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Abstract—This paper addresses two fundamental requirements
of full body motion monitoring: (a) the ability to sense the
input of the user and (b) the means to interpret the captured
input. Appropriate technology in both areas is required for
an interactive virtual reality system to provide feedback in a
useful and natural way. This paper combines technologies for
both areas: It develops a sensor fusion approach for capturing
user input based on miniature on-body inertial and magnetic
motion sensors. Furthermore, it presents work in progress to
automatically generate models for motion patterns from the
captured input. The technology is then used and evaluated
in the context of a personalized virtual rehabilitation trainer
application.

I. INTRODUCTION

For the acceptance of virtual reality applications, natural
inclusion of the user is, among others, a crucial criterion. This
is manifested in the recently increased interest in novel gestural
user interfaces that do not depend on conventional input de-
vices, but react on the user acting naturally in the environment
— think of the gesture controlled gaming consoles, such as
Microsoft XBox Kinect, Wii Motion Plus, Playstation 3 Move.
From a technical point of view, such gestural interfaces require
two base components, appropriate capturing technology to
sense the user actions and appropriate learning and reasoning
technology to interpret the captured actions and trigger the
expected feedback. This paper combines technologies for both
of them.

For capturing user input, a reliable and accurate sensor
fusion approach based on miniature body-mounted inertial
measurement units (IMUs) is developed. Under full operation,
the whole body can be captured with ten IMUs (cf. Section II).
The captured motion signals are then input to the second part of
the paper. Here, a fully automated method for detecting motion
motifs is developed. Motions are interpreted as short-time
patterns throughout this paper. Using this recurring motion
motifs, a hidden Markov model using Gaussian emissions
is constructed, which can be used for monitoring user input
within virtual environments (cf. Section III). The developed
technologies are then exploited and evaluated in the context of
a personalized virtual rehabilitation trainer application, which
supports and monitors previously taught exercises (motions)(cf.
Section IV). Conclusions and future work are presented in
Section V.

II. MOTION CAPTURE

The pose and motion of the body are contained in the
measured accelerations, angular velocities, and magnetic fields
from the IMUs attached to it. These measurements are com-
pared to predictions based on a simple biomechanical body
model. The pose kinematics are then determined using model
based sensor fusion, more precisely using the extended Kalman
filter (EKF) [1].

A. Biomechanical body model and calibration

Fig. 1: Functional body model and fixation of IMUs on the
upper body of a test subject.

A schematic of the used biomechanical body model is
depicted in Figure 1 (left). The complete model consists of
ten rigid bodies (bones: torso, pelvis, upper arms, forearms,
upper legs, lower legs) connected by anatomically motivated
restricted joints. The right side of the figure shows, how
IMUs are attached on a test subject. To be able to use the
IMU measurements to estimate the body pose, the way the
sensors are attached to the segments must be known. The
relative positions are determined by measuring the distances
along the segments. The calibration procedure for the relative
orientations is based on IMU measurements taken under known
static poses (e.g. [2]).
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B. Sensor fusion

The rotations of the torso and pelvis segments are modeled
with three degrees of freedom (DOF). They are estimated using
a standard attitude and heading reference system approach [3]
as implemented in most of the commercially available IMUs.
The estimation of limb (arms, legs) motions from two IMUs
(one attached on each segment) is handled jointly in one
EKF. Contrary to many proposed systems [4], where the upper
and lower segment orientations are obtained independently
and constraints are enforced in a second step, the approach
developed here estimates the limb motion jointly based on
forward kinematics only. This has two advantages: (1) the
lower segment helps in the estimation of the upper segment,
(2) constraints are built-in to start with. Here, the shoulder and
hip joints are modeled with three DOF, whereas the elbow is
restricted to two and the knee to one DOF.
Subsequently, the state-space model for joint limb motion
estimation is described.

Knowing the segment lengths, the limb pose is fully spec-
ified by the upper joint rotation, RUT , and the lower joint
rotation, RLU . Together with the calibrated quantities (cf.
Sections II-A) and the respective torso orientation, RTG, where
G denotes the global frame, this information is sufficient to
compute the IMU orientations and positions:

RIuG = RIuURUTRTG, RIlG = RIlLRLURUTRTG (1a)
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with respect to G (cf. Figure 1 for the symbols). In order to ob-
tain a minimal parametrization, also with restricted DOF, Euler
angles are used to represent the joint configurations. Hence,
the system state, x = [θ, θ̇, θ̈], comprises the joint angles,
θ = [θUT , θLU ]

