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Abstract Camera-captured, warped document images usu-
ally contain curled text-lines because of distortions caused
by camera perspective view and page curl. Warped document
images can be transformed into planar document images for
improving optical character recognition accuracy and human
readability using monocular dewarping techniques. Curled
text-lines segmentation is a crucial initial step for most of
the monocular dewarping techniques. Existing curled text-
line segmentation approaches are sensitive to geometric and
perspective distortions. In this paper, we introduce a novel
curled text-line segmentation algorithm by adapting active
contour (snake). Our algorithm performs text-line segmenta-
tion by estimating pairs of x-line and baseline. It estimates a
local pair of x-line and baseline on each connected compo-
nent by jointly tracing top and bottom points of neighboring
connected components, and finally each group of overlap-
ping pairs is considered as a segmented text-line. Our algo-
rithm has achieved curled text-line segmentation accuracy of
above 95% on the DFKI-I (CBDAR 2007 dewarping contest)
dataset, which is significantly better than previously reported
results on this dataset.
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1 Introduction

Text-line segmentation is one of the important layout analysis
steps in document image understanding systems. It is usually
applied before feeding text to an optical character recognition
(OCR) system. Text-lines information can also be used for
implementing most of the other document image processing
tasks such as binarization [1], document cleanup [2], skew
correction [3–5], zone segmentation [6], indexing/retrieval
bas on word and character recognition [7], dewarping of
camera-captured warped document images [8]. Dewarping is
relatively a new document image pre-processing step when
compared to others which are mentioned here. It is a pro-
cess of rectifying camera-captured document images that
suffer from perspective and geometric distortions. It can be
done either by applying stereo vision techniques [9] or by
using monocular dewarping techniques [8]—a dewarping
technique that is developed for images which are captured
by single camera is called a monocular dewarping technique.
Most of the stat-of-the-art monocular dewarping methods are
based on text-line segmentation.

Documents are traditionally digitized using scanners.
When a page containing straight, horizontal text-lines is
scanned, the resulting scanned image may have horizontal
or skewed text-lines owing to the paper positioning distor-
tions introduced by the scanning process, as shown in Fig. 1.
These types of document images are referred to as planar
document images. There is a large number of state-of-the-art
techniques for planar document image segmentation [10],
such as projection profile [11,12], Hough transform [13],
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Fig. 1 Examples of scanned document images. a Straight, horizontal text-lines. b Skewed text-lines (8◦ skew angle)

run-length smearing [14], Docstrum [6], branch and bound
method [15]. Most of the commercial and open-source OCR
systems work on the assumption that input document images
are planar in nature.

Nowadays cameras are available widely at low cost and
offer fast, flexible, and non-contact document imaging. These
advantages make cameras a potential substitute of scanners
for document digitization. Liang et al. [16] presented a brief
comparison between scanners and cameras and concluded
that camera-based document analysis systems are more flex-
ible than scanner-based systems. The camera-captured docu-
ment image of a planar document surface is shown in Fig. 2a,
where the captured image looks like a scanned image.

However, some image degradations come along with the
flexibility of using digital cameras for document imaging.
For a planar document surface, a digital camera can produce
a distorted image due to perspective distortion that arises
from the perspective viewpoint of the camera, as shown in
Fig. 2b. Furthermore, for a thick book page, a digital camera
can produce a distorted image because of geometric distor-
tion that is caused by the curled document surface. In such
a case, the distorted image is composed of curled text-lines
with multiple skew angles as shown in Fig. 2c. Therefore,
the quality of camera-captured document images generally
declines due to perspective and/or geometric distortions.

Camera-captured document images that contain perspec-
tive and/or geometric distortions are usually called warped
document images. The main problem with a warped docu-

ment image is that it reduces not only human readability,
but also causes problems for document image processing,
like layout analysis and character recognition. Consequently,
dewarping is a necessary step in camera-captured docu-
ment image processing. Most of the monocular dewarping
techniques are based on text-line information [8,17–22].
Therefore, text-line segmentation is an important step in cam-
era-captured document image processing.

A text-line is composed of different typographic lines, i.e.,
ascender-line, x-line, baseline, and descender-line. For each
connected component in a text-line, we defined its top point
as the coordinate of its top most pixel and bottom point as the
coordinate of its bottom most pixel. These terms, being fre-
quently used in the rest of this paper, are illustrated in Fig. 3
for a sample text-line.

Curled text-line detection in warped, camera-captured
document images (Fig. 2c) is a challenging problem. Pla-
nar document image segmentation techniques, like Doc-
strum [6], X–Y cut [12] cannot be robustly applied for curled
text-line segmentation [23]. For example, Docstrum is one
of the state-of-the-art and widely used planar/straight docu-
ment image segmentation algorithms, but it performs poorly
on warped document image segmentation as shown in Fig. 4.

In recent years, several curled text-line finding methods
are proposed in the literature [17–20,22,24–28] mainly in the
context of monocular dewarping approaches. Most of these
methods use nearest-neighbor–based grouping of connected
components for detecting text-lines, but these methods

123



Coupled snakelets for curled text-line segmentation

Fig. 2 Examples of camera-captured document images. a Straight, horizontal text-lines. b Skewed text-lines due to perspective distortion. c Curled
text-lines due to perspective and geometric distortions

Fig. 3 The typographic lines and points of a sample text-line

usually produce undersegmentation failures in the presence
of high degree of curl/skew in document images. Another
general observation about the previous approaches is that
they estimate x-line and baseline pairs after segmenting text-
lines by using regression over top and bottom points of seg-
mented text-lines, respectively, that may result in inaccurate
estimation. A brief overview of these methods is given in
Sect. 2.

In this paper, we present a curled text-line segmentation
method applying active contours (snakes) [29]. We adapt
snakes for estimating a local pair of x-line and baseline
at each connected component in a document image, where
each connected component may represent a character, a bro-
ken piece of a character, or a bunch of joined characters.
Afterward, each group of overlapping pairs is considered
as a segmented text-line that also provides x-line and base-

line information of the segmented text-line. Our curled text-
line segmentation method is less sensitive to high degree
of curl and skew in document images and produces better
segmentation results than previous curled text-line segmen-
tation approaches as shown in the performance evaluation
section (Sect. 5). Furthermore, unlike other approaches, our
algorithm performs segmentation of text-lines and estima-
tion of their x-lines and baselines together at the same time,
which also gives more precise x-lines and baselines informa-
tion than regression-based methods.

Our text-line detection algorithm is designed for hand-
held camera-captured images of isolated or bound pages that
contain straight text-lines of typed-text Latin script. As men-
tioned earlier, hand-held camera-captured images usually
suffer from perspective distortion (due to camera view angle)
and/or geometric distortion (due to curled document sur-
face). Therefore, straight text-lines in documents (as shown in
Fig. 2a) are transformed into skewed and/or curled text-lines
in camera-captured images (as shown in Fig. 2b, c, respec-
tively). Our algorithm can handle skew and/or curl angle up
to ±45◦. It can also deal with variable character sizes within
a document image with a minimum (average) character size
(length/height) of 10 pixels. Our algorithm can also work in
the presence of figures, tables, equations, and noise.

