
Content Quality Management with Open Source Language Technology

Christian Lieske (SAP AG)
Dr. Felix Sasaki (DFKI, FH Potsdam)

tcWorld 2011 – Wiesbaden

October 20, 2011

To complement this presentation, the full text for the conference proceedings
has been included in the appendix to this presentation.

2

Authors

Prof. Dr. Felix Sasaki

DFKI/FH Potsdam

Christian Lieske

Globalization Services
SAP AG

Appointed to Prof. in 2009; since 2010
senior researcher at DFKI (LT-Lab)
Head of the German-Austrian W3C-Office
Before, staff of the World Wide Web
Consortium (W3C) in Japan
Main field of interest: combined
application of W3C technologies
for representation and processing of
multilingual information
Studied Japanese, Linguistics and Web
technologies at various Universities in
Germany and Japan

Knowledge Architect
Content engineering and process
automation (including evaluation,
prototyping and piloting)
Main field of interest: Internationalization,
translation approaches and natural
language processing
Contributor to standardization at World
Wide Web Consortium (W3C), OASIS
and elsewhere
Degree in Computer Science with focus
on Natural Language Processing and
Artificial Intelligence

3

Expectations ?

You expect …

That‘s what we expected …

!

Interaction

A tutorial designed for the professional level audience

Get a handle on Content Quality Management

Demonstration of a specific format, solution, method or procedure in practice.

A quiet place far away from the fair ;-)

Basics of Language Technology

An offering related to technical authoring

A possibility to talk about your challenges and approaches

4

Linguistic Quality Management and Control for Textual Content

Basics of Natural Language Processing (NLP)/Language Technology (LT)

Text Technology

NLP/LT and Text Technology in real world deployment scenarios

NLP/LT and Text Technology in the Open Source world
• Remarks on Basic Due Diligence related to Open Source
• Okapi/Rainbow/CheckMate
• LanguageTool
• Apache Solr/Apache Lucene
• Unstructured Information Management Architecture

Conclusion and Outlook

Overview

5

WARM UP

6

Dimensions of Content Quality

Content is more than text

Quality Management is more than Quality Control

Often more than just linguistic stuff is in the mix
(Natural Language Processing vs. Text Technology)

7

Dimensions of Tasks related to Linguistics

Is there existing or new
terminology?

Are spelling, grammar,
and style alright?

Can I recycle an existing
translation?

Should I insert markup of
some kind?

8

Challenge of the Real World (1/3)

9

Challenge of the Real World (2/3)

Core Processes

Human
Actors Content Assets Tech.

Components

Context
Processes

…

10

Challenge of the Real World (3/3)

Anyone, anything (proprietary, XML ...), anytime

Scaling, consistency, compliance …

Coupling
• Object Linking and Embedding, HTTP, Web Services, ...
• Libraries/Application Programming Interfaces/Software

Development Kits
• Orchestration (e.g. synchronization of calls, and "bus-like"

integration or annotation framework)

11

Adressing the Challenges (1/2)

Best Practices and
Standardization

Computer-Assisted
Linguistic Quality Support

Computer-Assisted
Linguistic Assistance

i. Needs assets
ii. Creates assets
iii. Relates to Natural

Language Processing

12

Adressing the Challenges (2/2)

W3C Internationalization Tag Set (ITS)

 Fight lacking meta data/lacking
structure

OASIS XML Localization Interchange
File Format (XLIFF)

 Fight format variability

13

Bottomline/Hypothesis

You need Natural Language Processing
(NLP)/Language Technology (LT) for
quality management related to linguistics.

Text Technology is the base for solid,
sustainable NLP/LT in real world
deployment scenarios.

14

NLP / LT BASICS

15

Linguistic/Language Knowledge as Prerequisite

What is the language?

How to avoid explicit encoding for
Omnibusses, Omnibus?

How detect spelling mistake?

16

Lingware – Linguistic/Language Knowledge

Input (“resources/assets”) used by the software
• Statistical model about relative character frequency input for

language identification/detection

Flavour depends on approach
• Statistical model about translation statistical Machine

Translation (MT)
• Rules for translation rule-based MT
• Combination of both hybrid MT

Captive approaches
• Try to reuse your MT lexicon …

17

Natural Language Processing/Language Technology

18

Capabilities for Natural Language Processing (1/2)

Identify/detect language
• “English”

Tokenize
• #Text#technology#provides# ...
• # # # ...