T , with Rab = rot(θab), their velocities, θ̇,
and their accelerations, θ̈. The linear dynamic model assumes
constant angular acceleration and zero-mean Gaussian angular
acceleration process noise.
The measurement models relate the measured angular veloci-
ties, yω , accelerations, ya, and magnetic fields, ym, in the local
IMU frames, I , to the state.
The accelerometers measure a combination of body accelera-
tion, Ï , and acceleration due to gravity, g, in the local IMU
frame. Assuming that gravity is the only force acting on the
IMUs, the acceleration measurement model is:

ya = RIG

(
ÏG(θ, θ̇, θ̈)− gG

)
+ ea. (2a)

Here, the body acceleration in the global frame, ÏG, is a
function of θ, θ̇, and θ̈. It results from differentiating (1b)
with respect to time twice and transforming the result to the
local IMU frame using RIG. The latter is obtained from (1a).
The gyroscope measurement model is:

yω = ωI(θ, θ̇) + eω, (2b)

where the angular velocity in the IMU, ωI , is obtained by
transforming θ̇ to the local frame. The transformation can be
derived from the relation S(ω) = (RIGṘ

T
IG), where S(ω) is

the skew-symmetric matrix of ω [5].

The magnetometers are used as aiding sensors in order to
correct for drift due to sensor noise, calibration and model
errors. They provide a common forward direction, mG. The
respective measurement equation is:

ym = RIG(θ)mG + em. (2c)

To simplify the equation and lessen the influence of magnetic
disturbances (2c) is reduced to the heading direction. This is
achieved by comparing the arctan(y, x) of both sides of the
relation. In (2), e denotes mutually independent zero-mean
Gaussian measurement noise.

III. MOTION ANALYSIS AND MODEL CONSTRUCTION

Based on the joint angles provided by the motion capture
system, this section describes a fully automated method for
constructing a hidden Markov model (HMM) for a motion
pattern from a very short training sequence, such as the one
shown in Figure 2a. The training data is assumed to contain a
pre-defined number of pattern examples performed by the user
during the training step. The HMM representation is chosen
for two reasons: (1) it naturally takes variations in motion
into account by allowing for time-warping and has thus been
successfully applied in domains such as speech, gesture, or
handwriting recognition, (2) standard algorithms, such as the
Viterbi algorithm, can be used for online monitoring. While
the model generation is described and evaluated in this paper,
the online monitoring is work in progress and is therefore only
indicated here.

The proposed method for model generation consists of two
steps: The first step is to automatically detect motif candidates,
i.e. the recurring patterns in the training sequence. The second
step is to use the detected motifs to construct the model.

A. Motif candidate detection

The problem of locating motifs in real-valued, multivariate
time series is a known problem and several approaches have
been proposed [6], [7]. However, all of these methods are based
on a pre-defined window size. Since the length of the pattern
is here unknown, the first step consists in estimating a suitable
window size west. Based on the assumption that the repetitions
in the training sequence are performed consecutively with
roughly the same speed, a dominant frequency will be present
in the signal. This can be extracted using the combined power
spectral density (PSD) [8] (cf. Figure 2b). The window length
west is then initialized as the wavelength of the dominant
frequency, west = λ = v

fdominant
, with v being the sampling

rate. An extended version of Minnen’s method [7] is then
parametrized with west to detect the motif candidates: The
method collects overlapping subsequences, Si, of length west

from the training signal, S, and determines the k-nearest
neighbors for each subsequence as kNN(Si) = Si,1..k. Here, k
is the pre-defined number of repetitions. In order to reduce the
sensitivity to local time shift and slightly varying execution
speed, dynamic time warping (DTW) is used as distance
measure.



(a) Multi-variate motion data (joint angles of the upper body).

(b) Combined PSD of all channels. The dominant frequency is marked with
a red circle.

Fig. 2: Example training sequence.

A real motif should have at least k similar subsequences.
Hence, in order to find good motif candidates, for each
subsequence, Si, the distance density is estimated as the
reciprocal of the distance to the least similiar neighbor k:
den(Si) ∝ 1

dist(Si,Si,k)
The motif candidates, candi, are then

identified as the local maxima of the densities among its k
nearest neighbors:

maxima(Si) = Si : ∀ Si,j den(Si) > den(Si,j),

where j = [1, k].

