Content Quality Management with Open Source Language Technology

Christian Lieske (SAP AG)
Dr. Felix Sasaki (DFKI, FH Potsdam)

tcWorld 2011 — Wiesbaden

October 20, 2011 w

Deutsches
Forschungszentrum
fir Kinstliche
Intelligenz GmbH

tcworld

conference

2011

Authors

Prof. Dr. Felix Sasaki | Christian Lieske

DFKI/FH Potsdam
Globalization Services

SAP AG
W Appointed to Prof. in 2009; since 2010 W Knowledge Architect
senior researcher at DFKI (LT-Lab) W Content engineering and process
W Head of the German-Austrian W3C-Office automation (including evaluation,
m Before, staff of the World Wide Web prototyping and piloting)
Consortium (W3C) in Japan W Main field of interest: Internationalization,

translation approaches and natural

B Main field of interest: combined _
language processing

application of W3C technologies
for representation and processing of W Contributor to standardization at World
multilingual information Wide Web Consortium (W3C), OASIS

® Studied Japanese, Linguistics and Web and elsewhere

technologies at various Universities in W Degree in Computer Science with focus
Germany and Japan on Natural Language Processing and
Artificial Intelligence

-
Expectations ?

You expect ...

Demonstration of a specific format, solution, method or procedure in practice.

An offering related to technical authoring

Get a handle on Content Quality Management

A quiet place far away from the fair ;-)

A tutorial designed for the professional level audience

Interaction
A possibility to talk about your challenges and approaches

Basics of Language Technology

That's what we expected ...

3

Overview

Linguistic Quality Management and Control for Textual Content

Basics of Natural Language Processing (NLP)/Language Technology (LT)

Text Technology

NLP/LT and Text Technology in real world deployment scenarios

NLP/LT and Text Technology in the Open Source world

* Remarks on Basic Due Diligence related to Open Source
» Okapi/Rainbow/CheckMate

* LanguageTool

» Apache Solr/Apache Lucene

» Unstructured Information Management Architecture

Conclusion and Outlook

IN |

WARM UP

Dimensions of Content Quality

<p>We are presenting@he <a @f'http:llwww.tekom.del">tcworld conference 2011
.</p>

Content IS more than text

Quality Management is more than Quality Control

Often more than just linguistic stuff is in the mix
(Natural Language Processing vs. Text Technology)

Dimensions of Tasks related to Linguistics

|s there existin (O IO T 8 ESAVAVARN <> Text technology provides answers not ony related to characters, but also to other areas:</p>

terminology? ab .
 Content (¢.g. HTML, XML, XML-based vocabularies like DocBook or DITA, ..)</l

| <lisMetadata (e.g. ROF)</i>
Are Spe”ing, grammat, Filters to go from general XML to XLIFF via TS
and style alright? e

Can | recycle an existing
translation? <P FFANFDI OV -BLFEHTRE TROMOHBEEAES, <p>

Should | insert markup of

SO m e kl n d 7 <p=For further inquiries, please contact our office at +49 331 967675.</p>

Challenge of the Real World (1/3)

High Lingustic | Format | Lacking | Limited
Volume | Quality |Variability | Structure | Metadata

Challenge of the Real World (2/3)

Context

Core Processes Processes

Human Tech.
-

Challenge of the Real World (3/3)

Anyone, anything (proprietary, XML ...), anytime

Scaling, consistency, compliance ...

* Object Linking and Embedding, HTTP, Web Services, ...

e Libraries/Application Programming Interfaces/Software
Development Kits

« Orchestration (e.g. synchronization of calls, and "bus-like"
Integration or annotation framework)

10

Adressing the Challenges (1/2)

Best Practices and
Standardization

Computer-Assisted
Linguistic Quality Support S

ii. Creates assets
iii. Relates to Natural
Language Processing

Computer-Assisted
Linguistic Assistance

Adressing the Challenges (2/2)

W3C Internationalization Tag Set (ITS) OASIS XML Localization Interchange
File Format (XLIFF)

— Fight lacking meta data/lacking — Fight format variability
structure

Which parts have to be
translated?

Format 1
Format 2
Anything | need to know . G g::l?ts; '::r;'z: :::t"::::
when working on this? D two linguistic units? Format 3 XLIFF
Format 4
Format ...

Format n

12

Bottomline/Hypothesis

You need Natural Language Processing
(NLP)/Language Technology (LT) for
guality management related to linguistics.

Text Technology Is the base for solid,
sustainable NLP/LT in real world
deployment scenarios.

NLP /LT BASICS

Linguistic/Language Knowledge as Prerequisite

<p>Omnibys$e falitdn selten. </p>

What Is the language?

How to avoid explicit encoding for
Omnibusses, Omnibus?

How detect spelling mistake?

Lingware — Linguistic/Language Knowledge

Input (“resources/assets”) used by the software

 Statistical model about relative character frequency — input for
language identification/detection

Flavour depends on approach

e Statistical model about translation — statistical Machine
Translation (MT)

e Rules for translation — rule-based MT
« Combination of both — hybrid MT

o Try to reuse your MT lexicon ...

Natural Language Processing/Language Technology

Information
Processing
3«; Search
Information
Extraction
u:-;r.%g!'e.;n.mm.
2

g
§
d

Linguistic

Assistance

-
Checking (spelling
terminology,

grammar and

style)

\

Machine

Translation

o

tagging

Part-of- Sentence
Speech boundary

'

User

[EEE

Voice Input

4 N

Speech Synthesis

Syntactic
| .

v

17

Capabilities for Natural Language Processing (1/2)

<p>Text technology provides answers not only related to characters, but also to other areas:</p>

|dentify/detect language
« “English”

Tokenize

o #Text#technology#provides# ...
e #TX X MTU/ OO—#ITH ...