Part of the work presented in this paper was published
in [30] for timely dissemination of this work. This paper is
a substantially extended version of the previous conference
publications. Here, we have described the method in more
detail. We have also done an extensive experimental eval-
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Fig. 4 Text-line extraction results of Docstrum [6]—a state-of-the-art
planar document image segmentation technique—for a planar docu-
ment image and a curled document image. For the curled document
image, Docstrum produced a lot of segmentation errors and failed to

extract text-lines. a Planar (scanned) document image. b Accurate text-
line segmentation results of Docstrum algorithm. c Curled (camera-cap-
tured) document image. d Text-line segmentation failures of Docstrum
algorithm

uation of our method and its comparison with other state-
of-the-art techniques.

The rest of this paper is organized as follows. A brief
description of previous curled text-line segmentation
approaches is presented in Sect. 2. Our coupled snakelets
model is described in Sect. 3. Implementation details of our
curled text-line segmentation algorithm applying coupled
snakelets model are presented in Sect. 4. Performance evalu-
ation and experimental results are given in Sect. 5, followed
by a conclusion in Sect. 6.

2 Related work

Several curled text-line segmentation approaches are pro-
posed in the literature [17–20,22,24–28] for camera-captured
warped/curled document images. Most of these curled text-
lines extraction approaches are mainly proposed as a pre-

processing step of monocular dewarping of camera-captured
document images. Some of these approaches are briefly dis-
cussed here.

Goto and Aso [24] proposed a text-line segmentation
method for a document image that may contain curved text-
lines with arbitrary orientations. Their algorithm is based
on linking of locally linear components. First, the primitive
rectangles are estimated from the connected components of a
document image. Then, these rectangles are grouped together
on the basis of a predefined criteria to achieve segmented
text-lines.

Zhang et al. [17] introduced a curled text-line finding
algorithm using box-hand [31] approach. In this algorithm,
connected components are first combined to form words
using nearest-neighbor analysis. Then, a pair of left and right
rectangular box-hands are attached with each word. Each
chain of overlapping words is considered as a segmented
text-line.
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Loo and Tan [25] proposed a word and sentence extraction
method for a document image that may contain a wide vari-
ety of text-line orientations and layouts. Their algorithm is
based on the irregular pyramid structure that help in merging
characters into words and then words into sentences.

Lu and Tan [18] proposed a curled text-line segmenta-
tion approach, where top and bottom points of connected
components are first estimated by using morphological oper-
ations. Then, text-line detection is performed by tracking
either top or bottom points. For a point, left and right near-
est-neighbors are searched and this process is repeated for
neighbors until no more neighbor is found. The same process
is repeated for remaining points. Each group of connected
components is considered as a segmented text-line.

Gatos et al. [19] proposed a smearing-based curled text-
line detection algorithm. In this approach, horizontal run-
length smearing is used to combine characters into words.
The height corresponding to the maximum peak of connected
components’ height histogram (H ) is used as a threshold for
smearing. After smearing, left and right neighboring words
are searched for each word within a limited distance (D) such
that D < 5H , and the search is repeated until no more neigh-
bors are found. The same process of grouping words together
is repeated for the remaining words. Each group of words is
referred to as a segmented text-line. We have observed that
the algorithm works well on clean document images where
the parameter H can be reliably estimated. However, in the
presence of salt-and-pepper noise or a large number of bro-
ken characters, the estimated value of H is usually too small.
This badly affects the performance of their algorithm. We
have proposed a slight modification in this algorithm such
that if H is less than a predefined threshold (T ), all values
less than T are removed from the height histogram and the
height corresponding to the maximum peak of the remain-
ing histogram is selected as H . The value of T can be set
equal to the mean height of a character in a targeted dataset
of document images.

Fu et al. [20] proposed a curled text-line segmentation
technique using nearest-neighbor analysis over text-lines
portions. In this approach, portions of text-lines are first
estimated using wavelet-based enhancement technique [32].
These portions are then grouped together using nearest-
neighbor approach, where each group is considered as a seg-
mented text-line.

An active contour-based baby-snakes curled text-line seg-
mentation algorithm is introduced by Bukhari et al. [26] that
is different from coupled snakelets algorithm presented in
this paper. Active contour (snake) [29] is one of the state-
of-the-art photographic image segmentation techniques.
Baby-snakes algorithm adapts active contour for curled text-
line segmentation. In this algorithm, an input image is first
smeared by using morphological operations. Then, open-
curve slope-aligned snakes are initialized over the smeared

connected components, which are called “baby-snakes”.
External energy using gradient vector flow (GVF) [33] is
then calculated from smeared document image. This energy
is used for baby-snakes deformation. After a few number
of deformation steps, neighboring baby-snakes are joined
together. Each group of joined snakes is considered as a seg-
mented text-line.

Bukhari et al. [27,28] also introduced another curled text-
line detection technique for grayscaling camera-captured
document images, which can be equally applied on binary
images as well. In this approach, Gaussian filter bank smooth-
ing is first applied over a document image for enhanc-
ing/smoothing its text-lines structure. Then, ridge detection
method is applied on the smoothed image. Each detected
ridge represents a segmented text-line.

Oliveria et al. [22] proposed a rule-based method for
warped text-line segmentation. In this algorithm, a same-
size nearest-neighbor is found for each connected compo-
nent. All pairs are added into a priority-queue. Then, for
each pair, nearest-neighbors are iteratively searched in both
right and left directions using moving-window analysis which
holds the following conditions: same-size, smaller than win-
dow, in-between parallel line with offset, and distance is less
than maximum distance between letters. Each group of con-
nected components is referred to as a text-line. Afterward,
detected text-lines are further improved by using the follow-
ing steps. Each text-line is selected one by one in a decreasing
text-line’s length priority order, and upper and lower text-
lines are searched for its each component. Two upper and/or
lower text-lines are merged together if they satisfy some pre-
defined thresholding criteria. The final step is the removal
of those text-lines that contain connected components less
than some predefined threshold or contain connected compo-
nent on 10% of image border. Together with some predefined
threshold, all of the above italicized terms are defined using
some empirically selected values.