Stemming
• “provides” “provide”

Detect phrases
• #Text technology#

19

Capabilities for Natural Language Processing (2/2)

Check (and correct) terminology, spelling, grammar,
style
• Text technlogy provide Text technology provides

Generate

• Translations, speech from text, text from speech

Match/Lookup

• Against translation memory, term bases, authoring memory

20

Sample Solution – acrolinx iQ

Check spelling,
terminology, grammar,
style

Check preference
expressions

Harvest/extract
terminology (and
preference expressions)

21

TEXT TECHNOLOGY

22

Foundations for Universal Coverage and Efficiency

Think about content with the world in mind
• Can I encode all characters?
• Can my HTML display the content properly?
• Can I translate efficiently?

Only world-ready NLP/LT is solid and sustainable

Unicode standard
• Allows for content creation and processing in a wide range of languages.
• Applied in many contexts (XML, HTML, multilingual Web addresses like http://ja.wikipedia.org/wiki/

, etc.)

Unicode support should be considered as a key feature of any NLP/LT offering.

23

Dimensions of Text Technology – Overview

Characters

Content formats (e.g. HTML, XML, XML-based vocabularies like DocBook or
DITA, …)

Metadata (e.g. Resource Description Framework)

Filters, e.g. to go from general XML to XLIFF (XML Localization Interchange
File Format) based on W3C Internationalization Tag Set (ITS)

…

24

Dimensions of Text Technology – Standards

Assets
• Terminology – TermBase eXchange (TBX)
• Former Translations – Translation Memory

eXchange (TMX)

Canonicalized Content
• XML Localization Interchange File Format

(XLIFF)

Resource Descriptions
• Internationalization Tag Set (ITS)

25

OKAPI / RAINBOW /
CHECKMATE

26

Okapi – Overview

Open Source set of components and applications to build new or enhance existing
content-related processes

Helps to analyze, fix, convert, package, check quality … chain and couple

Implements Open Architecture for XML Authoring and Localization Reference Model
(OAXAL)

Roots and strengths in localization and translation

Uses and promotes open standards where possible

Various usage options

27

Okapi – Framework to Build Interoperable Tools

Core Libraries (Resource model, Event model,
APIs, Annotations, etc.)

Filters Connectors (TM,
MT, etc.)

Other Components
(Segmenter,

Tokenizer, etc.)

Steps

Applications, Tools,
Scripts

28

Okapi – Usage Options (Explanation)

Stand-alone via GUI

Embedded (e.g. in batch processing server) as Java
library

Coupled as HTTP-accessible server

From command line

29

Okapi – Some Out-of-the Box Usage Options (Demo)

.dita and .xml

UI/Rainbow

Get overview of XML (used characters
and markup)

Transform XML

Search and replace (with and without filter; <MENUPATH/>)

Command Line/Tikal

"okapi-apps_win32-x86_64_0.14\startTikalPrompt.bat"

tikal -trace -x -ie UTF-8 dita.xml

30

Rainbow / CheckMate – Overview

Rainbow
• Text extraction and merging
• Character encoding conversion
• Term extraction
• File format conversion
• Quality verification
• Translation comparison
• Pseudo-translation
• …

CheckMate
• Quality checks on bilingual translations e.g. on XLIFF and TMX files

31

Okapi – Advanced Out-of-the Box Usage Options (Demo)

Extract term candidates

Generate XLIFF for arbitrary XML

tikal -trace -x -ie UTF-8 its-example.xml

Create ITS rules

tikal -trace -x -fc okf_xml@tcWorld-its -ie UTF-8 its-example.xml

Pseudo-translate XLIFF

Check translated XLIFF

Mismatch in number of inline tags

32

LANGUAGETOOL

33

LanguageTool – Overview

Open Source style and grammar checker (no spell checker)

English, French, German, Polish, Dutch, Romanian, and other
languages

Only knows about errors – not about correct language (rules describe
errors)