B. Model generation

The observation probabilities of the HMM are modeled
using Gaussian mixtures models (GMM). Here, the different
channels of the multivariate signal are handled separately.
In a first step, a model is learned for each detected motif
candidate candi. For the ith motif candidate, the respective
sequence and its k-nearest neighbors are used as training set
TSi = {Si∪kNN(Si)}. Since traditional parameter estimation
methods for HMMs, such as the Baum-Welch algorithm,
typically fail when applied to too few training examples,
a simple construction algorithm is applied to capture the
characteristics of each motif. This algorithm builds a HMM
with left-right topology, which is a wide-spread approach to
model time-varying sequential data. Self-transitions and skip-
transitions are added to allow for a faster and slower execution
of the pattern. The number of states, N , is chosen as half the
estimated window size: N = ceil(west

2 ). Accordingly, each
subsequence is divided into N equal-length adjacent segments
and each segment is assigned to a state STi (cf. Figure 3). For
each state, STi, a GMM is then trained using an expectation-
maximization algorithm on all respective elements of TSi.
Thus, each segment is described by one normal distribution.

In order to generate the final model, the best candidate model

Fig. 3: HMM for one channel of the signal.

must be determined. For this, each candidate HMM is used
to refine the detected occurrences of the respective motif. The
detection is performed per channel using the standard Viterbi
algorithm, which computes for a given observation the Viterbi
path and its log likelihood. The Viterbi path represents the
most likely sequence of hidden states.

The Viterbi algorithm enables to detect variable-length
occurrences of the modeled motion pattern and therefore
provides a refined segmentation compared to the overlapping
subsequences used in Section III-A. The lower bound for
accepting a such detected occurrence is given by the lowest
determined log likelihood of the original training set TSi.

Having refined all training sets, the model which has the
best log likelihood score for the pre-defined number of occur-
rences is chosen as the best model. Finally, the parameters of
the HMM are re-estimated using the respective refined training
set.

IV. APPLICATION, EVALUATION AND PRELIMINARY
RESULTS

The technology presented above is currently used in a
virtual trainer for personalized home-based rehabilitation. This
is of high interest for, e.g. the rehabilitation of stroke patients,
which often requires patient-specific and long-term exercise
to regain full mobility. The motion patterns to be trained
are therefore rehabilitation exercises. The idea behind is the
following: A specific patient learns the correct execution
of exercises together with a physician. During this training
session, GMM-HMMs are constructed for each exercise. At
home, these models are then used by the system to monitor
the correct execution of exercises, automatically count the
number of repetitions, detect anomalies, and, based on this,
give immediate feedback to the patient. Figure 4 depicts the
system under operation.

Within this application scenario, the developed techniques
are evaluated on typical exercises. A test subject is equipped
with ten Colibri IMUs from Trivisio [9] (cf. Figure 1) and
repeats each of the exercises a couple of times. The joint angles
are estimated and logged at 100 Hz using the real-time C++



Fig. 4: The virtual trainer in use: The user exercises equipped
with two IMUs on the arm in front of a big screen. The
movements are transferred to an avatar in a virtual gym
environment. The system counts the biceps curls and fills up
green bars to indicate the number of repetitions.

implementation of the capturing system described in Section II.
The recorded data is used to for the offline training process.
GMM-HMMs are constructed from the training sequences as
described in Section III. Figure 5 shows the successful discov-
ery of the exercise patterns for two different exercises, biceps
curls (cf. Figure 5a) and wall pushups (cf. Figure 5b). The
variable-length pattern occurrences are successfully detected
based on the trained GMM-HMMs using the standard Viterbi
algorithm with a sliding window. Moreover, as shown in the
figures, noisy data in the beginning and the end of the training
sequences is correctly ignored. For the online recognition of
the motion patterns, we a currently investigate the application
of the short-time viterbi algorithm [10].

(a) Biceps curls. (b) Wall pushup

Fig. 5: Recognition results for two different exercises.

V. CONCLUSION AND FUTURE WORK

This paper presents an inertial motion capture system using
statistical sensor fusion, and a general learning-based approach
for recognizing patterns in the captured motion signals, or
rather in multivariate signals in general. While the developed
methods provide powerful tools for all applications, where
previously learned patterns have to be recognized — think
of 3D gestures and embodied interaction in general — the

technology is here used and evaluated in the context of a
personalized virtual rehabilitation trainer application.

The proposed methods are work in progress and there will
be a upcoming evaluation of the whole system in a clinical
trial. Future work will consist in further developing the online
monitoring part, including the development of the feedback
system for the users. As the current learning procedure is
offline, there is still the need to optimize the model for the
real-time system. In order to deal with this real-time aspects of
online motion monitoring, we will investigate the application
of the short-time viterbi algorithm [10]. This modification of
the original viterbi algorithm has been successfully applied
on the task of real-time phoneme recognition. The usage of
additinal sensors, such as cameras, for improving the precision
of the motion capturing system is also planned. Furthermore,
the recognition method should be extent with an implict
evaluation of how accurate the motion is performed. As for the
task of motion monitoring a direct feedback on the deviation
would be of interest.
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