Most of the above curled text-lines segmentation meth-
ods (like [17–19,24,25]) are based on grouping of connected
components using some predefined nearest-neighbor criteria.
The main limitation of a nearest-neighbor-based curled text-
line finding method is that it can only handle a moderate
skew/curl angle, and it produces a number of over- and un-
dersegmentation errors under a high degree of skew/curl. In
contrast to nearest-neighbor-based text-line finding methods,
our proposed method comparatively produces less number of
undersegmentation errors. In baby-snakes method [26], the
length of baby-snakes is a sensitive parameter; the method
produces large number of oversegmentation errors for a small
length and large number of undersegmentation errors for a
comparatively big length. When compared to baby-snakes
method, our presented method does not contain that prob-
lem and results in a small number of oversegmentation and
undersegmentation errors. The curled text-line segmenta-
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tion method of Oliveria et al. [22] performs well even in
the presence of high degree of skew/curl, but it contains a
large number of free parameters. Our proposed method con-
tains around six free parameters, where most of them are
non-sensitive. We have compared the performance (Sect. 5)
of our coupled snakelets-based curled text-line segmenta-
tion method with: (i) nearest-neighbors (Gatos et al. [19]),
(ii) baby-snakes (Bukhari et al. [26]), (iii) ridges detection
(Bukhari et al. [27,28]), and (iv) rule-based (Oliveria et al.
[22]), and (v) Docstrum [6]. The main reason of selecting
these method for comparison is to show the performance of
different categories of curled text-line detection techniques
on a common dataset.

3 Coupled snakelets for curled text-line segmentation

Coupled snakelets model for curled text-line segmentation
is based on active contour (snake) [29], which is one of
the state-of-the-art image segmentation techniques in com-
puter vision. First, a brief description of basic active con-
tour (snake) model is presented in Sect. 3.1, and then salient
features of our coupled snakelets model are explained in
Sect. 3.2.

3.1 Review of active contours (snake) model

Active contour (snake) was introduced by Kass et al. [29]
for image segmentation. A snake is a closed-curve of points
S(s) = [x(s), y(s)], where s ∈ [0, 1], that moves through the
spatial domain of an image to minimize the energy function
(E):

E =
1∫

0

Eint{S(s)} + Eext{(S(s)}ds (1)

E =
1∫

0

1

2

[
α{S′(s)} + β{S′′(s)}] + Eext{S(s)}ds (2)

The snake slithers toward a targeted object under the influ-
ence of internal energy (Eint) and external energy (Eext),
where the internal energy is estimated from the snake points,
and the external energy is computed from image contents.
The internal energy tries to keep the snake’s points close to
each other and the external energy tries to move the snake
toward the boundary of a targeted object. These internal
and external energies are defined in such a way that the
snake deforms iteratively toward a targeted object and finally
wraps around the object’s boundary. Internal energy is further
decomposed into two factors: (i) S′(s) (first-order derivative
of S(s)) represents tension within snake’s points, (ii) S′′(s)
(second-order derivative of S(s)) represents rigidity within
snake’s points. The weighted parameters α and β are used

for controlling snake’s tension and rigidity, respectively. The
snake remains more rigid for a big value of β than a small
value.

The wight of the external energy can also be controlled
by a free parameter that can take a value in between 1 to 0.
In this paper, we have defined this parameter as γ . The Eq. 1
can be rewritten as:

E =
1∫

0

Eint{S(s)} + γ Eext{(S(s)}ds (3)

In general, external energy can be calculated from the
edge map of an image by using gradient, Gaussian of gradi-
ent or gradient vector flow (GVF) [33]. The gradient vectors
or Gaussian of gradient vectors have large magnitudes only
in the immediate vicinity of the edges; but these vectors are
zero in homogeneous regions where image data are nearly
constant. Therefore, the range of gradient or Gaussian of
gradient-based external energy is limited and it only exists
near the edges. In such a case, manual assistance is required
for initializing snake near a targeted object. In contrast to
these types of external energies, GVF is calculated by using
the computational diffusion of gradient vectors iteratively,
where it maintains the gradient vectors near the edges and at
the same time extends these vectors farther away from the
edges into homogeneous regions. Therefore, GVF covers a
large range of energies (gradient vectors) around edges that
helps to diverge the snake toward the boundary of a targeted
object even if it is initialized far away from the object. In
such a case, manual assistance is not required for snake ini-
tialization.

A simple toy example to illustrate the basic concept of
object’s boundary detection using active contour (snake) is
illustrated in Fig. 5. Traditional active contour mechanism
of image segmentation, which is illustrated in Fig. 5, cannot
be directly applied for text-lines segmentation in document
images as shown in the Fig. 6. In this paper, we adapt active
contour (snake) for text-line segmentation. For this purpose,
we introduced a coupled snakelets model that is derived
from active contour (snake) model. Detailed discussion
about coupled snakelets model is given in the next section
(Sect. 3.2).

3.2 Coupled snakelets model

We have introduced and added some relevant features in the
basic active contour (snake) model [29] for making it appli-
cable for text-line segmentation problem. We refer to our
adapted active contour (snake) model as coupled snakelets
model. Some salient features of coupled snakelets model are
explained below.

– Open-Curve Snake: A text-line can be represented by
a close-curve boundary around it or simply by typo-
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Fig. 5 An example of image boundary detection using active contour
(snake) model. a Image of an alphabet. b Edge map of the alpha-
bet. c GVF [33] vectors of the edge map. d Initial closecurve snake.
e Deformed snake

Fig. 6 A traditional process of active contour (snake)-based image seg-
mentation, as shown in Fig. 5, cannot be applied directly for text-line
segmentation in document images

graphic lines, for example x-line, baseline, ascender-
line or descender-line. Traditional close-curve snakes, as
show in Fig. 5d, cannot be used to find close-curve bound-
ary of a text-line due to the close proximity of a text-line
to its neighboring text-lines. We introduce the concept of
open-curve snakes for text-line segmentation.
In contrast to a close-curve snake, an open-curve snake is
a straight line snake. For example, a group of open-curve
snakes are shown in Fig. 7b.

– Multiple Snakes: Each text-line of a document image
consists of several connected components. Furthermore,
there are many text-lines in a single document image.
Coupled snakelets model uses multiple snakes to cope
with this problem. These snakes are deformed indepen-
dently with respect to one another.

– Automatic Initialization of Pair of Snakes: Coupled
snakelets model uses automatic initialization of snakes
over connected components in a document image. For
each connected component, a pair of open-curve snakes
is initialized over it such that one snake is initialized at
its top point and another one at its bottom point.
Multiple open-curve pairs of snakes that are initialized
automatically over connected components of Fig. 7a are
shown in Fig. 7b.

– External Energy Calculation from Discrete Points:
Instead of using an edge map of connected compo-
nents, coupled snakelets model uses discrete top or bot-
tom points of connected components for GVF (external
energy) calculation.

– Deformation of Snakes in Targeted Direction: In Latin
scripts, text-lines are usually horizontal in nature. Neigh-
boring snakes can be joined together for segmenting
text-lines by deforming them in vertical direction only.
Coupled snakelets model deforms a snake only in verti-
cal direction such that x-coordinates of the snake points
are kept static and y-coordinates of the snake points are
deformed with respect to the vertical components of GVF
of discrete points.
GVF vectors that represent only vertical components and
both vertical and horizontal components are shown in
Fig. 7c, d, respectively, for comparison. In coupled snak-
elets, an open-curve snake is deformed using only vertical
components of GVF vectors.

