {m,n, p,q}={5,3,2,1} with more iterations,
K=30. α is set to 0.3 due to the long iterations.

As mentioned before, self-training has a high
demand on training data, especially initial labeled
data. That is, the quality of the initial labeled data
can largely affect the final overall performance.
In order to obtain fairly general results, we re-
peat each experiment described above 10 times
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Figure 3: Exp-a: Basic self-training vs. ensemble-
style self-training with different basic classifiers

with different seeds, splitting the dataset into train-
ing set and test set and therefore the initial la-
beled data each time are different. The final results
are measured by the average value of Macro-F in
these ten experiments. Figure 3 and Figure 4 il-
lustrate the final average Macro-F values obtained
by different basic classifiers with parameters given
in Exp-a and Exp-b, respectively. Here, Macro-
F in iteration 0 is obtained based on initial la-
beled data, so the algorithms with prob-selfTrain,
random-selfTrain and ensemble-style self-training
(denoted as ensemble-selfTrain) start at the same
point for the same basic classifier.

From Figure 3 and Figure 4, we can observe that
for the two probability-driven classifiers BayesNet
and NaiveBayes, their prob-selfTrain process is
better than random-selfTrain on the whole. We
observe the opposite for classifier SMO since its
prediction confidence is meaningless. In general,
our ensemble-style self-training algorithm outper-
forms both kinds of basic self-training algorithms
independently of the basic classifier used. Its self-
training process is quite stable due to the rela-
tively reliable new labeled data ensured by ensem-
ble learning strategies. Among all three basic clas-
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Figure 4: Exp-b: Basic self-training vs. ensemble-
style self-training with different basic classifiers

sifiers with the same experimental setup, Naive-
Bayes has the best performance not only at the
starting point (iteration 0), but also in the whole
ensemble-style self-training process.

In our ensemble-style self-training algorithm,
we also build an ensemble model Ensemble.
In Figure 5, we compare the performance of
ensemble-style self-training with basic classi-
fier Ensemble (denoted as ensembleSelfTrain-
Ensemble) and NaiveBayes under experimental
setup Exp-a and Exp-b, respectively.

Based on the observation, we found that al-
though Ensemble is a good guide on selecting new
labeled data, its self-training performance is not
as good as NaiveBayes. There might be two main
reasons. First of all, without self-training, Naive-
Bayes itself fits our feature sets quite well and
shows the best performance among all the clas-
sifiers. Combining with other classifier as done
in model Ensemble could affect its good perfor-
mance. Secondly, ensemble models tend to be
over-fitting to the training data. During the self-
training process, the training data changes slightly
by adding few new labeled data each time, so the
over-fitting problem occurs soon. Thus, we choose
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Figure 5: Ensemble-style self-training on Naive-
Bayes vs. Ensemble

ensemble-style self-training with main basic clas-
sifier NaiveBayes as our final classifier for citation
classification.

5 Summary

In this work, we defined a citation classification
schema to better sketch the skeleton of a sci-
entific paper from its background, fundamental
ideas, technical basis and performance compari-
son. These citation functions are distinguished by
features from textual, physical and syntactic as-
pects, which are simple but comprehensive, and
domain-independent. Using different supervised
learning classifiers on various sizes of training
datasets, we improved and demonstrated the effi-
ciency of our feature set by adding syntactic pat-
terns extracted from POS tags. The supervised
classification models NaiveBayes and BayesNet
have shown their robustness on our feature set,
with only about 170 training instances. Further-
more, we built an ensemble-style self-training al-
gorithm to better use and extend training data. Us-
ing about only 40 labeled instances, our final clas-
sifier can improve the Macro-F value by almost
5%. This model could largely alleviate manual an-
notation in citation classification.
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