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Abstract

This paper presents a direct implementation of the three equivalence re-
lations for TBox, RBox, and ABox in OWL and has been realized in the
forward chaining engine HFC. The technique obviates the combinatorial
explosion in a semantic repository during materialization, when applying
the OWL entailment rules from ter Horst (2005) that are used in, e.g., Jena
or OWLIM. Although the approach requires some work when starting up
a repository and and querying its content, it massively pays off in the end
by showing a smaller memory footprint and allowing faster inferences, as
our measurements have shown. As a nice side effect of this approach, the
“cleanup” of ontologies can even lead to smaller repositories, as more equiv-
alence relation instances are added. Our decision to add such functionality
in HFC was motivated by experiences we have gained in former projects
that have dealt with information extraction from natural language texts,
represented in description logic ontologies.
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1 Introduction

This paper presents a direct implementation of the three equivalence relations
used for the TBox, RBox, and ABox in the language specification of OWL, viz.,
equivalentClass, equivalentProperty, and sameAs. The approach described
here has been realized in the forward chaining engine HFC that we have developed
over the last years and that is comparable to popular engines, such as OWLIM
[4] or Jena [12].
The proposed technique obviates the combinatorial explosion attributed to equiv-
alence relations in a semantic repository during materialization, when applying
the OWL entailment rules from [14]. Although the approach requires some work
when (i) starting up a repository (cleaning up data, rewriting rules) and (ii) query-
ing its content (replacing individuals by their proxies, and vice versa), it pays off
in the end by showing a smaller memory footprint and allowing faster inferences
than the standard brute-force approach which multiplies out everything.
Our decision to add such functionality in HFC was motivated by common expe-
riences we have gained in different projects, viz., querying structured knowledge
sources obtained by information extraction from natural language texts [2, 7], an-
choring facts/RDF triples in time [6], and performing description logic rule-based
reasoning over uncertain sensor data [9].

The structure of this paper is as follows. In the next section, we motivate why
it is preferable to have an optimized implementation of equivalence relations
in OWL. We then describe the implementation of our approach: the disjoint-
set data structure, the cleanup phase, the rule rewriting mechanism, and the
two querying modes. This section also contains a short description of HFC,
the forward chaining engine on which we base our implementation. After that,
measurements in the space and time domain are performed against an ontology
that is equipped with a varying number of equivalence relation instances. These
data sets are then materialized using HFC, both with and without the optimized
equivalence relation implementation. We finish this paper by giving a summary,
presenting further remarks, and relate our system to others.

2 Motivation: Equivalence Relations in OWL

In line with expressive description logics, OWL provides so-called property charac-
teristics , such as TransitiveProperty or SymmetricProperty. However, there
is no way to directly characterize a property as being an equivalence relation
which is a combination (a conjunction) of three characteristics:

A relation R on a set S is an equivalence relation if R is reflexive,
symmetric, and transitive [1], i.e.,

• ∀s ∈ S . sR s

• ∀s, t ∈ S . sR t→ t R s

• ∀s, t, u ∈ S . sR t ∧ t R u→ sR u
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We define the equivalence class [s] of s ∈ S to be the set

[s] := {t ∈ S | sR t}

OWL comes up with three predefined equivalence relations that express axioms
over individuals from the TBox, RBox, and ABox of an ontology, viz.,

1. equivalentClass

2. equivalentProperty

3. sameAs

(1.) and (2.) are often useful when it comes to merging different ontologies,
e.g., when interfacing an upper ontology with a domain-specific ontology, or by
bringing two different upper ontologies together through bridging concepts and
properties. In [6], we have shown how an upper ontology (viz., PROTON) can
be equipped with a concept of time. This was achieved by adding the following
axiom to the union of the two ontologies (PROTON and perdurant ontology):

psys:Entity ≡ fourd:TimeSlice

TimeSlice here “adds” time to the very general PROTON class Entity that pos-
sesses several hundred subclasses. Such axioms are a good thing when information
from different sites and people comes together, but clearly slows down the perfor-
mance of a semantic repository, both in the time and space domain of reasoning
and querying. Given the above example plus the information

pupp:Company v psys:Entity
apple : pupp:Company

we can legally infer that

pupp:Company v fourd:TimeSlice
apple : fourd:TimeSlice

but also

psys:Entity ≡ fourd:TimeSlice
fourd:TimeSlice ≡ fourd:TimeSlice
psys:Entity ≡ psys:Entity

is the case, due to the symmetry and reflexivity of ≡. Especially the transitive
nature of equivalence relations makes forward expansion dangerous. The exam-
ple here, however, does not involve more than two classes, lying in the same
equivalence class, and in fact, when merging TBoxes and RBoxes from different
ontologies, more than two classes or properties can be rarely found here. This,
however, is usually not the case when we turn our attention to the ABox which
interacts via entailment rules with axioms from TBox and RBox.