– Evolving Snakes: Coupled snakelets model introduces
the concept of evolving snake. As mentioned earlier, a pair
of snakes is initialized at each connected component. For
a connected component, both of its top and bottom snakes
are deformed independently with respect to the top and
bottom points, respectively, in evolving fashion which is
described as follows. First, a small rectangular region that
centered around the connected component is selected.
Then, the top (bottom) snake is deformed with respect
to the vertical components of GVF that is calculated
from the top (bottom) points of connected components
inside the selected area. After the first cycle of deforma-
tion, a second cycle is started such that the top (bottom)
snake’s length and the selected area are increased before
deformation. The same process is repeated for a few num-
ber of deformation cycles. The main motivation behind
this approach is that there exist a number of left, right, top,
and bottom neighboring connected components around
a particular connected component in a document image.
For a small rectangular region around the connected com-
ponent, almost all of these points belong to the same text-
lines to which the connected component belongs. For a
big rectangular region, some of these points belong to
the same text-line to which the connected component
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Fig. 7 Coupled snakelets features: a An example image, b Multiple
open-curve snakes are initialized automatically over the top and bot-
tom points of connected components, which are shown here by square
symbol (red color), c Vertical components of GVF vectors that were
calculated using top points (shown in red color, square symbol) of con-
nected components; it is visible in the enlarged portion that each of

theses vectors either points downwards or upwards with some ampli-
tude. d Both vertical and horizontal components of GVF vectors for top
points, it is visible in the enlarged portion that these vectors are pointing
toward all directions. Both of these images (c and d) are shown here for
illustration

belongs, and others belong to the neighboring top and/or
bottom text-lines. If all of these top (bottom) points within
a big rectangular region are used for external energy cal-
culation, the top (bottom) snake may deform in a wrong
upward or downward direction and may cause segmen-
tation failures. In contrast to that, evolving snake criteria
expands the top (bottom) snake in a corresponding text-
line direction even in the presence of a high degree of
skew and/or curl and prevents segmentation failures.

– Weighted-Coupled Pair of Snakes: Two or more snakes
can also be simultaneously used for a image segmentation
such that each of them is deformed independently and
then all of them are adjusted before further deformation
steps [34–36]. This type of snakes are referred to as cou-
pled snakes. Our coupled snakelets model adapts this idea
for curled text-line segmentation. Here, we exploit two
general observations of Latin script document images for
defining our coupled snakes idea:

– Observation #1: for a text-line in Latin scripts, where
ascenders are more frequent than descenders [5],
majority of the bottom points of the connected com-
ponents lie over its baseline when compared to the top
points of connected components over its x-line.

– Observation #2: within a text-line, the same distance
exists between the pair of its x-line and baseline, as
long as the complete text-line has the same font.

For a connected component, a pair of evolving snakes
is first initialized over it. Then, on the basis of observa-
tion #1, the top snake is deformed using a small weighted
percentage of the external energy of top points within a
initial selected region, and the bottom snake is deformed
using a comparatively large weighted percentage of bot-
tom points. After each deformation step, the top and bot-
tom snakes in the pair are coupled such that first the
average distance is calculated from the distances between
corresponding pairs of points in the top and bottom snakes
and then each corresponding pair of points in these snakes
is updated to make its distance equal to the average dis-
tance. This type of coupling between the top and bottom
evolving snakes is done on the basis of observation #2. In
this way, the top and bottom snakes estimate a local pair
of x-line and baseline at the connected component after
a few number of deformation cycles. The same process
is repeated for other connected components as well, and
each group of overlapping pairs of snakes represents a
segmented text-line.
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Fig. 8 Snakelets-based curled text-line segmentation algorithm

4 Curled text-line segmentation algorithm

The steps of our curled text-line segmentation algorithm on
the basis of above described coupled snakelets model are
shown in Fig. 8. Each of these steps is described here in detail.

Binarization and Noise Cleanup: An input grayscal-
ing camera-captured document image is first binarized by
using adaptive thresholding technique. The binarization
method is defined as follows: “for each pixel, the back-
ground intensity B(p) is defined as the 0.8-quantile in a
window shaped surrounding; the pixel is then classified as
background if its intensity is above this constant fraction
of B(p)”. It should be noted that this binarization scheme

is the same as used in [37]. An example binarized image
is shown in Fig. 9a. The binarized document image may
contain marginal as well as salt-and-pepper noise. A heu-
ristic-based noise cleanup process is applied as follows.
Let Hdoc and Wdoc represent the height and width of the
document image, respectively; Havg and Wavg represent the
mean height and width of connected components, respec-
tively; σH and σW represent standard deviation of heights
and widths of connected components, respectively. A con-
nected component, whose height and width are represented
by Hcc and Wcc, respectively, is removed as a large noisy
component if any of the conditions specified in Eq. 4 is true
or as a small noisy component if the condition specified in
Eq. 5 is true:

Hcc > (0.1 × Hdoc) or Hcc > (7 × σH)

Wcc > (0.1 × Wdoc) or Wcc > (7 × σW)
(4)

(Hcc × Wcc) <

(
1

3
× Havg × Wavg

)
(5)

After removing noisy connected components, let mean
width and mean height of all the remaining connected com-
ponents be represented by W and H , respectively.
Snakelets Initialization: All the connected components
of the binarized document image are marked as unpro-
cessed. Then, a connected component is selected randomly.
A pair of horizontal open-curve snakes is initialized over
the selected connected component, such that one snake is
initialized at its top point and another one at its bottom
point. By keeping the connected component at center, a
small rectangular region is also selected around it. The
initial length of the snakes (L) and the size of the rectan-
gular region (WR × HR) are selected in such a way that
both of them cover a few neighboring connected compo-
nents around the selected connected component. Let Hcc

and Wcc represent the height and width of the connected
component, respectively. L , WR, and HR are defined as:

L := Wcc + 2 × W
WR := Wcc + 4 × W
HR := Hcc + 2 × H

(6)

The main reason of selecting the width greater than the
height of the rectangular region is that text-lines in a doc-
ument are usually horizontal in nature. An example of an
initial pair of snakes and a selected rectangular region for
a connected component is shown in Fig. 9b.
Snakelets Deformation: Gradient vector flow (GVF) is
calculated by using the top points of all connected com-
ponents inside the selected region around the connected
component. Then, the top snake is deformed by using the
vertical components of the GVF with γ /2 (Eq. 3). Simi-