Based on NLP/LT (stemming, morphological analysis, part-of-speech
tagging)

Various usage options

34

LanguageTool – Usage Options (Explanation)

Embedded (e.g. in OpenOffice/LibreOffice)

Stand-alone via GUI

Stand-alone via system tray

Embedded as Java library

Coupled as HTTP-accessible service (e.g. from Okapi tools)

Via output in XML-based format

35

LanguageTool – Some Out-of-the Box Usage Options (Demo)

Duplicated words …

UI/Stand-alone Editor

java -jar LanguageToolGUI.jar

Clipboard “Listener”

java -jar LanguageToolGUI.jar –tray

Command Line

java -jar LanguageTool.jar -l en -v -b -

36

LanguageTool – Checking and Capabilities

Correct the text directly (rather than only displaying
messages and possibly suggestions)

Special mechanisms for coherency checks, and false
friends (mother tongue different from text language)

Bitext mode (allows checks like length and identity,
copy syntax patterns)

37

LanguageTool – Customization (Explanation)

Rules encoded in XML configuration files (easy-to-write,
and easy-to-read)

Rules written in Java (require programming know-how,
more powerful)

Adaptation of existing non-XML resources (e.g.
additions to the lexicon)

Inclusion of processing for additional languages

38

LanguageTool – Basic Customization (Demo)

rules\de\grammar.xml

39

LanguageTool – Advanced Usage Option (Demo)

Server called via Rainbow / CheckMate

java -cp LanguageTool.jar de.danielnaber.languagetool.server.HTTPServer

40

LanguageTool – Possible Additional Demos

More grammar/syntax rules related to simple language

java -jar LanguageTool.jar -l de -c UTF-8 -v -b -a tests\tcWorld-Fehler-deDE.txt

java -jar LanguageTool.jar -l en -c UTF-8 --api -b tests\tcWorld-abstract-enUS.txt >
tests\output.xml

41

LUCENE / SOLR

42

Apache Solr – Overview

Open source full text search server

Built around the Lucene full text indexing system

Can handle input documents in various formats via built-in Tika toolkit

• PDF, XML, doc, docx, …
• Metadata from images, audio, video
• See list of supported formats at http://tika.apache.org/0.10/formats.html

Proven robustness and high performance

Configuration via XML files – no programming needed

Modules for a large number of languages (see http://wiki.apache.org/solr/LanguageAnalysis for an
overview)

43

Apache Solr – Processing Concept

Input • XML, JSON,
PDF, Word, …

Output
• Index the

input
(parameters
such as stop
words)

Use
•Query the index
•Via web
mechanisms (that is:
HTTP)

•Results in various
formats (e.g. XML or
JSON)

44

Apache Solr – Sample Quality Assurance Use

Via XML
configuration file,

define user-
enhanced list of

French stop words

Index corpus

Fire of queries to
detect unalloweded

terms

45

Install Solr
http://lucene.apache.org/solr/index.html#getstarted
(needs Java 1.6)

Open your browser at http://localhost:8983/solr/

Solr – Canned Demo (Set up)

46

Solr – Canned Demo (Add Files via HTTP)

Example URI (e.g. for use with cURL tool)
• http://localhost:8983/solr/update/extract?

literal.id=doc1&
uprefix=attr_&
fmap.content=my_content_de
&commit=true" -F "myfile=@tutorial.pdf"

Explanation
• Add tutorial.pdf to the index
• Use the field my_content_de (defined in schema.xml)
• ID of the document in the index: doc1

47

Solr – Canned Demo (Add Files via Shell Script)

Input is a directory name

Files with specific endings are processed

Field for indexing is specified in the script – here attr_content

48

Solr – Canned Demo (Query 1)

Get a list of the
50 most frequently
used terms

http://localhost:8983/solr/terms?
terms.fl=attr_content&
terms.sort=count&
terms.limit=50

49

Search for a specific term and get
documents that contain it

http://localhost:8983/solr/select?
&q=attr_content
:ArabicNormalizationFilterFactory

Solr – Canned Demo (Query 2)

50

Solr – Canned Demo (Highlight Terms in Context)

51

Solr – Canned Demo (Advanced Use – Configure via
schema.xml)