sameAs (plus differentFrom) is great to add some “safety” to an open world by
identifying individuals (or making them definitely different). sameAs thus is often
used in ontology-based information extraction systems which usually introduce
a new URI for each new mention of a potential individual in a natural language
text (e.g., pronoun, proper noun, noun phrases, even sentential phrases). In
a reference resolution phase, several of those individuals are recognized to be
identical, say, for example
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{apple} ≡ {apple-1}
{apple-1} ≡ {apple computer inc-1}
{apple computer inc-1} ≡ {apple inc-1}
{apple inc-1} ≡ {steve jobs company-1}

These four axiom result in an equivalence class of five URIs. Overall, material-
ization leads to 25 sameAs statements. In general, given an equivalence class [u]
for a URI u, we obtain |[u]|2 statements.
The bad thing now is that the identification of ABox individuals interact with
“ordinary” ABox statements, perhaps coming from the initial ontology, say

apple : Company
(apple, steve jobs) : hasCeo
(apple, steve jobs) : foundedBy
(apple, steve wozniak) : foundedBy
(apple, ronald wayne) : foundedBy

These five statements, plus the the five elements from [apple] result in 20 new
statements. In the worst case, a binary ABox relation instance

(s, o) : p

can lead to a lot of new statements, viz.,

|[s]| × |[o]| × |[p]| − 1

Given all this, it seems desirable to avoid such an explosion of facts.

In the remainder of this paper, we present a direct implementation of equivalence
relations in HFC, together with measurements showing that our proposal is far
superior to the native implementation.

3 Implementing Equivalence Relations in HFC

As already mentioned above, OWL provides three different equivalence rela-
tions for the TBox, RBox, and ABox of an ontology, viz., equivalentClass,
equivalentProperty, and sameAs.1 These relations are used in the entailment
rules [14] which are applied in forward engines during the materialization phase
of a repository (e.g., in OWLIM, Jena, or HFC).
Not only are these relations used in entailment or even user-defined rules, they can
also appear when a repository starts up with initial data, when several ontologies
are merged, or when ABox relation instances are added at runtime by an external
process.
Finally, when querying a repository, equivalence relation instances might appear
as (potentially underspecified) clauses in the WHERE part of a SPARQL query (or
any other query language).

1It is worth noting that our treatment can not only be applied to the three OWL relations,
but might also be used to address general equivalence relations in an OWL setting, e.g., by
explicitly characterizing a property to be an equivalenceRelation, or by making a property
an equivalence relation when it is reflexive (now in OWL 2), symmetric, and transitive at the
same time.
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Before focusing on these three problem areas, we start with a short description
of HFC which we have used as the platform for our implementation.

3.1 HFC

Usually, bottom-up forward chaining is employed to carry out (all possible) in-
ferences at compile time, so that querying information reduces to an indexing
problem at runtime. The process of making implicit information explicit is often
called materialization or computing the deductive closure of a set of ground atoms
A w.r.t. a set R of universally-quantified implications or if-then rules

B → H

Bottom-up here means that one starts from the ground atoms to which the rules
are applied, contrary to top-down approaches which start with a goal (the head
H) and potentially hypothesize intermediate goals that can hopefully be satisfied
by ground atoms finally (Prolog’s strategy). The body and the head of a rule
consist of a set of clauses, interpreted conjunctively . In HFC, clause arguments
are either constants (URIs or XSD atoms) or variables.
Closure computation can be characterized as the computation of the least fix-
point of a certain monotonic function over the complete lattice ℘(A) of the set
of all ground atoms A. Forward chaining, as we used it here, can be seen as
model building over the Herbrand interpretation of a function-free definite pro-
gram (Horn logic as used in Prolog). In general, model builders are systems that
try to construct a finite model for a given theory (usually, a set of first-order
formulae).
In order to make forward chaining scalable, HFC applies several optimization
techniques that are realized as a sequence of filter stages in order to avoid useless
RHS instantiations. This comes as a side product of the fact that closure com-
putation is a monotonic operation: new ground atoms are only added, nothing is
deleted. Consider, for instance, a rule