Stemming

« “provides” — “provide”

Detect phrases
o #Text technology#

1

[oe]

Capabilities for Natural Language Processing (2/2)

<p>Text technology provides answers not only related to characters, but also to other areas:</p>

Check (and correct) terminology, spelling, grammar,

style

» Text technlogy provide — Text technology provides

Generate

« Translations, speech from text, text from speech

Match/Lookup

« Against translation memory, term bases, authoring memory

19

Sample Solution —acrolinx iQ

Check spelling,

terminology, grammar,
style

Check preference
expressions

Harvest/extract
terminology (and
preference expressions)

Topspin 360 Quick Start

Thie docurosre Wil GESEHEE the boge: stepe raquired 1o install and configure the Topegan 260 syubem.
Requirements

To inseall the Topepin 360 in0o 3 rack, you requrs the folwing
« oo 43 00d cae #3 Fhllpa-heod screwdniver foc fieting.
-m:wmwmmm&n:?tmhawmmzlh-n.
o the cable kit (nchaded)\
« two pacple to safely bt the uret into the rack.

Topspin 360 Package Contents
T parts S b fouad i ot Tegigin o

o 3 CD-ROM containing eaftvare (recsntly ported to Windowe)and uar &
o § GQuick Start Guide.
* 3 warTamty card,

Preparing the Site
To et U ke (o Cus IR, oarforo the (ol Mal tigss

* w&wwvmm Iforman " on pams.
hatge/)

Feplace wit

See that the following tems arrived with your Topespin package:
Edr Flay
Ignore Flag

Stenthrouzh Moce
Frevious Flax
e Flag

20

TEXT TECHNOLOGY

Foundations for Universal Coverage and Efficiency

Think about content with the world in mind

» Can | encode all characters?
» Can my HTML display the content properly?
» Can | translate efficiently?

Only world-ready NLP/LT is solid and sustainable

Unicode standard

* Allows for content creation and processing in a wide range of languages.

« Applied in many contexts (XML, HTML, multilingual Web addresses like http://ja.wikipedia.org/wiki/E
=, etc.)

Unicode support should be considered as a key feature of any NLP/LT offering.

22

Dimensions of Text Technology — Overview

Content formats (e.g. HTML, XML, XML-based vocabularies like DocBook or
DITA, ...)

Metadata (e.g. Resource Description Framework)

Filters, e.g. to go from general XML to XLIFF (XML Localization Interchange
File Format) based on W3C Internationalization Tag Set (ITS)

23

Dimensions of Text Technology — Standards

ETS(//// K\N\ World Class Standards

\ Z

« Terminology — TermBase eXchange (TBX)

 Former Translations — Translation Memory
eXchange (TMX)

S OASIS 13
Canonicalized Content

XML Localization Interchange File Format

(XLIFF)

War

 Internationalization Tag Set (ITS)

@okapl

Cross-platform framework for localization and translation tools

okapi - Cross-platform framework for localization and ... - Google Code
code.google.com/p/okapi/
Activity High; Project feeds; Code license; GNU Lesser GPL; Content license ... Okapi

Prolect Home M@dﬁ Wiki Issues Source

Summary Updates People

Project Information The Okapi Frameworl
Activity Jal High environment to build inti
e The goal of the Okapi F
Code license best meet their needs, '
GNU Lesser GPL components across diff
Content license Useful links:
Creative Commons 3.0 BY-SA ' :

+ The main Okapi Fr:

Labels « Users group

artifacts releases: http://repository-okapi forge.cloudbees.com/release/ ...

OKAPI / RAINBOW /
CHECKMATE

Localization, Translation, 118n, Java,
Framework, CrossPlatform, XLIFF, TMX, SRX,
Extraction, Segmentation, gettext, PO, MT

+ A word about using
« Latest snapshot of

25

Okapi — Overview

Open Source set of components and applications to build new or enhance existing
content-related processes

Helps to analyze, fix, convert, package, check quality ... chain and couple

Implements Open Architecture for XML Authoring and Localization Reference Model
(OAXAL)

Roots and strengths in localization and translation

Uses and promotes open standards where possible

Various usage options

26

Okapi — Framework to Build Interoperable Tools

Applications, Tools,
Scripts

Other Components
(Segmenter,
Tokenizer, etc.)

Connectors (TM,

Filters MT, etc.)

Core Libraries (Resource model, Event model,
APls, Annotations, etc.)

27

Okapi — Usage Options (Explanation)

Stand-alone via GUI

Embedded (e.qg. in batch processing server) as Java
library

28

Coupled as HTTP-accessible server

From command line

Okapi — Some Out-of-the Box Usage Options (Demo)

B example-1.mb - Rainbow = RS

File View Input Utilities Tools Help

JeBl Loz 4¥a e

Root1: <Custom>: C:\Users\D025418\My Projects\tcWorld2011\tutorial

Input List1 | Input List 2| Input List 3 | Languages and Encodings | Other Settings

Path Relative to the Root Filter Configuration

mmcpLeamingOverview_Maintaining_Asset_Master_Records.dita okf_xmlstream-dita

Ul/Rainbow

Get overview of XML (used characters
and markup)

Transform XML

171

Search and replace (with and without filter;——~viervorr~rro—y

Command Line/Tikal
"okapi-apps_win32-x86_ 64 0.14\startTikalPrompt.bat"

tikal -trace -x dita.xml

t_Master_]

_Master_R

Rainbow / CheckMate — Overview

« Text extraction and merging
Character encoding conversion
Term extraction

File format conversion

Quality verification

Translation comparison
Pseudo-translation

Quality checks on bilingual translations e.g. on XLIFF and TMX files

Okapi — Advanced Out-of-the Box Usage Options (Demo)

<its:rules version="1.0" xmins:its="http://www.w3.0rg/2005/11/its">

EXtraCt term Candidates <its:translateRule selector="//author” translate="no"/>

<its:translateRule selector="//title/@content” translate="yes" />
<its:withinTextRule selector="//i | //b| //u" withinText="yes"/>

Generate XLIFF for arbitrary XML it rules>

tikal -trace -x -ie UTF-8 its-example.xml

Create ITS rules

tikal -trace -x -fc okf_xml@tcWorld-its -ie UTF-8 its-example.xml
Pseudo-translate XLIFF
Check translated XLIFF

Mismatch in number of inline tags

<trans-unit id="2">

<source xml:lang="en">Open the window <g id="1">later</g>.</source>
<target xml:lang="de-de">[[[@péfi thé wifiddw .]]]</target>