Define “fieldtypes” (and fields making use of fieldtypes) for indexing and query, e.g. language-specific

Example for indexing:
•Use standard tokenizing
•Reference (your) stop words
•Convert to lower case

1
2

3

52

General components
• http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Language specific components
• http://wiki.apache.org/solr/LanguageAnalysis

Solr – Canned Demo (Language Technology Components)

53

Solr – Canned Demo (field and fieldtype for German)

<fieldType name="text_de" class="solr.TextField" positionIncrementGap="100">

<analyzer type="index">

<tokenizer class="solr.StandardTokenizerFactory"/>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.SnowballPorterFilterFactory" language="German2" />

</analyzer>

<analyzer type="query">

<tokenizer class="solr.StandardTokenizerFactory"/>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.SnowballPorterFilterFactory" language="German2" />

</analyzer>

</fieldType>

…

<field name=”my_content_de" type="text_de" indexed="true" stored="true" multiValued="true"/>

54

Solr – Final Remarks

Provides many basic LT processing modules, including language
specific tasks

• Example: Tokenizer for Chinese, Japanese, Korean based on statistical model (n-gram)

Quality is not always good

Pipelines architecture of Solr allows to plug in better, alternative
modules

• Example: Better morphological analysis and word segmentation for Chinese, Japanese
and Korean

Unfortunately, alternative modules are often commercial and
expensive

55

UIMA

56

UIMA – Overview

NLP/LT often needs to analyze unstructured (textual) content in various steps (language
identification, tokenization, segmentation, …)

Need for tying together and orchestrating processing components

The “Unstructured Information Management Architecture” (UIMA) is an architecture for
defining and combining components related to the processing of unstructured information

Not a piece of running software

Helps to design processing pipelines (to ease integration efforts and enhance
interoperability)

Recently UIMA became famous via the Watson text analysis system

57

UIMA – Usage Scenario

Couple Solr with the Alchemy API (allows among others for advanced language
identification or named entity extraction)

Details: http://wiki.apache.org/solr/SolrUIMA

58

CONCLUSION AND OUTLOOK

59

Conclusions and Outlook

Linguistic quality assurance based on NLP/LT is a reality.

The use of standards and best practices originating in text technology, frameworks
for processing pipelines, and open source offerings put it into reach for new
constituencies such as small enterprises.

The open source community, as well as stewards of standards and inclusion – such
as the World Wide Web Consortium (W3C), and the European Commission (EC) –
continue their support for easily accessible multilingual content. Two examples are
the EC-funded, and W3C-coordinated Thematic Network “Multilingual Web” (see
http://www.multilingual-web.eu) and the forthcoming MultilingualWeb-LT project.

60

Thank You!

The copyrighted picture of a lake (maybe a symbol of purity) on the first slide is courtesy of Dr. Peter Gutsche (www.silberspur.de).

Christian Lieske
christian.lieske@sap.com
www.sap.com

Felix Sasaki
felix.sasaki@dfki.de
www.dfki.de

Contact information:

The authors would like to thank Daniel Naber and Yves Savourel for reviewing draft versions of this presentation.

61

Disclaimer

All product and service names mentioned and associated logos displayed are the trademarks of their respective companies. Data contained in this document serves informational purposes
only. National product specifications may vary.

This document may contain only intended strategies, developments, and is not intended to be binding upon the authors or their employers to any particular course of business, product
strategy, and/or development. The authors or their employers assume no responsibility for errors or omissions in this document. The authors or their employers do not warrant the accuracy
or completeness of the information, text, graphics, links, or other items contained within this material. This document is provided without a warranty of any kind, either express or implied,
including but not limited to the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.
The authors or their employers shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of
these materials. This limitation shall not apply in cases of intent or gross negligence.
The authors have no control over the information that you may access through the use of hot links contained in these materials and does not endorse your use of third-party Web pages nor
provide any warranty whatsoever relating to third-party Web pages.