123



S. S. Bukhari et al.

Fig. 9 Coupled snakelets
features: illustration of evolving
and weighted coupling nature of
a pair of snakes (N = 3). Note
that the snakelets were not
mislead by the ascenders “b”
and “d” due to their coupling. a
An example image. b Initial pair
of coupled snakelets on a
connected component. c Snakes’
pair after first deformation
cycle. d Snakes’ pair after
second deformation cycle. e
Snakes’ pair after the third (last)
deformation cycle

larly, bottom snake is deformed by using the vertical com-
ponent of the GVF with γ , where the GVF is calculated
form the bottom points of all connected components within
the selected region.
Snakelets Coupling: The top and bottom snakes are com-
posed of the same number of points with similar values of
x-coordinates. For each common value of x-coordinate of
the top and bottom snakes, absolute distance is calculated
from the corresponding values of y-coordinates. Then,
average distance is computed. Now, for each common
value of x-coordinate of both snakes, the corresponding
values of y-coordinates are increased or decreased pro-
portionally such that the distance between them becomes
equal to the average distance. Snakelets coupling proce-
dure is illustrated in Fig. 10.
Snakelets Extension: First, the average slope of the pair
of snakes is calculated. Then, each of the top and bottom
snake is extended by a length equal to the average width
(W ) from both left and right sides, and the slope of these
extended lengths is kept the same as the average slope. Sim-
ilarly, the rectangular region around the connected com-
ponent is extended, such that its width and height become
twice as big compared to its previous width and height
after extension.

After snakelets deformation, coupling, and extension
steps, the first deformation cycle of the snakes’ pair is com-
pleted, which is shown in Fig. 9c. The pair of snakes is further
processed by a few number (N ) of deformation cycles. We
empirically found that three iterations of snakelets extension
are sufficient for printed Latin script documents. The results
of coupled snakelets for two more deformation cycles are
shown in Fig. 9d, e, respectively.

The pair of snakes approximates a local pair of x-line
and baseline on the connected component, as shown in
Fig. 9e. Now all the connected components that are over-
lapped/touched by the pair of snakes are marked as processed.
Afterward, the same process is repeated for another unpro-
cessed connected component and is continued until no more
unprocessed connected components are left. Some exam-
ple images with all computed pairs of coupled snakelets are
shown in Fig. 11. In these example images, each group of
overlapping/touching pairs of snakes can be considered as a
segmented text-line. In these example images, it is also vis-
ible that our method can handle a high degree of curl/skew
and different font sizes within a document image.

Coupled snakelets-based text-line segmentation algorithm
may also cause undersegmentation failures. Some examples
of undersegmentation failures of our algorithm are shown in
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Fig. 10 An illustration of
snakelets coupling procedure. a
A pair of snakelets, b The points
of the top and bottom snakelets
are adjusted with respect to the
average distance between them.
a Before snakelets coupling. b
After snakelets coupling

Fig. 11 A few example images
of curled text-line segmentation
using coupled snakelets
algorithm where a pair of snakes
estimates a local pair of x-line
and baseline and a group of
overlapping pairs of snakes
represents a segmented text-line
with its x-line and baseline
information. Our method can
handle different fonts sizes
within a document image (top
figure) and high degrees of
different directions of
curls/skews

Fig. 12a. Such type of segmentation failures occur because of
some badly deformed pairs of snakes, as marked in Fig. 12a.
By badly deformed pairs of snakes, we mean those pairs
of snakes that are not correct with respect to the estimation
of their corresponding local x-line and baseline pairs and are
not uniform with respect to their neighboring pairs of snakes.
Such type of badly deformed pairs of snakes mainly occur
because of some inherent properties of a document image:

– a document image may contain text-lines with different
starting and ending positions with respect to each other,
as shown in the left image of Fig. 12a.

– a document image may contain slightly big connected
component(s) near to comparatively small connected
component(s) as shown in the right image of Fig. 12a.

We have introduced a post-processing step for cleaning
up badly deformed pairs of snakes and for achieving better
segmentation results.

Snakelets Cleaning (post-processing): We develop the
following observations from a close examination of the
coupled snakelets (pairs of snakes) in Fig. 12a: (i) the slope
of each pair, except the marked ones, is approximately
the same as that of the neighboring pairs, (ii) the thick-
ness (average distance) of each pair, except the marked
ones, is approximately the same as that of other neigh-
boring pairs. Both or either of these observations do not
hold for badly deformed coupled snakelets as shown in
Fig. 12a. Therefore, badly deformed coupled snakelets can
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Fig. 12 Example of undersegmentation failures of our algorithm due
to badly deformed coupled snakelets and their improvement through
snakelets cleaning (post-processing) a [Left] a badly deformed coupled
snakelet due to the presence of a superscript letter in between text-lines
that have different ending positions, a [Right] a badly deformed coupled
snakelet due to a big connected component near to comparatively small

connected components. b Improved text-line segmentation results after
removing badly deformed coupled snakelets through snakelets cleaning
(post-processing). a Under-segmentation errors due to badly deformed
coupled snakelets (marked ones). b Improved text-line segmentation
results after post-processing

be removed by using slope- and thickness-based statisti-
cal analysis. Each coupled snakelet is removed as a badly
deformed pair if the difference between its slope and the
mean slope of neighboring-coupled snakelets is greater
than a predefined threshold, or if the difference between its
thickness value and the mean thickness value of neighbor-
ing coupled snakelets is greater than a predefined thresh-
old. The slope threshold can be set equal to a small value
such as 10◦ or 15◦ and can be represented by TS. The thick-
ness threshold can be relatively selected with respect to
the average height of connected components (H ) and can
be represented by TT × H . The height and length of the
neighboring window for estimating the mean thickness and
mean slope can also be relatively selected with respect to H
and can be represented by Rpp × H . Altogether, our snak-
elets cleaning (post-processing) step contains three free
parameters: TS, TT, and Rpp. The snakelets cleaning pro-
cess is applied to the examples in Fig. 12a for predefined
values of these free parameters, and the remaining cou-
pled snakelets are shown in Fig. 12b. It is clearly visible
from these examples that our post-processing cleaning step
removed badly deformed coupled snakelets and overcame
undersegmentation failures. Furthermore, in performance
evaluation (Sect. 5), we have evaluated our text-line seg-
mentation algorithm for different possible values of TS, TT,
and Rpp.
Text-Lines Labeling: As shown in Figs. 11 and 12b, each
group of overlapping or touching pairs of snakes represents
a group of connected components that belong to a par-
ticular text-line. Each group of connected components is
assigned a unique text-line label. Each small noisy compo-