r = (b1 b2 → H)

and assume that r is currently applied in iteration n of the closure computation.
Due to the monotonicity argument, matching candidates Mn from A for the LHS
variables of rule r in iteration n can be decomposed into those which are brand
new at n and those which come from iteration n− 1:

Mn = N ]Mn−1

Since bindings for the variables of individual clauses are actually tables, comput-
ing a binding for all LHS variables effectively reduces to a natural join ./, known
from data base theory. Given the distinction new vs. old already mentioned, we
can compute all possible bindings for b1 b2 from the individual bindings, given N
and Mn−1:

Mn(b1 b2) = N(b1) ./ N(b2) ∪ N(b1) ./ Mn−1(b2) ∪ Mn−1(b1) ./ N(b2)
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This optimization2 massively speeds up forward chaining, since useless bindings,
leading to already instantiated triples, are no longer generated. In our case here,

Mn−1(b1) ./ Mn−1(b2)

is not computed anymore, and the set of those bindings are by far the largest in
size, when closure generation n increases. Intermediate results are even memoized
in case more than two tables are involved in order to avoid recomputation of
already computed results. This techniques not only applies to individual clauses,
but also to larger parts, so-called (LHS) clusters. HFC has included further
optimizations, e.g.,

• bindings are shared over “similar” clause, even between different rules;

• OWL equivalence relation instances in rules are efficiently handled through
offline rule rewriting and a union-find data structure (this paper);

• the LHSs of rules are reordered to faster compute matching candidates;

• the processing of individual rules can be parallelized at each fixpoint itera-
tion step by specifying the number of processor cores;

• efficient data structures, such as open-address hash tables, integer arrays
for triples, specialized sets with strategy objects to support binding/table
projection, etc., are used.

HFC has implemented several extensions that are not available in comparable
systems, such as OWLIM, some of them have eased the direct implementation of
equivalence relations in OWL:

• replacement of triples by more general tuples,

• possibility to add arbitrary tests to the LHS of a rule,

• possibility to add arbitrary actions to the RHS of a rule,

• incorporation of aggregation rules,

• incorporation of metric linear, potentially underspecified calendar time.

HFC efficiently handles ABoxes with millions of facts and provides means to work
with thousands of medium-sized ABox in parallel, an important feature that we
employ in the forward branching time approach, described in [9]. The memory
measurements that we present in the next section are related to HFC, running in
reasoning mode. To speed up rule execution, large sets of triples are maintained
for each rule that keep the distinction between old vs. new , as explained above.
When used as a pure storage engine, the memory footprint of HFC is much
smaller, e.g., less than 26GB for storing and accessing 100,000,000 triples.

2We have already applied this idea more than 10 years ago in a quite different area, viz.,
context-free approximation of unification-based grammars; see, e.g., [3].
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3.2 Disjoint-Set Data Structure

A disjoint-set data structure implements a representation for a collection of dis-
joint dynamic sets [1]. Each set represents an equivalence class [s] and s is called
the representative (or proxy) of [s]. In our case, these sets are sets of positive nat-
ural numbers (four-byte integers I, or even eight-byte long integers), representing
URIs. We maintain two mappings in our implementation, viz.,

1. uriToProxy : I 7→ I which maps an URI to its representative, and

2. proxyToUris : I 7→ 2I which enumerates those URIs lying in the same
equivalence class, given the representative (the proxy).

Both mappings are updated dynamically within cleanup phases when equivalence
relation instances (ERIs) are processed. The first mapping is employed during
input and output when new facts are imported or when a repository is queried
and URIs need to be replaced by their proxies. The second mapping is solely
used at query time in one of the output modes (proxy vs. multiply-out mode).
Even though a repository does not contain any ERIs after a cleanup (with the
notable exception of reflexive proxy instances, see section 3.3), the first mapping
is still accessed and extended during the materialization phase when the rules are
applied. Why this is so will become apparent in section 3.4.