62

Full Text of the Conference Proceedings

Content Quality Management with Open Source Language Technology
Christian Lieske, SAP AG; Felix Sasaki, DFKI/FH Potsdam

Overview

Today’s content production is high paced. In addition, it is demanding in terms of quality
and cost efficiency. Furthermore, it is distributed amongst many parties and challenging
due to vast volumes. Accordingly, quality management and quality control related
especially to textual content is in desperate need of automation. Promising automation
solutions related to the linguistic quality of mono- or multilingual textual content rely on
Natural Language Processing (NLP)/Language Technology (LT). In order to deploy
NLP/LT in real world scenarios, these scenarios need to be seamlessly coupled with, or
integrated into content production process chains.

This text complement to the corresponding tutorial at the tcWorld 2011 starts
with an overview of typical linguistic quality tasks related to textual content. Afterwards

following short explanation of general NLP/LT concepts it sketches NLP/LT for
linguistic quality tasks. As basis for sustainable and solid NLP/LT, so-called Text
Technology is being surveyed. The text then moves on to observations related to the use
of NLP/LT in real world deployment scenarios.

The concepts are exemplified based on the reality in some technical communications
environments with open source offerings. In order to allow for easy follow-up, the
demonstrations use open source technology. Some tasks use examples from the realm of
language-related requirements related to accessibility (sometimes referred to as
easy/simple language).

Linguistic Quality Management and Control for Textual Content

For the purpose of this text, distinction is made between two different dimensions of
quality management and control for textual content (samples are drawn from Web-
related content such as HTML pages):

a. Technical Characters are displayed properly, markup is adequate, links are
correct

b. Linguistic Spelling, grammar, style, and terminology are immaculate

closer look at the linguistic dimension shows that it encompasses two quite different
areas: general information processing on the one hand, and linguistic assistance on the
other hand. Information processing often is tied to the initial creation of resources (e.g.
databases related to terminology, text chunks, or existing translations) whereas
linguistic assistance is mainly encountered during the actual creation of textual content
(which of course often relates to, or adapts aforementioned existing resources such as
termbases, authoring memories, or translation memories). Example activities and usage
scenarios in both areas are the following:

a. Information Processing (search, extract, or enhance; create resources)

- Generate monolingual list of term candidates
- Align two monolingual texts (e.g. German and French) to fill translation

memory
- Identify phone numbers, addresses etc. in order to tag them with special

markup

b. Linguistic Assistance (propose and check; help to author or translate efficiently
and properly)

- Suggest possibly alternative wording (based for example on entries in
termbases, or authoring/translation memories)

- Check and possibly automatically correct texts against rules for spelling,
terminology, grammar, or specific style rules (e.g. company-proprietary
guidelines)

- Transfer/translate text either by reusing and possibly adapted (sub-
segment) strings, or generating via Machine Translation from source
language to target language

In the realm of technical communications, very often four roles come into play in the
aforementioned activities:

 Authors want interactive assistance for creating of correcting texts
 Managers like to see numbers (e.g. quality indicators based on the number of

errors calculated by tool) and want to use them in analytical applications
 Solution architects, terminologists and translators create resources (e.g.

termbases and formalized style rules), technical components, and processing
pipelines

 Translators want to match against termbases and translation memories

Basics of Natural Language Processing (NLP)/Language Technology (LT)

Automation related to the linguistic tasks mentioned above usually needs to go beyond
simple strings processing approaches like the use of regular expressions. In one shape
or other, linguistic knowledge model of the language at hand is needed. This is the
focus of Natural Language Processing (NLP)/Language Technology (LT). To be specific,
NLP/LT most often comprises two main very often intertangled ingredients (the
details provided are just examples):

a. Software, that is components for

- Identifying the language in which text is written
- Applying tokenization rules (which break strings up into entities such as

words)
- Stemming or analyzing morphologically (which determine base forms, or

sub-entities of compound expression)
- Applying segmentation rules (which break documents up into entities such

as sentences)
- Computing relationships between entities (e.g. one that groups words into

entities such as nominal phrases "Radio Frequency")

- Comparing given spelling to model that encodes the correct spelling
- Correcting an incorrect grammatical structure according to model that

encodes the correct grammar
- Generating translations
- Covering special communication modalities (e.g. spontaneous speech)
- Matching against resources such as termbases, authoring memories or

translation memories

b. Lingware, that is formalized linguistic knowledge such as

- statistical model that encodes the relatively frequency of certain
characters in language (or script); can be used for language identification