nents that was removed in the noise cleanup step is assigned
the label of its nearest text-line. A few example results
of curled text-lines segmentation using coupled snakelets
algorithm followed by post-processing and text-lines label-
ing are shown in Fig. 13.
Behavior of Coupled Snakelets under Challenging
Conditions: Our algorithm is designed for text-lines seg-
mentation which cannot handle tables and/or formulas seg-
mentation, but it detects text-lines correctly even in the
presence of tables and/or formulas as shown in Fig. 14a,
b, respectively. Grayscaling camera-captured document
images are usually composed of shadows that are cap-
tured using a hand-held camera in an unconstrained envi-
ronment. A local adaptive thresholding produces a small
amount of noise from shadows, but a global threshold-
ing technique produces a large amount of shadow-based
noise. Our text-line detection algorithm starts with binari-
zation step using a local adaptive thresholding technique,
and then, it performs cleanup step in order to remove
noise (that are originated from shadows, borders, etc.) and
other non-text components (like graphics, drawings). It is
also possible that the cleanup process is unable to remove
noise and/or non-text components completely. Our algo-
rithm works well even in the presence of the remaining
amount of non-text noise and/or shadow noise as shown
in Fig. 14c, d, respectively. A binarized camera-captured
document image may contain broken or joined characters.
Coupled snakelets algorithm can give satisfactory text-
lines segmentation result under these conditions as shown
in Fig. 14e, f, respectively, until characters are broken into a
large number of pieces and/or a large number of characters
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Fig. 13 Accurate curled text-line segmentation results of coupled
snakelets algorithm for camera-captured document images of DFKI-
I (CBDAR 2007 dewarping contest) dataset. [Note: text-line segmen-
tation results are shown in color coded form using repetition of six

different colors. Two or more text-lines with same color do not neces-
sarily mean undersegmentation error. In order to avoid this confusion,
coupled snakelets are also drawn here to mention the boundary of each
segmented text-line]

are joined together. In the presence of big connected com-
ponents of joined characters, text-line segmentation results
can further be improved by using a character segmenta-
tion algorithm like dynamic-programming-based curved-
cut segmentation [38].

5 Performance evaluation

We have evaluated our coupled snakelets-based curled text-
line segmentation algorithm on publicly available DFKI-I
(CBDAR 2007 dewarping contest) dataset [39] by using Sha-
fait et al. [10] performance evaluation metrics. This section
is further divided into the following three subsections: (1)

description of hand-held camera-captured document images
DFKI-I dataset that was used in CBDAR 2007 dewarping
contest, (2) performance evaluation methodology, and (3)
performance evaluation and experimental results.

5.1 DFKI-I (CBDAR 2007 dewarping contest) dataset

DFKI-I (CBDAR 2007 dewarping contest) dataset contains
102 grayscaling and binarized document images of pages
from several technical books captured by an off-the-shelf
hand-held digital camera in a normal office environment. The
captured documents were binarized using a local adaptive
thresholding technique, which is described in [37]. Docu-
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Fig. 14 Behavior of coupled snakelets text-line detection method
under challenging conditions. Coupled snakelets-based text-line seg-
mentation algorithm segments text-lines correctly in the presence of
tables, formulas, remaining portions of non-text noise, or remaining
portion of shadow noise as shown in (a)–(d). Here, It is also important

to note that the snakelets over tables, formulas, or remaining amount of
noise produce false alarms. Coupled snakelets-based text-line segmen-
tation algorithm also work well in the presence of broken and/or joined
characters as shown in (e) and (f), respectively

ment images in this dataset consist of warped text-lines with
high degree of curl, different directions of curl within an
image, non-text (graphics, halftone, etc.) components, and a
lot of textual and non-textual border noise. The average size
of a document image in this dataset is equal to 7.8 mega-
pixels. The values of mean and standard deviation of the
length (L) and height (H ) of connected components in this
dataset are as follows: μL = 19 pixels, σL = 10 pixels,

μH = 25 pixels, σH = 9 pixels. These values give some
information about the font sizes of characters in this dataset,
because most of the connected components in this dataset
belong to text class.

Together with ASCII-text ground-truth, this dataset also
contains pixel-based ground-truth for zones, text-lines,
formulas, tables, and figures. These pixel-based ground-truth
images are embedded in color-coded form, where red chan-
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Fig. 15 An example image of DFKI-I (CBDAR 2007 dewarping con-
test) dataset [39] and its corresponding text-line-based ground-truth
image. Note that non-text elements (equation, graphics) as well as partial

text-lines from the neighboring page have been considered as “noise”
in the ground-truth. a Original Image. b Labeled text-lines

nel contains zone class information, blue channel contains
zone number (in reading order) information, and green chan-
nel contains text-line number information. Textual and non-
textual border noise are marked as noise with black color. For
the performance evaluation of text-lines segmentation algo-
rithms, we generated text-line-based ground-truth images
from the original ground-truth images. A text-lines-based
ground-truth image contains labeling only for text-lines, and
all the other foreground objects, like formulas, tables, and
figures, are marked as noise with black color. We did it auto-
matically by using original ground-truth information as fol-
lows: in an original ground-truth image, green color channel
value is zero for all pixels except those that belong to text-
lines. We marked all pixels, that contain zero value for green
color channel, as noise. An example image and its corre-
sponding text-lines-based ground-truth image is shown in
Fig. 15.

5.2 Performance evaluation methodology

Performance evaluation of a text-line segmentation algorithm
is based on vectorial performance evaluation metric that was
presented by Shafait et al. [10]. One of the importance of
these vectorial metric is that it not only represents one-
to-one segmentation accuracy, but also represents most

important classes of segmentation errors, such as over-,
under-, and miss-segmentation.

Performance evaluation metrics are described as follows.
Consider we have two segmented images, the ground-
truth G and hypothesized segmentation H . We can com-
pute a weighted bipartite graph called “pixel-correspondence
graph” between G and H for evaluating the quality of the seg-
mentation algorithm. Each node in G represents a text-line
(ground-truth component), and each node in H represents
a segmented text-line (segmented component). An edge is
constructed between two nodes such that the weight of the
edge equals the number of foreground pixels in the intersec-
tion of the regions covered by the two segments represented
by the nodes. The matching between G and H is considered
perfect if there is only one edge incident to each compo-
nent of G or H , otherwise it is not perfect, i.e., each node
in G or H may have multiple edges. The edge incident to a
node is significant if the value of wi/P ≥ tr and wi ≥ ta,
where wi is the edge-weight, P is the number of pixels cor-
responding to a node (segment), tr is a relative threshold,
and ta is an absolute threshold. In practice, tr = 0.1 and
ta = 100 are good choices for text-lines-based performance
evaluation for typed-text document images [10]. We have
also used same parameter values for the performance evalua-
tion of our coupled snakelets and other text-line segmentation
algorithms.
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Fig. 16 Curled text-line segmentation accuracy (Po2o) of our cou-
pled snakelets-based algorithm for different values of free parame-
ters, α, β, γ, TS, TT, and Rpp, on a subset of 11 images from DFKI-I

(CBDAR 2007 dewarping contest) dataset. a Accuracy vs. α and β. b
Accuracy vs. γ . c Accuracy vs. TT and TS. d Accuracy vs. Rpp

Let Ng represents total number of ground-truth compo-
nents, and Ns represents total number of segmented com-
ponents. Based on the above description, the performance
evaluation metrics are:
– Total correct segmentation (No2o): the number of one-

to-one matches between the ground-truth components
and the segmented components. The one-to-one match
accuracy is calculated by Po2o = No2o/Ng.