<ftrans-unit>

31

LanguageTool
” Homepage
% Screenshots
3"{) A Demo

L
Languages
4 Usaae

Links & Resources

LanguageTool Open Source lanquage checker

www_languagetool.org/
Offers open source language and grammar checkers that can be installed as

OpenOffice.org extensions.
Demo - Languages - Screenshots - Development

8 Follow us on twitter

LANGUAGETOOL

32

LanguageTool — Overview

Open Source style and grammar checker (no spell checker)

English, French, German, Polish, Dutch, Romanian, and other
languages

Only knows about errors — not about correct language (rules describe
errors)

Based on NLP/LT (stemming, morphological analysis, part-of-speech
tagging)

Various usage options

33

LanguageTool — Usage Options (Explanation)

LanguageTool integration:

#LanguageTool for vim
#LanguageTool for LyX
#LanguageTool plugin for OmegaT a
#LanguageTool in CheckMate used as

Embedded (eg N OpenOfﬁce/LibreOfﬁce) #LanguageTool for Thunderbird

Stand-alone via GUI

Stand-alone via system tray

Embedded as Java library

Coupled as HTTP-accessible service (e.g. from Okapi tools)

Via output in XML-based format

34

LanguageTool — Some Out-of-the Box Usage Options (Demo

XE LanguageTool 1.5 = ﬂ@

Datei Hilfe

Dies ist ein Beispiel-Text, um zu zu zeigen, wie LanguageTool funktioniert. Wie man sieht, ist keine
Raéchtshreibprifung enthalten

LanguageTool

Ul/Stand-alone Editor

Beginne Prifung in Deutsch...

1. Zeile 1, Spalte 32

java -jar LanguageToolGUIL.jar

Text: Dies ist ein Beispiel-Text, um zu zu zeigen, wie LanguageTool funktioniert. ...

Zeit: 421ms (inklusive 16ms fur Regelprifung)
Priifung beendet, 1 magliche Probleme gefunden

Clipboard “Listener”

Bitte Textins obere Feld eintippen oder hineinkopieren

. . . Textprifen | Textsprache: | Deutsch ®
java -jar LanguageToolGUI.jar —tray v s e

Command Line

java -jar LanguageTool.jar -l en -v -b -

B¥ C:\Windows\system32\cmd.exe - java -jar LanguageTool,jar -l en -v -b - o8 @

2@11\Language Tool\LanguageTool-1.5>java —jar LanguageTool.jar -1 en -v —-h -

orial/dd] islbesUBZ] coollcool/NN:U,co0l/UB.cool/UBP.cool/JJ] coollcool/NN: 001/UB,co0l/UBP,cool/JJ,</8>IKP/>

r /NN £
WORD_REPEAT_RULE
ible typo: you repeated a word
cool
go0l coal

35

LanguageTool — Checking and Capabilities

Correct the text directly (rather than only displaying
messages and possibly suggestions)

Special mechanisms for coherency checks, and false
friends (mother tongue different from text language)

Bitext mode (allows checks like length and identity,
COpy Syntax patterns)

36

LanguageTool — Customization (Explanation)

Rules encoded in XML configuration files (easy-to-write,
and easy-to-read)

Rules written in Java (require programming know-how,
more powerful)

Adaptation of existing non-XML resources (e.g.
additions to the lexicon)

Inclusion of processing for additional languages

37

LanguageTool — Basic Customization (Demo)

rules\de\grammar.xml

<rule id="de_Terminologie_Omnibus-Bus" name="Terminologie: O
<pattern>

<l CL(Testsatz): Omnibusse fahren selten. ->

<l-- CL(Referenz): http://www.duden.de/suchen/dudenonline/
<l-- CL(Ansatz): <token>Omnibus</token> —->

<l- CL(Ansatz): <token>Omnibus|Omnibusses|Omnibusse|(
<I-- CL(Ansatz): <token regexp="yes">Omnibus|Omnibusse
<l CL(Ansatz): <token regexp="yes"> +bus|.+busses| +busg
<token inflected="yes">Omnibus</token>

</pattern>

<message>Verwende <suggestion>Bus</suggestion> statt "O
<example type="incorrect">Wir fahren glinstig mit dem <marke
<example type="correct">Wir fahren ginstig mit dem <marker>
</rule>

Datei Hilfe

Omnibusse fahren selten.

Beginne Prufung in Deutsch...

1. Zeile 1, Spalte 1

Hinweis: Verwende Bus statt "Omnibus”. Das ist kirzer.
Korrektur: Bus

Text: Omnibusse fahren selten.

Zeit: 358ms (inklusive 0ms fir Regelprifung)
Prufung beendet, 1 mogliche Probleme gefunden

Bitte Text ins obere Feld eintippen oder hineinkopieren

Textprifen | Textsprache:

[_] sprache automatisch erkennen

38

LanguageTool — Advanced Usage Option (Demo)

Server called via Rainbow / CheckMate

java -cp LanguageTool.jar de.danielnaber.languagetool.server.HTTPServer

" & Pre-Defined Pipeline : Quality Check
Quality Check

Raw Document to Filter Events = =
Quality Check ‘ General | Length | Inline Codes l Patterns I Characters | LanguageTool lTerms I Other Settings

[¥] Perform the verifications provided by the LanguageTool server
Server URL (e.g. http://localhost:3081/):
http://localhost:8081/

r1d2811\I

on port

["] Use bilingual mode
["] Auto-translate the messages from the LanguageTool checker (using Google Translate)

Quality Check Report From:

Quality Check Report

Input: file :/Userslfe“)("ad m/DeSkt(Input: file:/C:/Users/D025418/My%20Projects/tcWorld2011/Localizable_de.xIf

ID=XTXT.DATAPROVIDER.CONNECTION.NOTESTABLISHED (XTXT.DATAPROVIDER.CONNECTION.NOTESTABLISHED), segment=0:
ID=1, segment= 0: Double word: "nicht nicht" found in the target.

Translation is the same as the SOUl s: 'comnection to the server could not not be established. Flease check your connection settings or try again later.'

T: ‘*Verbindung zum Server konnte nicht nicht hergestellt werden. Priifen Sie Ihre Verbindungseinstellungen, oder versuchen Sie es spéter noch einmal.'