- set of rules that model multiword phrases; can be used to generate term
candidates

- set of mathematical properties (e.g. bi- or trigrams of part-of-speech tags)
that capture syntactic features; can be used to detect grammar errors

- lexicon that captures so-called lemmatas and features (such as their
inflection paradigm); can be used for machine translation

As indicated above, lingware pertains to different entities (e.g. characters,
words/tokens/ideographs, syntactic structures, ...) and comes in two categories:
statistical or symbolic. In case the two categories are combined, the corresponding
offerings often are termed "hybrid" (e.g. "hybrid Machine Translation").

Very often you will see separation of lower level NLP/LT (e.g. tokenizer, part-of-speech
tagger, ...) and higher level (term candidate extractor, spell checker, grammar checker,
...). The higher level NLP/LT is what ordinary users get to see.

In today's world, NLP/LT most often starts with an analysis of text. Only after the
analysis, possibly generation of text (e.g. correction suggestion) is triggered. simple
approach to generation works with templates (where no syntactic structures are
generated, but only gaps are filled in fill-in-the-blank fashion).

Tools that are categorized as "computer assisted authoring/translation" often include
approaches that originate in NLP/LT. At least initially, the focus of these tools, however,
relates to the creation and reuse of special purpose assets (such as the term candidates,
bilingual translated segments, or aligned translated documents of an individual
translator or whole company).

Text Technology

"Text technology" is the foundation for solid and sustainable NLP/LT applications. An
example for text technology is the Unicode standard. It is being applied in many contexts
(XML, HTML, multilingual Web addresses like http://ja.wikipedia.org/wiki/ etc.)
and allows for content creation and processing in wide range of languages. Thus,
Unicode support should be considered as key feature of any NLP/LT offering. In
sense, text technology embodies rules (e.g. for the syntax of markup language), and
best practices related to many sub-domains (e.g. character encoding) within NLP/LT.

Text technology provides answers not only related to characters, but also to other areas:

 Content (e.g. HTML, XML, XML-based vocabularies like DocBook or DITA, …)
 Metadata (e.g. Resource Description Framework)
 Filters, e.g. to go from general XML to XLIFF (XML Localization Interchange

File Format) based on W3C Internationalization Tag Set (ITS)

Although text technology thus is vital for real-world deployment of NLP/LT, it is often
neglected. Example: Instead of reusing an existing vocabulary, simply new, proprietary
one is created. Luckily, however, more and more projects and offerings are dedicated to
the integration of text technology with NLP/LT. One example is the m4loc project
http://code.google.com/p/m4loc/ It aims at integrating the statistical machine
translation engine Moses with XLIFF based localization workflows.

NLP/LT and Text Technology in real world deployment scenarios

typical task related to linguistic quality control usually requires that several
capabilities/tools/components are seamlessly integrated into each other. content
production process may for example require the following sequence of activities (all of
which relate to primary goals such as superb user experience, and legal compliance):

a. Find special purpose format object such as an image represented as Scalable
Vector Graphics (SVG) in Content Management System (CMS)

b. Convert the SVG file into more "linguistic friendly" XML (e.g. XML Localization
Interchange File Format; XLIFF)

c. Check the content of the XLIFF file for unallowed terms (either source language,
target language or both; based on termbase that lists unallowed and allowed
terms)

d. Submit the checking result into Business Intelligence solution (e.g. for reporting
purposes)

Accordingly, real world deployment scenarios need to answer questions related to
integration approaches, and thus need to be concerned with areas such as the following:

a. Formats (proprietary, Java Script Object Notation, XML, XLIFF, ...)
b. Coupling (Object Linking and Embedding, HTTP, Web Services, ...)
c. Libraries/Application Programming Interfaces/Software Development Kits
d. Orchestration (e.g. synchronization of calls, and "bus-like" integration or

annotation framework)

NLP/LT and Text Technology in the Open Source world

Remarks on Basic Due Diligence related to Open Source

Before working with open source offerings, questions such as the following should be
addressed:

a. Is this project still alive? Look at last version, reported bugs, fixes etc.