3.3 Cleaning Up a Repository

When setting up a repository, an initial ontology might contain ERIs. The on-
tology, which we have used for our measurements below, comes up with such
statements, e.g.,

ltw:Speech Corpora ≡ ltw:Spoken Language Corpora

At runtime, e.g., during information extraction, sameAs statements are likely
to be introduced (see apple-steve jobs example above). In order to avoid the
combinatorial explosion during materialization, we need to clean up the whole
data. There are basically two strategies to achieve this,

1. either each time an ERI is detected when new information is added,

2. or at a well-defined stage when all information has been imported.

We have opted for both ways, however, in different situations. When reading in
facts (RDF triples in HFC, or even general tuples) from a file, the equivalence
class reduction is applied only at the very end of the import. Similarly, materi-
alization is followed up by a cleaning phase. When only single facts are added
by an external process, the user however decides (through the use of two specific
methods) whether data cleaning should be immediately applied or not.

Up to this point, we have used description logic syntax. From now on, we move
over to the RDF-based triple notation [10]

subject predicate object
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in order to be “closer” to the implementation, but also to avoid the description
logic distinction between unary and binary predicates in the algorithm below.
During the cleanup phase, several things happen (the implementation is more
intelligent than the pseudo code suggests, e.g., we do not simply iterate over T ):

Cleanup( ) ≡
01 global T
02 global uriToProxy
03 local P := {equivalentClass, equivalentProperty, sameAs}
04 for each t = (s p o) ∈ T
05 if p ∈ P
06 T := T \ {t}
07 UpdateUriToProxy(s, o)
08 UpdateProxyToUris(s, o)
09 UpdateUriToEqRel(s, p)
10 for each (k, v) ∈ uriToProxy
11 for each t = (s p o) ∈ T
12 if k = s or k = p or k = o
13 T := T \ {t}
14 T := T ∪ (uriToProxy(s), uriToProxy(p), uriToProxy(o))
15 for each (k, v) ∈ uriToProxy
16 T := T ∪ {(k, uriToEqRel(k), k)}

The algorithm above is quite intuitive and can be divided into three phases.
04–09 removes all ERIs from the set of all triples T , guaranteeing at the same time
that the mappings are properly updated. Three cases need to be distinguished
here (we only describe how uriToProxy is modified):3

1. both uriToProxy(s) and uriToProxy(o) are undefined
choose s as representative for both s and o: add (s, s) and (o, s).

2. either uriToProxy(s) or uriToProxy(o) is defined
say uriToProxy(s) is defined: then add (o, uriToProxy(s)).

3. both uriToProxy(s) and uriToProxy(o) are defined
union of [s] and [o] is new equivalence class: choose uriToProxy(s) as the
representative and add (u, uriToProxy(s)), for all u ∈ [o].

10–14 then replaces a URI u by its proxy uriToProxy(u), in case |[u]| > 1. This
is achieved by replacing the triple under consideration by the “proxified” triple.
Although equivalence relations are reflexive, we do not represent singleton equiv-
alence classes—this would replace a triple by itself. In our implementation, uri-
ToProxy(u) is thus undefined for |[u]| = 1.

Finally and contrary to what has been said above, 15-16 do add reflexive proxy
triples (k p k) to T , where p is one of the OWL equivalence relations. To find

3The combination of these three cases is usually called the Union operation of a disjoint-set
data structure, whereas proxyToUris ◦ uriToProxy refers to the Find operation. Thus, such a
representation is often called a union-find data structure.

8



out the “right” p, a third mapping uriToEqRel : I 7→ I is employed in our
implementation that also needs to be updated in the first phase (09). Such a
triple will do no harm as it does not interfere with the rules. However, such a
triple will become important and will be expanded in the multiply-out mode when
the repository is being asked “meta” questions, as for instance

SELECT ?o WHERE <ltw:Speech Corpora> <owl:equivalentClass> ?o

or

SELECT * WHERE ?s <owl:sameAs> ?o

3.4 Omitting and Rewriting Rules

Given the last subsection, we can be sure that after a cleanup phase, all ERIs have
been removed from a repository. Unfortunately, underspecified ERIs do occur in
the entailment rules for the “OWL Horst” dialect of OWL [14], both on the LHS
and RHS of a rule. Such ERIs are also used in the new OWL RL profile of OWL
2 [11], but we do focus here on the OWL fragment described in [14] that is used
in OWLIM, Jena, or HFC.
15 of the 23 P-entailment rules in [14] employ one of the three OWL equivalence
relations in predicate position, both in LHS and/or RHS clauses. Given what
has been said so far, it will become clear that some of the rules no longer need to
be considered, whereas others need to be rewritten. We consider the three cases
through rule examples.