S: '"Text in'

ID=XTXT.DATAPROVIDER.CONNECTION.NOTESTABLISHED (XTXT.DATAPROVIDER.CONNECTION.NOTESTABLISHED), segment=0:

. int H i i it on.
T: Text in ERROR WITH LanguageTool SERVER: All LT checks are skipped from this text unit on
5: 'C to the server could not not be estcablished. Please check your connection settings or try again later.'
T: 'Verbindung zum Server konnte nicht nicht hergestellt werden. Prifen Sie Ihre Verbi 3 llungen, oder Sie es spiter noch einmal.'

ID=2, segment=0:

Vor dem Punkt sollte kein Leerzeicl p-xrxr paTapRoviDER CONNECTION.FAILED (XTXT.DATAPROVIDER. CONNECTION.FAILED), segment=0:
The target is suspiciously longer than its source (535,71% of the source).

S: . =

: 'Connection to server failed.'

T: 'Verbindung zum Server fehlgeschlagen. Versuchen Sie spiter noch einmal. Wenn das Problem dann immer noch besteht, wenden Sie sich an sapstore@sap.com.'

ID=XTXT.DATAPROVIDER.DATA.NOTRETURNED (XTXT.DATAPROVIDER.DATA.NOTRETURNED):
Missing translation.

5: 'We experienced an issue with retriving the content. Please try again. If the problem persist, please the store at -com'

T: 0

39

LanguageTool — Possible Additional Demos

More grammar/syntax rules related to simple language
java -jar LanguageTool.jar -l de -c UTF-8 -v -b -a tests\tcWorld-Fehler-deDE.txt

java -jar LanguageTool.jar -l en -c UTF-8 --api -b tests\tcWorld-abstract-enUS.txt >
tests\output.xml

40

LUCENE / SOLR

Apache Solr — Overview

Open source full text search server

Built around the Lucene full text indexing system

Can handle input documents in various formats via built-in Tika toolkit

* PDF, XML, doc, docx, ...
» Metadata from images, audio, video
* See list of supported formats at http://tika.apache.org/0.10/formats.html

Proven robustness and high performance

Configuration via XML files — no programming needed

Modules for a large number of languages (see
overview)

42

Apache Solr — Processing Concept

INPUL R

* Index the
input
(parameters
such as stop
words)

*Query the index
*Via web
mechanisms (that is:
HTTP)
*Results in various
formats (e.g. XML or
JSON)

Use

43

Apache Solr — Sample Quality Assurance Use

Via XML
configuration file,
define user-
enhanced list of
French stop words

Index corpus

Fire of queries to
detect unalloweded
terms

Solr — Canned Demo (Set up)

€ > C ® localhost:8983/solr/

Welcome to Solr!
Install Solr Solr Admin

(needs Java 1.6)

Open your browser at

€ 9 C ® localhost:8983/solr/admin/

[scHEMA] [CONFIG] [ANALYSIS] [SCHEMA BROWSER]
[stamsTics] [iveo] [pisTriBUTION] [PING] [LOGGING]
[JAVA PROPERTIES] [THREAD DUMP]

[POCUMENTATION] [ISSUE TRACKER] [SEND EMAIL]
[SOLR QUERY SYNTAX]
I Current Time: Fri Oct 14 17:11:08 CEST 2011

I Server Start At: Fri Oct 14 11:04:33 CEST 2011

45

]
Solr — Canned Demo (Add Files via HTTP)

Example URI (e.qg. for use with cURL tool)

 http://localhost:8983/solr/update/extract?
literal.id=doc1&
uprefix=attr_&
fmap.content=my_content_de
&commit=true" -F "myfile=@tutorial.pdf"

o Add tutorial.pdf to the index
« Use the field my_content_de (defined in schema.xml)

e ID of the document in the index: docl

46

Solr — Canned Demo (Add Files via Shell Script)

function list_files(Q) {
if I(test -d $1)
then echo $1; return;
fi
cd §1
for i in *
do
if test -d $i #if dictionary
then
list_files $i #recursively list files
cd ..
else
if [["$i" == *html || "$i" == *htm || "$i" == *pdf || "$i" == *doc || "$i" == *docx || "$i" == *png 1]
then
count="expr $count + 1°
echo "file no $count: $i" #Display File name
curl "http://localhost:8983/solr/update/extract?literal.id=docScount&uprefix=attr_&fmap.content=attr_content&commit=true" -F "rnyfi'le&Si"[
fi
fi
done
}
java -Ddata=args -jar post.jar "<delete><query>*:*</query></delete>"
if [$# -eq @]
then list_files .
exit @
1.
for i in §*
do
DIR=$1
list_files $DIR
shift 1 #To read next directory/file name
done

Input is a directory name

Files with specific endings are processed

Field for indexing is specified in the script — here attr_content

47

Solr — Canned Demo (Query 1)

(-: 2> C @;localhost:898:31solrlterms?l:erms_.ﬂ-

'<rolponlo> : .
. v<lst namo=" :olponlonoldor'>
G t I t f th . <int namd="status”">0%/int>
e a. IS O e : <int name="QTime">72</int> s
i xllgzx
50 most frequently T g i WO '
: ¥<lst name="attr_content”>
5 <int name="solr">1731</int>
used terms © <int napo="api®>17}9</int>
. <int name="3.4.0">1717</int>
. v...%int namev"classes’>1716«/int>.
<int nampe="all">1688</int> :
<int name="apache">1684</int> .
<int name~"foundation">1684</int>
<int name="software">1684</int>
<int name="index">1678</int>
. . €int naho=" copyriqﬁt. ">1677</ink>. .
<int name="no">1677</int>
<int namo="reserved">1676</int>
<int nape="rights"31676</int> :
<int name="use">1676</int>
<int name="overview">1675</int>
. €int naber’package’21673</int>
<int name="2011">1671</int> -
<int name="frames">1671</int> .
<int napo="noxt">1§71</int>
<int name="class">1670</int>
<int nm-'dep:ocatod'ﬂ“lotlinv
.€int name="help’>1670</int> I, ...
<int name="prev“>1670</int>
<int nabe="tree">1670</int>
<int name="2000">1669</int>
<int name="of">1245</int>
<int nape="in">998<¢/int>

48

Solr — Canned Demo (Query 2)