b. What am allowed to do? Look at license/license conditions
c. Is this solid/quality endeavor? Look at mailing lists etc.
d. In which languages are the User Interface, and User Assistance/Documentation

provided?
e. What is the quality of the documentation? Do additional books exist?
f. Which interfaces/connectors/exchange formats are supported?
g. Is the technology behind mainstream (or is for example the programming

language one that is almost unknown)?
h. What might be the unique selling proposition of commercial offerings? Look for

details such as supported languages, accuracy, quotes from reference customers

Okapi/Rainbow/CheckMate

Linguistic Quality Management can only be successful if it is seamlessly integrated into
an overall content production chain. Accordingly, there is very often need to “massage”
content (e.g. to convert it), or to have content flow from one processing component to
another one.

“The Okapi Framework is cross-platform and free open-source set of components and
applications allows process architects to build new content-related processes or
enhance existing ones while preserving compatibility and interoperability. The
framework has its roots and strengths in processes and tasks related to localization and
translation. Whenever possible, the project uses and promotes open standards.

Rainbow is an Okapi-based GUI application to launch various utilities such as: Text
extraction (to XLIFF, OmegaT projects, RTF, etc.) and merging, encoding conversion,
terms extraction, file format conversions, quality verification, translation comparison,
search and replace on filtered text, pseudo-translation, and much more. Using the
framework's pipeline mechanism, you can use Rainbow to create chains of steps that
perform specific set of tasks specific to your needs. CheckMate is an Okapi-based GUI
application that performs various quality checks on bilingual translation files such as
XLIFF, TMX.” (adapted from http://okapi.opentag.com/).

Usage scenarios covered during the tutorial:

 Used characters listing
 Term extraction
 Conversion from proprietary XML to XLIFF based on W3C ITS

LanguageTool

LanguageTool is an Open Source style and grammar checker for English, French,
German, Polish, Dutch, Romanian, and other languages. It does not include spell
checking. LanguageTool, however, can be used for tasks related to terminology control
(adapted from http://www.languagetool.org/).

LanguageTool is based on NLP/LT concepts such as stemming and morphological
analysis, and part-of-speech (POS) tagging. It can be used out-of-the-box. In addition,

however, it is framework for building language processing in particular language
quality assurance applications.

LanguageTool only knows about errors not about correct language. All rules describe
errors.

Important features of LanguageTool are the following:

1. Various customization options

- Rules encoded in XML configuration files (easy-to-write, and easy-to-read)
- Rules written in Java (require programming know-how, more powerful)
- Adaptation of existing non-XML resources (e.g. additions to the lexicon)
- Inclusion of processing for additional languages

2. Solid foundation for use and connectivity

- Embedded (e.g. in OpenOffice/LibreOffice)
- Stand-alone via GUI
- Stand-alone via system tray
- Embedded as Java library
- Coupled as HTTP-accessible service (e.g. from Okapi CheckMate)
- Via output in XML-based format

3. Checking and correction capabilities

- Correct the text directly rather than only displaying messages and possibly
suggestions

- Special mechanisms for coherency checks, and false friends (mother tongue
different from text language)

- Bitext mode that allows checks like length and identity, copy syntax patterns

Usage scenarios covered during the tutorial:

 Out-of-the box rules with various interfaces (e.g. UI)
 Various grammar/syntax rules related to simple language
 Term checking (possibly bilingual)

Tips&Tricks that might be mentioned:

 Inflection/deinflection only possible if known (to Morphy for German)
 Names only used in configuration/rule selection dialogue
 XML entities can be used to ensure consistent messages
 Example can be used for unit testing (testrules.bat)
 Additional rules can even be loaded via WebStart
 Coherence rules (implemented in Java) help to ensure proper terminology

Advanced Topics that might be touched upon:

 Rule for (use of decomposition)

Apache Solr/Apache Lucene

Apache Solr is an open source full text search server, built around the Lucene full text
indexing system. Solr’s processing concept is simple:

a. You put documents in various formats (XML, JSON, PDF, Word, ...) in; extraction
is performed via http://tika.apache.org/. Tika plays an important role in
couple of extraction and roundtripping scenarios (e.g. in the Moses4Localization
project).