3.4.1 Omitting Rules.

A rule, such as rdfp11 (HFC syntax)

?u ?p ?v

?u <owl:sameAs> ?u1

?v <owl:sameAs> ?v1

->

?u1 ?p ?v1

which copies over information from the LHS to the RHS and which is responsible
for the combinatorial explosion can now be omitted, since our approach operates
on proxies and does not consider individuals from the equivalence class of the
proxy (with the exception of the proxy itself, of course).

3.4.2 Rewriting Rules: LHS.

Rules which derive new statements without “duplicating” LHS information (see
last example), use equivalence relations as additional test patterns (LHS clauses).
The following rule signals a problem in case two individuals are regarded to be
identical and different at the same time:

?x <owl:sameAs> ?y

?x <owl:differentFrom> ?y

->
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?x <rdf:type> <owl:Nothing>

?y <rdf:type> <owl:Nothing>

Now, in case no cleanup has been performed after, say

<apple-1> <owl:differentFrom> <apple inc-1>

was added to the repository, the above rule will not fire. Even though we find
the reflexive proxy triple

<apple> <owl:sameAs> <apple>

in the repository (see above for the reason why this is so) and although both
<apple-1> and <apple inc-1> are elements of the equivalence class of <apple>,
simple symbol matching is not able to derive the two RHS bottom type assign-
ments.

In order to enforce this entailment, we automatically rewrite such rules instead
when they are read in. The above rule then becomes

?x <owl:differentFrom> ?y

->

?x <rdf:type> <owl:Nothing>

?y <rdf:type> <owl:Nothing>

@test

SameAsTest ?x ?y

The important point now is that the matching of (?x <owl:sameAs> ?y) is re-
placed by an external test which is applied after LHS clause matching, e.g., ?x
and ?y are bound, and before RHS instantiation. The test simply checks whether
the proxies for ?x and ?y are the same:

SameAsTest(x, y) ≡
return (uriToProxy(x) = uriToProxy(y))

HFC provides tests for the standard OWL equivalence relations: Equivalent-

ClassTest, EquivalentPropertyTest, and SameAsTest. The set of test can be
easily extend to address further equivalence relations.

3.4.3 Rewriting Rules: RHS.

A number of rules from [14] also produce new ERIs through their RHS patterns.
rdfp1, e.g., deals with functional object properties:

?p <rdf:type> <owl:FunctionalProperty>

?p <rdf:type> <owl:ObjectProperty>

?x ?p ?y

?x ?p ?z

->

?y <owl:sameAs> ?z

The RHS pattern enforces the values bound to ?y and ?z to be part of the same
equivalence set. What we would like to achieve here is a rule that generates a
reflexive proxy triple (see above), and at the same time unifies the equivalence
classes for ?y and ?z. In principle, this can be achieved by a test, returning
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always true, having the desired side effect (remember, tests are evaluated after
LHS clause matching). However, this would result in an empty RHS, not allowed
in HFC. Fortunately, HFC provides so-called actions , function returning values
which are bound to RHS-only variables. Given all this, the following rule is
automatically obtained:

?p <rdf:type> <owl:FunctionalProperty>

?p <rdf:type> <owl:ObjectProperty>

?x ?p ?y

?x ?p ?z

->

? actionBinder <owl:sameAs> ? actionBinder

@action

? actionBinder = SameAsAction ?y ?z

Note that ? actionBinder is a brand-new RHS-only variable which binds the
proxy for [?y] ∪ [?z] (see also footnote 3):

SameAsAction(x, y) ≡
Union(x, y)
return Find(x)

Again, HFC is shipped with predefined actions for the three OWL equivalence
relations.

It is worth noting that even though tests and actions are slightly more expensive
than ordinary LHS matching and RHS instantiation, the numbers presented in
section 4 immediately show that our approach definitely pays off.