Search for a specific term and get

documents that contain it

€& C | ® localhost:8983/solr/select?&q=attr_content:ArabicNormalizationFilterFactory

This XML file does not appear to have any style information associated with it. The document {

v<response>
v<lst name="responseHeader">
<int name="status">0</int>
<int name="QTime">1</int>
v<lst name="params">
<str name="g">attr_content:ArabicNormalizationFilterFactory</str>
</lst>
</lst>
v<result name="response" numFound="12" start="0">
» <doc>...</doc>
» <doc>...</doc>
» <doc>...</doc>
» <doc>...</doc>
» <doc>...</doc>
» <doc>...</doc>
» <doc>...</doc>
» <doc>...</doc>
» <doc>...</doc>
» <doc>...</doc>
</result>
</response> 49

Solr — Canned Demo (Highlight Terms in Context)

& C' | ® localhost:8983/solr/select/?&q=attr_content:SPARQL&fl=attr_content&hl=true&hl.fl=attr_content

v<lst name="highlighting">
v<lst name="doc77">
v<arr name="attr_content">
v<str>
SPARQL Query Results XML Format SPARQL Query Results XML
</str>
</arr>
</lst>
v<lst name="doc78">
v<arr name="attr_content">
<str>SPARQL Protocol for RDF</str>
</arr>
</lst>
v<lst name="doc79">
v<arr name="attr_content">
v<str>
SPARQL Query Language for RDF SPARQL Query Language
</str>
</arr>
</lst>
v<lst name="doc74">
v<arr name="attr_content">
v<str>
, however, does not change that conceptual model, and thus does not affect specifications that depend on it, such as SPARQL
</str>
</arr>
</1lst>
v<lst name="doc90">

50

Solr — Canned Demo (Advanced Use — Configure via
schema.xml)

Define “fieldtypes” (and fields making use of fieldtypes) for indexing and query, e.g. language-specific

*Use standard tokenizing
*Reference (your) stop words
«Convert to lower case

<fieldType name="text_general" c

ss="solr.TextField" positionIncrementGap="100">
] <tokenizer class="solr.StandardTokenizerFactory"/>
? <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" enablePositionIncrements="true" />
<!-- in this example, we will only use synonyms at query time
<filter class="solr.SynonymFilterFactory" synonyms="index_synonyms.txt" ignoreCase="true" expand="false"/>
-l
53<Fi1ter class="solr.LowerCaseFilterFactory"/>
</analyzer>
<analyzer type="query">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter clope== StopFilterFactory" ignoreCase="true" words="stopwords.txt" enablePositionIncrements="true" />
<filter claf <field hame="1id" type="string" indexed="true" stored="true" required="true" />
<filter claf <field hame="sku" type="text_en_splitting_tight" indexed="true" stored="true" omitNorms="true"/>
</analyzer> || <field hame="name" type="text_general" indexed="true" stored="true"/>
</fieldType>| <field hame="alphaNameSort" type="alphaOnlySort" indexed="true" stored="false"/>
<field hame="manu" type="text_general" indexed="true" stored="true" omitNorms="true"/>
<field hame="cat" type="string" indexed="true" stored="true" multiValued="true"/>
<field hame="features" type="text_general" indexed="true" stored="true" multiValued="true"/>
<field hame="includes" type="text_general" indexed="true" stored="true" termVectors="true" termPo

51

Solr — Canned Demo (Language Technology Components)

General components

e http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Language specific components

e http://wiki.apache.org/solr/LanquageAnalysis

</analyzer>
<analyzer type="query">

<fieldType name="text_en" class="solr.TextField" positionIncrementGap="100">
<analyzer type="index">

<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.StopFilterFactory"
ignoreCase="true"
words="stopwords_en. txt"
enablePositionIncrements="true"
/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EnglishPossessiveFilterFactory"/>

<filter class="solr.Ke i Factory" protected="protwords.txt"/>
<filter class .PorterStemFilterFactoi

<tokenizer class="solr.StandardTokenizerFactory"/>

<filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand="true"/>

<filter class="solr.StopFilterFactory”
ignoreCase="true"
words="stopwords_en. txt"
enablePositionIncrements="true"
/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EnglishPossessiveFilterFactory"/>
<filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>
<filter class="solr.PorterStemFilterFactory"/>

</analyzer>

</fieldType>|

52

Solr — Canned Demo (field and fieldtype for German)

<fieldType ="so|r.TextFieId" positionincrementGap="100">

<analyzer type="index">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>

<filter classz"solr.SnowbaIIPorterFil@ language="German2" /> >

</analyzer>

<analyzer type="query">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>

<filter classz"solr.SnowbaIIPorterFil@ language="German2" /> >

</analyzer>

<ffieldType>

<field name="my_content_d€" type="text_de" in§exed="true" stored="true" multivValued="true"/>

53

Solr — Final Remarks

Provides many basic LT processing modules, including language

specific tasks

» Example: Tokenizer for Chinese, Japanese, Korean based on statistical model (n-gram)

Quality is not always good

Pipelines architecture of Solr allows to plug in better, alternative
modules

» Example: Better morphological analysis and word segmentation for Chinese, Japanese
and Korean

Unfortunately, alternative modules are often commercial and

expensive

54

UIMA

UIMA — Overview

NLP/LT often needs to analyze unstructured (textual) content in various steps (language
identification, tokenization, segmentation, ...)

Need for tying together and orchestrating processing components

The “Unstructured Information Management Architecture” (UIMA) is an architecture for
defining and combining components related to the processing of unstructured information

Not a piece of running software

Helps to design processing pipelines (to ease integration efforts and enhance
interoperability)

Recently UIMA became famous via the Watson text analysis system

56

UIMA — Usage Scenario

Couple Solr with the Alchemy API (allows among others for advanced language
identification or named entity extraction)

Details: http://wiki.apache.org/solr/SolrUIMA

57

CONCLUSION AND OUTLOOK

Conclusions and Outlook

Linguistic quality assurance based on NLP/LT is a reality.

The use of standards and best practices originating in text technology, frameworks
for processing pipelines, and open source offerings put it into reach for new
constituencies such as small enterprises.