– Oversegmented components (Nocomp): the number of
ground-truth lines having more than one significant edge.
The percentage of oversegmented components is calcu-
lated by Pocomp = Nocomp/Ng.

– Undersegmented components (Nucomp): the number of
segmented lines having more than one significant edge.
The percentage of undersegmented components is calcu-
lated by Pucomp = Nucomp/Ng.

– Missed components (Nmcomp): the number of ground-
truth components that match the background in the
hypothesized segmentation. The percentage of missed
components is calculated by Pmcomp = Nmcomp/Ng.

– Total oversegmentations (Noseg): the number of signifi-
cant edges that ground-truth lines have minus the number
of ground-truth lines.

– Total undersegmentations (Nuseg): the number of sig-
nificant edges that segmented lines have minus the num-
ber of segmented lines.

– False alarms (Nfalarm): the number of components in the
hypothesized segmentation that did not match any fore-
ground component in the ground-truth segmentation.

5.3 Performance evaluation results

Our coupled snakelets-based curled text-line segmentation
algorithm contains three free/tunable parameters (α, β, and
γ ) for the coupled snakelets estimation, and three parameters
(TS, TT, and Rpp) for the post-processing step. All of these
parameters have been explained in detail in Sect. 3. A brief
description of these parameters are as follows. Parameters
α and β are used to control snake’s internal energy during
deformation, and γ is used to control snake’s external energy.
The parameter α is usually set to a value like 0.05, 0.5, 5, etc.
The parameter β is set to a small value when no stiffness is
required and to a large value when high snake’s stiffness is
required during deformation steps (like our coupled snak-
elets model). The possible range of values for parameter γ
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Table 1 Performance evaluation results of our coupled snakelets-based
and other previously reported curled text-line segmentation algorithms
as well as a straight text-line segmentation algorithm(Docstrum [6]) on

binary camera-captured document images of DFKI-I (CBDAR 2007
dewarping contest) dataset [39] by using performance evaluation met-
rics [10]

Algorithm Performance evaluation metricsa

Ng Ns No2o Nfalarm Nuseg Noseg Pucomp (%) Pocomp (%) Pmcomp (%) Po2o (%)

Docstrum [6]b 3,091 6,852 657 6,066 2,096 4,383 51.05 66.90 0 21.26

Nearest-Neighbor [19] 3,091 6,983 898 307,601 16 1,365 0.49 22.94 44.74 29.05

Neighbor modified [19]c 3,091 3,256 2,780 42,15 102 208 3.17 6.05 0.03 89.93

Rule-based [22] 3,091 2,924 2,816 785 57 682 1.81 21.71 4.43 91.10

Baby-snakes [26] 3,091 3,371 2,707 13,199 117 294 2.91 5.79 0 87.58

Ridges-based [27] 3,091 3,115 2,771 2,183 110 144 3.30 4.40 0.29 89.65

Coupled snakelets 3,091 3,106 2,940 3,328 51 61 1.58 1.84 0 95.12

This dataset contains 102 document images captured using hand-held camera in an uncontrolled environment
a Ng ground-truth components, Ns segmented components, No2o one-to-one matched components, Nfalarm false alarms, Nuseg undersegmentations,
Noseg: oversegmentations, Nucomp undersegmented components, Pucomp = Nucomp/Ng; Nocomp oversegmented components, Pocomp = Nocomp/Ng,
Nmcomp missed components, Pmcomp = Nmcomp/Ng, Po2o = No2o/Ng
b Docstrum [6] is used for scanned document image segmentation with straight text-lines. Here, it is used for curled text-lines segmentation to
show that: (i) straight text-lines algorithm is not directly application on camera-captured documents and (ii) the DFKI-I (CBDAR 2007 dewarping
contest) dataset is challenging with respect to curled text-lines
c The original version of Gatos et al. [19] nearest-neighbor-based curled text-line detection algorithm and our proposed modification are described
in Sect. 2

is in between 0 to 1. The parameter TS is the slope thresh-
old, TT is the relative thickness threshold (with respect to the
mean height of connected components in a document image
H ), and Rpp is the relative window size with respect to H .
Experimental results show that the post-processing step does
not require a very small value (like 0◦) or a comparatively
large value (like 45◦) for parameter TS. Similarly, the relative
values for TT and Rpp can be set in between 1 to 10.

For optimization of these parameters and showing their
effects on text-line detection accuracy, we have evaluated our
coupled snakelets-based curled text-line segmentation algo-
rithm on 11 images from the DFKI-I (CBDAR 2007 dewar-
ping contest) dataset (that start with name dsc00) for different
values of these free parameters. The one-to-one text-line seg-
mentation accuracy (Po2o) of our algorithm for the different
values of these free parameters is shown in Fig. 16. Here,
we have adopted a sequential procedure for evaluating and
optimizing the performance of our text-line detection method
with respect to the different values of these parameters. In
Fig. 16a, the text-line detection accuracy is shown for dif-
ferent values of α and β with empirically chosen values for
other parameters (γ = 1, TS = 10◦, TT = 30 pixels (abso-
lute value), Rpp = 150 pixels (absolute value)). Similarly, in
Fig. 16b, the text-line detection accuracy is represented for
different values of γ with optimized values for α = 0.05 and
β = 10, 000 (from Fig. 16a), and chosen values for other
parameters (TS = 10◦, TT = 30 pixels, Rpp = 150 pix-
els). Likewise, in Fig. 16c, the text-line detection accuracy is
shown for different values of TT and TS with optimized values
for α = 0.05, β = 10, 000, and γ = 1 (from Fig. 16a, b), and

chosen value for Rpp = 150 pixels. Finally, in Fig. 16d, the
text-line detection accuracy is shown for different values of
Rpp with optimized values for others (α = 0.05, β = 10, 000
and γ = 1, TT = 1 and TS = 10◦; from Fig. 16a–c).