3.5 Querying a Repository

Queries which are posed against a repository might involve URIs that have been
substituted in a cleanup swap (see section 3.3). To address this properly, they are
rewritten by replacing query URIs in WHERE and FILTER through their proxies.
Even the output of a query might be rewritten in case a user or a program
prefers the multiply-out expansion mode, instead of the more compact proxy
mode. Consider the following query which refers to the apple-jobs example from
the beginning:

SELECT ?o WHERE <apple inc-1> <owl:sameAs> ?o

Assuming that the proxy for <apple inc-1> is <apple>, the above query is trans-
lated into

SELECT ?o WHERE <apple> <owl:sameAs> ?o

Depending on the output expansion mode, either the proxy together with a
pointer to the proxyToUris mapping is returned

?o ∈ {<apple>}
or the whole equivalence set:
?o ∈ {<apple>, <apple-1>, <apple computer inc-1>, <apple inc-1>, ...}
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The size of these two representations differ quite drastically, when more than
one variable is employed. Assuming n SELECT variables, the proxy mode always
returns one n-tuple (proxy1, . . . , proxyn), whereas the multiply-out option yields
|[proxy1]| × · · · × |[proxyn]| n-tuples—quite a difference, in fact!

4 Measurements

In this section, we evaluate our proposal against ordinary forward chaining that
can be found in popular systems, such as OWLIM or Jena. Since the ap-
proach requires additional predicates and functions, a high-performance system
like OWLIM can not be (directly) extended. Unfortunately, Jena which in prin-
ciple provides these descriptive means, is not able to materialize even drastically-
smaller ontologies than the one we have used here as the starting point for our
tests. The space and time measurements utilize an ontology that is equipped
with a varying number of equivalence relation instances. These data sets are
then materialized using HFC, both with and without the optimized equivalence
relation implementation.

4.1 Ontology, Data Sets, and Setup

The numbers below are computed against the mid-size ontology that backs up
the LT-World language portal (see http://www.lt-world.org). The measurements
are obtained on a 64bit Intel Core i7 (2.8 GHz), using a 64bit Java 1.6 running in
the server mode of the virtual machine. For the experiments, we have configured
HFC with two processor cores, e.g., two entailment rules always run in parallel,
if possible.
LT-World incorporates of 1,306 classes, 209 properties, and 17,088 individuals.
The unexpanded ABox of LT-World consists of 204,959 RDF triples. LT-World
does not contain sameAs statements, but employs 205 equivalentClass and 18
equivalentProperty axioms.
The original LT-World ontology, called O0, is the starting point for our measure-
ments. By adding n randomly-generated (u <owl:sameAs> v) triples to O0, we
obtain supersets On (u, v URIs from O0). Needless to say, we make sure that
Oi ⊂ Oj is always the case, for i < j.

4.2 Numbers

Without the equivalence class reduction, O0 results in 548,132 triples. The mate-
rialization terminates in 10.2 seconds after 7 iteration steps, taking 712 MB main
memory. By switching to the optimized version, things changed to the good side,
even already for O0: 8.8 (+ 0.2) seconds and 511,047 triples. Exactly such num-
bers, viz., (i) time to materialize the ontology , (ii) time to clean up the ontology
(before and after materialization), (iii) main memory consumption, (iv) number
of iteration steps to reach the fixpoint , and (v) number of materialized triples are
depicted in the below table.
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In order to distinguish between the two versions of HFC, we attach a superscript
to the data sets: ‘+’ refers to the materialized ontology using the optimized ver-
sion of HFC, whereas ‘−’ identifies the native implementation. As the subscript
of O indicates, we perform different measurements for both versions by adding 10,
100, 1,000, 10,000, and finally 100,000 sameAs triples to the original ontology
O0.