The open source community, as well as stewards of standards and inclusion — such
as the World Wide Web Consortium (W3C), and the European Commission (EC) —
continue their support for easily accessible multilingual content. Two examples are
the EC-funded, and W3C-coordinated Thematic Network “Multilingual Web” (see
http://www.multilingual-web.eu) and the forthcoming MultilingualWeb-LT project.

MultilingualWeb

59

Thank You!

Contact information:

Christian Lieske Felix Sasaki
christian.lieske@sap.com felix.sasaki@dfki.de
WWW.Sap.com www.dfki.de

The authors would like to thank Daniel Naber and Yves Savourel for reviewing draft versions of this presentation.

The copyrighted picture of a lake (maybe a symbol of purity) on the first slide is courtesy of Dr. Peter Gutsche (www.silberspur.de).

60

Disclaimer

All product and service names mentioned and associated logos displayed are the trademarks of their respective companies. Data contained in this document serves informational purposes
only. National product specifications may vary.

This document may contain on[¥ intended strategies, developments, and is not intended to be binding upon the authors or their employers to any particular course of business, product
strategy, and/or development. The authors or their employers assume no responsibility for errors or omissions in this document. The authors or their employers do not warrant the accuracy
or completeness of the information, text, graphics, links, or other items contained within this material. This document is provided without a warranty of any kind, either express or implied,
including but not limited to the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

The authors_or their employers shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of
these materials. This limitation shall not apply in cases of intent or gross negligence.

The authors have no control over the information that you may access through the use of hot links contained in these materials and does not endorse your use of third-party Web pages nor
provide any warranty whatsoever relating to third-party Web pages.

61

Full Text of the Conference Proceedings

62

Content Quality Management with Open Source Language Technology
Christian Lieske, SAP AG; Felix Sasaki, DFKI/FH Potsdam

Overview

Today’s content production is high paced. In addition, it is demanding in terms of quality
and cost efficiency. Furthermore, it is distributed amongst many parties and challenging
due to vast volumes. Accordingly, quality management and quality control related
especially to textual content is in desperate need of automation. Promising automation
solutions related to the linguistic quality of mono- or multilingual textual content rely on
Natural Language Processing (NLP)/Language Technology (LT). In order to deploy
NLP/LT in real world scenarios, these scenarios need to be seamlessly coupled with, or
integrated into content production process chains.

This text - a complement to the corresponding tutorial at the tcWorld 2011 - starts
with an overview of typical linguistic quality tasks related to textual content. Afterwards
- following a short explanation of general NLP/LT concepts - it sketches NLP/LT for
linguistic quality tasks. As a basis for sustainable and solid NLP/LT, so-called Text
Technology is being surveyed. The text then moves on to observations related to the use
of NLP/LT in real world deployment scenarios.

The concepts are exemplified based on the reality in some technical communications
environments with open source offerings. In order to allow for easy follow-up, the
demonstrations use open source technology. Some tasks use examples from the realm of
language-related requirements related to accessibility (sometimes referred to as
easy/simple language).

Linguistic Quality Management and Control for Textual Content

For the purpose of this text, a distinction is made between two different dimensions of
guality management and control for textual content (samples are drawn from Web-
related content such as HTML pages):

a. Technical - Characters are displayed properly, markup is adequate, links are
correct
b. Linguistic - Spelling, grammar, style, and terminology are immaculate

A closer look at the linguistic dimension shows that it encompasses two quite different
areas: general information processing on the one hand, and linguistic assistance on the
other hand. Information processing often is tied to the initial creation of resources (e.g.
databases related to terminology, text chunks, or existing translations) whereas
linguistic assistance is mainly encountered during the actual creation of textual content
(which of course often relates to, or adapts aforementioned existing resources such as
termbases, authoring memories, or translation memories). Example activities and usage
scenarios in both areas are the following:

a. Information Processing (search, extract, or enhance; create resources)

- Generate a monolingual list of term candidates

- Align two monolingual texts (e.g. German and French) to fill a translation
memory

- Identify phone numbers, addresses etc. in order to tag them with special
markup

b. Linguistic Assistance (propose and check; help to author or translate efficiently
and properly)

- Suggest - possibly alternative - wording (based for example on entries in
termbases, or authoring/translation memories)

- Check - and possibly automatically correct - texts against rules for spelling,
terminology, grammar, or specific style rules (e.g. company-proprietary
guidelines)

- Transfer/translate text - either by reusing and possibly adapted (sub-
segment) strings, or generating via Machine Translation - from a source
language to a target language

In the realm of technical communications, very often four roles come into play in the
aforementioned activities:

e Authors want interactive assistance for creating of correcting texts

e Managers like to see numbers (e.g. quality indicators based on the number of
errors calculated by a tool) and want to use them in analytical applications

e Solution architects, terminologists and translators create resources (e.g.
termbases and formalized style rules), technical components, and processing
pipelines

e Translators want to match against termbases and translation memories

Basics of Natural Language Processing (NLP)/Language Technology (LT)

Automation related to the linguistic tasks mentioned above usually needs to go beyond
simple strings processing approaches like the use of regular expressions. In one shape
or other, linguistic knowledge - a model of the language at hand - is needed. This is the
focus of Natural Language Processing (NLP)/Language Technology (LT). To be specific,
NLP/LT most often comprises two main - very often intertangled - ingredients (the
details provided are just examples):

a. Software, that is components for

- ldentifying the language in which a text is written

- Applying tokenization rules (which break strings up into entities such as
words)

- Stemming or analyzing morphologically (which determine base forms, or
sub-entities of a compound expression)

- Applying segmentation rules (which break documents up into entities such
as sentences)

- Computing relationships between entities (e.g. one that groups words into
entities such as nominal phrases "Radio Frequency")

- Comparing a given spelling to a model that encodes the correct spelling

- Correcting an incorrect grammatical structure according to a model that
encodes the correct grammar

- Generating translations

- Covering special communication modalities (e.g. spontaneous speech)

- Matching against resources such as termbases, authoring memories or
translation memories

b. Lingware, that is formalized linguistic knowledge such as

- Astatistical model that encodes the relatively frequency of a certain
characters in a language (or script); can be used for language identification

- Aset of rules that model multiword phrases; can be used to generate term
candidates

- A set of mathematical properties (e.g. bi- or trigrams of part-of-speech tags)
that capture syntactic features; can be used to detect grammar errors

- Alexicon that captures so-called lemmatas and features (such as their
inflection paradigm); can be used for machine translation

As indicated above, lingware pertains to different entities (e.g. characters,
words/tokens/ideographs, syntactic structures, ...) and comes in two categories:
statistical or symbolic. In case the two categories are combined, the corresponding
offerings often are termed "hybrid" (e.g. "hybrid Machine Translation").