From Fig. 16, we can conclude that the performance of our
text-line segmentation method is not sensitive to the values of
most of the free parameters (like α, γ, TT and Rpp), except
β and TS. The optimized values of these parameters for a
subset of 11 images from DFKI-I (CBDAR 2007 dewarping
contest) dataset are as follows: α = 0.05, β = 1,000, γ = 1,

TS = 10◦, TT = 1, and Rpp = 5.
We have compared the performance of our coupled snak-

elets-based curled text-line segmentation algorithm on the
complete dataset of DFKI-I (CBDAR 2007 dewarping con-
test) dataset with other previously reported curled text-
line segmentation algorithms: (i) nearest-neighbors (Gatos
et al. [19]), (ii) baby-snakes (Bukhari et al. [26]), (iii) ridges
detection (Bukhari et al. [27,28]), (iv) rule-based (Oliveria
et al. [22]), (v) Docstrum [6]. In the literature review (Sect. 2),
we also proposed a minor modification for the nearest-
neighbor-based algorithm [19] by introducing the free param-
eter T . The average height of a connected components in
DFKI-I (CBDAR 2007 dewarping contest) dataset is approx-
imately equal to 20; therefore, we set T = 20 for the
modified version of nearest-neighbor-based algorithm [19].
We also evaluated a straight text-line segmentation algo-
rithm (Docstrum [6]) for curled text-line segmentation from
camera-captured document images. Docstrum is one of the
state-of-the-art page segmentation algorithm for scanned
document images with straight text-lines. The main reason of
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Fig. 17 Text-line segmentation failures: Top Row the largest number
of text-line segmentation errors on some sample documents from the
DFKI-I (CBDAR 2007 dewarping contest) dataset for our coupled
snakelets algorithm. Bottom Row the corresponding results of mod-
ified version of nearest-neighbor-based curled text-line segmentation

algorithm [19] for comparison. [Note: in order to highlight the seg-
mentation results, the color-coded segmented text-lines are also under-
lined manually by black line]. a Po2o = 81.40%. b Po2o = 88.64%. c
Po2o = 69.77%. d Po2o = 86.36%

including it here is to show that how challenging the dataset
is, and that straight text-lines segmentation algorithms cannot
be directly applied for curled document images. Performance
evaluation results of all algorithms for DFKI-I (CBDAR 2007
dewarping contest) dataset are shown in Table 1.

Among all curled text-line segmentation algorithms that
are shown in Table 1, our coupled snakelets algorithm
achieved the highest percentage of one-to-one segmenta-
tion accuracy and the lowest percentages of oversegmenta-
tion and missed text-line errors. Our algorithm also achieved
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the second lowest percentage of undersegmentation errors.
Almost all of the algorithms have produced large numbers of
false-alarm errors. In general, a large number of false alarms
can be reduced by using an appropriate pre-processing or
post-processing step, for example a page boundary detection
method [2,40] can help in removing textual and non-textual
border noise.

A few sample documents from the DFKI-I (CBDAR 2007
dewarping contest) dataset having the largest number of text-
line segmentation errors for our coupled snakelets algorithm
are shown in the top row of Fig. 17, and for comparison, the
corresponding results of modified nearest-neighbor-based
algorithm [19] are shown in the bottom row of Fig. 17.
Even in these examples, our algorithm has overall performed
better than modified nearest-neighbor-based algorithm [19].
The document image in Fig. 17a contains total 43 text-lines,
and our method detected 35 of them correctly. In this exam-
ple, most of the errors belong to oversegmentation category.
These oversegmentation errors mainly occur because of big
gaps between words within some text-lines, which can be
seen in the middle of the page. The document image of
Fig. 17b contains very small gaps between text-lines, result-
ing in undersegmentation errors. For this image, our cou-
pled snakelets method detected 39 text-lines correctly out of
44 text-lines and produced some undersegmentation errors,
which can be seen in the top area of the document image in
Fig.17b.

The average size of a document image in DFKI-I (CBDAR
2007 dewarping contest) dataset is around 8 Mega-pixels,
and the average size of a character is this dataset is 19 pixels
wide (with a standard deviation of 11 pixels) and 25 pixels tall
(with a standard deviation of 9 pixels). The execution time
of our text-line detection method is directly proportional to
the size and the number of connected components in a doc-
ument image. The main problem with active contour model
is that it takes large amount of execution time because of a
large number of deformation cycles. Our coupled snakelets
model processes many snakes sequentially, and therefore it
also takes a large amount of processing time. On weighted
average with respect to the number of connected components,
our algorithm takes around 38 min per page with text-line
detection accuracy of around 95%. We have implemented
the code using Python programming language without using
any Python-specific and/or active contour–specific optimiza-
tion techniques. The execution time can be reduced by using
these types of optimization techniques, which is one of our
future research goals. Here, we have tested a basic strategy for
reducing the execution time of our method such that a docu-
ment image is downscaled for coupled snakelets calculation
and then the estimated snakelets are upscaled proportion-
ally for text-lines labeling step. Figure 18 shows the text-line
detection accuracy of our coupled snakelets method and the
corresponding average execution time for different size of

Fig. 18 The execution time and the corresponding text-line detection
accuracy of our coupled snakelets method for different downscaling
factors on DFKI-I (CBDAR 2007 dewarping contest) dataset

downscaled images for DFKI-I (CBDAR 2007 dewarping
contest) dataset. This process also demonstrates how well
our text-line segmentation algorithm can perform for small
character sizes. We have achieved around 3 times speed up
gain (i.e., 13 min per page) with around 1% reduction in text-
line detection accuracy (i.e., 94%) for around 2 times image
downscaling factor. It also shows that our algorithm can work
gracefully up to a minimum character size of around 10 pixels
wide and around 12 pixels tall.

6 Conclusion

Hand-held camera-captured document images usually con-
tain warped/curled text-lines because of geometric and/or
perspective distortions. In this paper, we introduced a novel
curled text-line segmentation algorithm by adapting active
contour (snake) [29]. We refer to our adapted active con-
tour (snake) model for text-line segmentation as coupled
snakelets. Our algorithm uses only top and bottom points of
connected components within a document image for detect-
ing text-lines. It jointly estimates a local pair of x-line and
baseline on each connected component using top and bottom
points, and then each group of overlapping and/or touching
pairs of x-line and baseline is considered as a segmented
text-line. We used DFKI-I (CBDAR 2007 dewarping con-
test) dataset [21] for performance evaluation and compared
our results with other state-of-the-art approaches: (i) near-
est-neighbors—original (Gatos et al. [19]) and our proposed
modified version, (ii) baby-snakes (Bukhari et al [26]), (iii)
ridges detection (Bukhari et al. [27,28]), (iv) rule-based
(Oliveria et al. [22]), and (v) Docstrum [6]. Our algorithm is
less sensitive to a high degree of curl and skew and produces
a less number of over- and undersegmentation errors when
compared to other state-of-the-art curled text-line segmen-
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tation methods. Unlike previous approaches, our algorithm
performs text-lines segmentation and their x-line and base-
line pairs estimation simultaneously that results in improved
segmentation with better estimation of x-lines and baseline
than other approaches. The performance evaluation results
are shown in Table 1. Our algorithms achieve the highest
one-to-one text-line segmentation accuracy when compared
to other methods. It also yields the lowest oversegmentation
and missed text-lines errors, and a smaller number of un-
dersegmentation errors. Our method contains 6 free/tunable
parameters. Most of these parameters are non-sensitive with
respect to the performance the presented method.
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