ontology closure[sec] cleanup[sec] memory[GB] #iterations #triples

O+
0 8.8 0.2 0.71 7 511,047

O−
0 10.2 0 0.71 7 548,132

O+
10 8.8 0.2 0.71 7 510,932

O−
10 10.6 0 0.71 7 548,520

O+
100 8.7 0.2 0.71 7 509,891

O−
100 10.9 0 0.72 7 554,027

O+
1,000 8.6 0.2 0.71 7 499,024

O−
1,000 16.9 0 0.89 7 704,149

O+
10,000 6.4 0.5 0.67 9 328,221

O−
10,000 ——4 0 ——5 ——6 ——7

O+
100,000 1.6 0.9 0.49 5 118,104

O−
100,000 ——8 ——8 ——8 ——8 ——8

As one can see from the above table, we were not able to finish the experiment for
the native approach utilizing only 10,000 sameAs triples. The reason why this
experiment ended so badly came from the fact that the synthetically generated
sameAs statements were filled in subject and object positions with one of the
17,088 URIs from O0. With 10,000 sameAs ERIs, it was the case that these
ERIs heavily interacted with one another (as one expects), so that the rule for
transitive properties together with the expensive copy rule rdfp11 blew up the
materialization process.
Contrary to the native approach, the optimized version not even avoids the
combinatorial blowup attributed to equivalence relations, but can also reduce the
overall number of triples in case more sameAs triples are added (see bold numbers
above). Note that the materialization of O+

100,000 even contains less triples than
the unexpanded original ontology O0!
This seems to be strange at first sight. Why is this so? Consider the following
simple example. Assume that our repository contains both

<s1> <p> <o>

and

<s2> <p> <o>

By adding

<s1> <owl:sameAs> <s2>

4Closure computation was stopped after 5 minutes.
515 GB main memory was exceeded then.
6Iteration 4 was still ongoing and got stuck in the expensive copy rule rdfp11 for subject

and object position.
7Unknown, but rdfp11 had already produced more than 2,900,000 new triples in iteration

3, when materializing O−
10,000.

8Not tried, since O−
10,000 already failed.
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the above two statements become the same and the cardinality of the set of triples
is reduced by one.

5 Summary, Remarks, and Comparison

We hope to have shown that an explicit equivalence class reduction implemen-
tation for all three OWL equivalence relations can have a drastic effect on both
the memory footprint, but also on the materialization time of a practical triple
repository. The approach has been implemented in the forward chainer HFC and
has been profiled with a varying number of sameAs statements for the mid-size
ontology LT-World. The approach is distinguished by a separate cleaning-up
phase and a specific rule-rewriting mechanism, realized in HFC. Not even mate-
rialization benefits from this approach, but also query results can be drastically
more compact, when compared to the näıve approach, as section 3.5 has shown.

In footnote 1, we indicated that it might be useful to have a further property char-
acteristics, say EquivalenceRelation, in order to let other properties participate
in this optimization. We have also indicated that this optimization carries over
to and is already implemented for arbitrary tuples that can be used to directly
encode general n-ary relations.

To the best of our knowledge, we are not aware of “real” descriptions, presenting
the efficient implementation of all three equivalence relations in OWL in such
a detail, as done here. Some of the popular RDF stores do not look into rea-
soning very much, focussing more on efficient representation and querying (e.g.,
Virtuoso), thus do not handle such ERIs. Other forward chaining engines either
do not address equivalence class reduction (e.g., Jena) or claim to implement
certain optimizations in their commercial enterprise engines (e.g., BigOWLIM),
probably not wanting to reveal their “secrets”. The treatment of ERIs need not
be implemented within the reasoner, but can also be sourced out in a separate
module, as we have described in [8]. However, such a strategy is less efficient and
not optimal than the technique described here.

Two papers are worth to mention here which address sameAs statements in their
systems, viz., Owlgres [13] and an extension of Oracle 11g [5]. Contrary to the
system described here, both systems rely on a DB back end for efficiently storing
and querying triples. Unfortunately, nothing is said how both systems do treat
rules which involve sameAs statements directly or indirectly as we have described
in Section 3.4. Given the two papers, it seems that both systems only rely on
cleaning-up phases as we have explained in Section 3.3. Both systems as well as
ours use a standard union-find data structure to implement equivalence classes
as is common in computer science [1].

This paper presents one way of implementing an equivalence class reduction and
is clearly applicable to Jena, since test and actions can also be found in this
engine. Other systems, such as SwiftOWLIM, which do not provide custom
functionality can in principle also be equipped with such a kind of optimization,
assuming that the engine is sensitive to the “critical” rules, adds and executes
“hard-wired” functionality (i.e., programming code) during the interpretation
phase of the rules.
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