b. Solr creates an index for the documents; you can fine tune the indexing via
parameters such as stop words

c. You query the documents/search the index via the Web mechanisms (that is:
HTTP) and receive the result in various formats (e.g. XML or JSON)

Besides its robustness and high performance, key feature of Solr relevant for "linguistic
quality assurance" are the following:

 Configuration based on XML file no programming is needed.
Example: In an XML configuration file, field is defined that can be used for
indexing of French text. This definition related to user-enhanced list of stop
words

 Modules for large number of languages (see
http://wiki.apache.org/solr/LanguageAnalysis for an overview) allows for
fulfilling the "linguistic quality assurance" task in multilingual fashion (e.g. via
checks against lists of unallowed terms)

An example technical communications usage scenario for Solr:

You may have to assure that only allowed terms are used in large body of text.
Solr indexes your texts. Once Solr has created the index, you do your term checks
against Solr’s index. This approach may reduce the time that is needed for your
checks down from several hours to several minutes.

Unstructured Information Management Architecture

NLP/LT often needs to analyze unstructured (textual) content in various steps
(language identification, tokenization, segmentation, …). Thus, there is need for tying
together and orchestrating processing components.

The “Unstructured Information Management Architecture” (UIMA) is framework for
defining and combining components related to the processing of unstructured
information. Recently UIMA became famous via the Watson text analysis system the
system (which is based on UIMA) won Jeopardy competition against several "human"
Jeopardy stars.

Unlike Okapi/Rainbow/CheckMate, Language Tool or Solr, UIMA is not framework to
use "as is". The UIMA framework itself provides no ready to use filters, language

checkers, indexing components, or the like. UIMA rather helps to design processing
pipelines. Furthermore, UIMA eases integration efforts and enhances interoperability
since it outlines interfaces between components/pipelines steps. Example: Using UIMA
(see http://wiki.apache.org/solr/SolrUIMA Solr can be easily coupled e.g. with the
Alchemy API, which allows among others for advanced language identification or named
entity extraction.

Conclusion and Outlook

Linguistic quality assurance based on NLP/LT is reality. The use of standards and best
practices originating in text technology, frameworks for processing pipelines, and open
source offerings put it into reach for new constituencies such as small enterprises.

The open source community, as well as the stewards of standards and inclusion such
as the World Wide Web Consortium (W3C) and the European Commission (EC)
continue their support for easily accessible multilingual content. Two examples are the
EC-funded, and W3C-coordinated Thematic Network “Multilingual Web” (see
http://www.multilingual-web.eu and the forthcoming MultilingualWeb-LT project.

Appendix

Intended Demo Blocks

 Linguistic checks from withing LibreOffice/OpenOffice
 Term candidate generation (using frequencies) based on Solr/Lucene
 Adaptation of resources for LanguageTool
 Format conversions with Okapi/Rainbow
 Translation-related checks with CheckMate and LanguageTool

Authors’ Addresses

Christian Lieske, SAP AG, christian.lieske@sap.com
Felix Sasaki, DFKI/FH Potsdam, felix.sasaki@dfki.de

References

References can be found in the body of the text. The authors welcome any questions
related to possible additional references.

Disclaimer

All product and service names mentioned and associated logos displayed are the
trademarks of their respective companies. Data contained in this document serves
informational purposes only. National product specifications may vary. This document
may contain only intended strategies, developments, and is not intended to be binding
upon the authors or their employers to any particular course of business, product
strategy, and/or development. The authors or their employers assume no responsibility
for errors or omissions in this document. The authors or their employers do not warrant

the accuracy or completeness of the information, text, graphics, links, or other items
contained within this material. This document is provided without warranty of any
kind, either express or implied, including but not limited to the implied warranties of
merchantability, fitness for particular purpose, or non-infringement. The authors or
their employers shall have no liability for damages of any kind including without
limitation direct, special, indirect, or consequential damages that may result from the
use of these materials. This limitation shall not apply in cases of intent or gross
negligence. The authors have no control over the information that you may access
through the use of hot links contained in these materials and does not endorse your use
of third-party Web pages nor provide any warranty whatsoever relating to third-party
Web pages.