Very often you will see a separation of lower level NLP/LT (e.g. tokenizer, part-of-speech
tagger, ...) and higher level (term candidate extractor, spell checker, grammar checker,
..). The higher level NLP/LT is what ordinary users get to see.

In today's world, NLP/LT most often starts with an analysis of text. Only after the
analysis, possibly a generation of text (e.g. a correction suggestion) is triggered. A simple
approach to generation works with templates (where no syntactic structures are
generated, but only gaps are filled in a fill-in-the-blank fashion).

Tools that are categorized as "computer assisted authoring/translation” often include
approaches that originate in NLP/LT. At least initially, the focus of these tools, however,
relates to the creation and reuse of special purpose assets (such as the term candidates,
bilingual translated segments, or aligned translated documents of an individual
translator or a whole company).

Text Technology

"Text technology" is the foundation for solid and sustainable NLP/LT applications. An
example for text technology is the Unicode standard. It is being applied in many contexts
(XML, HTML, multilingual Web addresses like http://ja.wikipedia.org/wiki/ # 3{ , etc.)
and allows for content creation and processing in a wide range of languages. Thus,
Unicode support should be considered as a key feature of any NLP/LT offering. In a
sense, text technology embodies rules (e.g. for the syntax of a markup language), and
best practices related to many sub-domains (e.g. character encoding) within NLP/LT.

Text technology provides answers not only related to characters, but also to other areas:

e Content (e.g. HTML, XML, XML-based vocabularies like DocBook or DITA, ...)

o Metadata (e.g. Resource Description Framework)

e Filters, e.g. to go from general XML to XLIFF (XML Localization Interchange
File Format) based on W3C Internationalization Tag Set (ITS)

Although text technology thus is vital for real-world deployment of NLP/LT, it is often
neglected. Example: Instead of reusing an existing vocabulary, simply a new, proprietary
one is created. Luckily, however, more and more projects and offerings are dedicated to
the integration of text technology with NLP/LT. One example is the m4loc project
http://code.google.com/p/m4loc/ . It aims at integrating the statistical machine
translation engine Moses with XLIFF based localization workflows.

NLP/LT and Text Technology in real world deployment scenarios

A typical task related to linguistic quality control usually requires that several
capabilities/tools/components are seamlessly integrated into each other. A content
production process may for example require the following sequence of activities (all of
which relate to primary goals such as superb user experience, and legal compliance):

a. Find a special purpose format object such as an image represented as Scalable
Vector Graphics (SVG) in a Content Management System (CMS)

b. Convert the SVG file into more "linguistic friendly" XML (e.g. XML Localization
Interchange File Format; XLIFF)

c. Check the content of the XLIFF file for unallowed terms (either source language,
target language or both; based on a termbase that lists unallowed and allowed
terms)

d. Submit the checking result into a Business Intelligence solution (e.g. for reporting
purposes)

Accordingly, real world deployment scenarios need to answer questions related to
integration approaches, and thus need to be concerned with areas such as the following:

Formats (proprietary, Java Script Object Notation, XML, XLIFF, ...

Coupling (Object Linking and Embedding, HTTP, Web Services, ...)
Libraries/Application Programming Interfaces/Software Development Kits
Orchestration (e.g. synchronization of calls, and "bus-like" integration or
annotation framework)

oo

NLP/LT and Text Technology in the Open Source world

Remarks on Basic Due Diligence related to Open Source

Before working with open source offerings, questions such as the following should be
addressed:

a. Isthis project still alive? - Look at last version, reported bugs, fixes etc.

b. What am I allowed to do? - Look at license/license conditions

c. Isthisasolid/quality endeavor? - Look at mailing lists etc.

d. Inwhich languages are the User Interface, and User Assistance/Documentation
provided?

e. What is the quality of the documentation? Do additional books exist?

f. Which interfaces/connectors/exchange formats are supported?

g. Isthe technology behind mainstream (or is for example the programming
language one that is almost unknown)?

h. What might be the unique selling proposition of commercial offerings? - Look for
details such as supported languages, accuracy, quotes from reference customers

Okapi/Rainbow/CheckMate

Linguistic Quality Management can only be successful if it is seamlessly integrated into
an overall content production chain. Accordingly, there is very often a need to “massage”
content (e.g. to convert it), or to have content flow from one processing component to
another one.

“The Okapi Framework is a cross-platform and free open-source set of components and
applications allows process architects to build new content-related processes or
enhance existing ones while preserving compatibility and interoperability. The
framework has its roots and strengths in processes and tasks related to localization and
translation. Whenever possible, the project uses and promotes open standards.

Rainbow is an Okapi-based GUI application to launch various utilities such as: Text
extraction (to XLIFF, OmegaT projects, RTF, etc.) and merging, encoding conversion,
terms extraction, file format conversions, quality verification, translation comparison,
search and replace on filtered text, pseudo-translation, and much more. Using the
framework's pipeline mechanism, you can use Rainbow to create chains of steps that
perform specific set of tasks specific to your needs. CheckMate is an Okapi-based GUI
application that performs various quality checks on bilingual translation files such as
XLIFF, TMX.” (adapted from http://okapi.opentag.com/).

Usage scenarios covered during the tutorial:

Used characters listing
Term extraction
Conversion from proprietary XML to XLIFF based on W3C ITS

LanguageTool

LanguageTool is an Open Source style and grammar checker for English, French,
German, Polish, Dutch, Romanian, and other languages. It does not include spell
checking. LanguageTool, however, can be used for tasks related to terminology control
(adapted from http://www.languagetool.org/).

LanguageTool is based on NLP/LT concepts such as stemming and morphological
analysis, and part-of-speech (POS) tagging. It can be used out-of-the-box. In addition,

however, it is a framework for building language processing - in particular language
quality assurance - applications.

LanguageTool only knows about errors - not about correct language. All rules describe
errors.

Important features of LanguageTool are the following:
1. Various customization options

- Rules encoded in XML configuration files (easy-to-write, and easy-to-read)
- Ruleswritten in Java (require programming know-how, more powerful)

- Adaptation of existing non-XML resources (e.g. additions to the lexicon)

- Inclusion of processing for additional languages

2. Solid foundation for use and connectivity

- Embedded (e.g. in OpenOffice/LibreOffice)

- Stand-alone via GUI

- Stand-alone via system tray

- Embedded as Java library

- Coupled as HTTP-accessible service (e.g. from Okapi CheckMate)
- Viaoutput in XML-based format

3. Checking and correction capabilities

- Correct the text directly rather than only displaying messages and possibly
suggestions

- Special mechanisms for coherency checks, and false friends (mother tongue
different from text language)

- Bitext mode that allows checks like length and identity, copy syntax patterns

Usage scenarios covered during the tutorial:

e Qut-of-the box rules with various interfaces (e.g. Ul)
e Various grammar/syntax rules related to simple language
e Term checking (possibly bilingual)

Tips&Tricks that might be mentioned:

Inflection/deinflection only possible if known (to Morphy for German)
Names only used in configuration/rule selection dialogue

XML entities can be used to ensure consistent messages

Example can be used for unit testing (testrules.bat)

Additional rules can even be loaded via WebStart

Coherence rules (implemented in Java) help to ensure proper terminology

Advanced Topics that might be touched upon:

e Rule for - (use of decomposition)

Apache Solr/Apache Lucene

Apache Solr is an open source full text search server, built around the Lucene full text
indexing system. Solr’s processing concept is simple:

a. You put documents in various formats (XML, JSON, PDF, Word, ...) in; extraction
is performed via http://tika.apache.org/. Tika plays an important role in a
couple of extraction and roundtripping scenarios (e.g. in the Moses4Localization
project).

b. Solr creates an index for the documents; you can fine tune the indexing via
parameters such as stop words

c. You query the documents/search the index via the Web mechanisms (that is:
HTTP) and receive the result in various formats (e.g. XML or JSON)

Besides its robustness and high performance, key feature of Solr relevant for "linguistic
guality assurance" are the following:

e Configuration based on XML file - no programming is needed.
Example: In an XML configuration file, a field is defined that can be used for
indexing of French text. This definition related to a user-enhanced list of stop
words

e Modules for a large number of languages (see
http://wiki.apache.org/solr/LanguageAnalysis for an overview) - allows for
fulfilling the "linguistic quality assurance" task in a multilingual fashion (e.g. via
checks against lists of unallowed terms)

An example technical communications usage scenario for Solr:

You may have to assure that only allowed terms are used in a large body of text.
Solr indexes your texts. Once Solr has created the index, you do your term checks
against Solr’s index. This approach may reduce the time that is needed for your
checks down from several hours to several minutes.

Unstructured Information Management Architecture

NLP/LT often needs to analyze unstructured (textual) content in various steps
(language identification, tokenization, segmentation, ...). Thus, there is a need for tying
together and orchestrating processing components.

The “Unstructured Information Management Architecture” (UIMA) is a framework for
defining and combining components related to the processing of unstructured
information. Recently UIMA became famous via the Watson text analysis system - the
system (which is based on UIMA) won a Jeopardy competition against several "human"
Jeopardy stars.

Unlike Okapi/Rainbow/CheckMate, Language Tool or Solr, UIMA is not a framework to
use "as is". The UIMA framework itself provides no ready to use filters, language

checkers, indexing components, or the like. UIMA rather helps to design processing
pipelines. Furthermore, UIMA eases integration efforts and enhances interoperability
since it outlines interfaces between components/pipelines steps. Example: Using UIMA
(see http://wiki.apache.org/solr/SolrUIMA) Solr can be easily coupled e.g. with the
Alchemy API, which allows among others for advanced language identification or named
entity extraction.

Conclusion and Outlook

Linguistic quality assurance based on NLP/LT is a reality. The use of standards and best
practices originating in text technology, frameworks for processing pipelines, and open
source offerings put it into reach for new constituencies such as small enterprises.

The open source community, as well as the stewards of standards and inclusion - such
as the World Wide Web Consortium (W3C) and the European Commission (EC) -
continue their support for easily accessible multilingual content. Two examples are the
EC-funded, and W3C-coordinated Thematic Network “Multilingual Web” (see
http://www.multilingual-web.eu) and the forthcoming MultilingualWeb-LT project.

Appendix

Intended Demo Blocks

Linguistic checks from withing LibreOffice/OpenOffice

Term candidate generation (using frequencies) based on Solr/Lucene
Adaptation of resources for LanguageTool

Format conversions with Okapi/Rainbow

Translation-related checks with CheckMate and LanguageTool

Authors’ Addresses

Christian Lieske, SAP AG, christian.lieske@sap.com
Felix Sasaki, DFKI/FH Potsdam, felix.sasaki@dfki.de

References

References can be found in the body of the text. The authors welcome any questions
related to possible additional references.

Disclaimer

All product and service names mentioned and associated logos displayed are the
trademarks of their respective companies. Data contained in this document serves
informational purposes only. National product specifications may vary. This document
may contain only intended strategies, developments, and is not intended to be binding
upon the authors or their employers to any particular course of business, product
strategy, and/or development. The authors or their employers assume no responsibility
for errors or omissions in this document. The authors or their employers do not warrant

the accuracy or completeness of the information, text, graphics, links, or other items
contained within this material. This document is provided without a warranty of any
kind, either express or implied, including but not limited to the implied warranties of
merchantability, fitness for a particular purpose, or non-infringement. The authors or
their employers shall have no liability for damages of any kind including without
limitation direct, special, indirect, or consequential damages that may result from the
use of these materials. This limitation shall not apply in cases of intent or gross
negligence. The authors have no control over the information that you may access
through the use of hot links contained in these materials and does not endorse your use
of third-party Web pages nor provide any warranty whatsoever relating to third-party
Web pages.

