
Gaze Guided Object Recognition Using a Head-Mounted Eye Tracker

Takumi Toyama∗ Thomas Kieninger† Faisal Shafait‡

Andreas Dengel§

German Research Center for Artificial Intelligence (DFKI) GmbH, Kaiserslautern, Germany

Abstract

Wearable eye trackers open up a large number of opportunities to
cater for the information needs of users in today’s dynamic society.
Users no longer have to sit in front of a traditional desk-mounted
eye tracker to benefit from the direct feedback given by the eye
tracker about users’ interest. Instead, eye tracking can be used as
a ubiquitous interface in a real-world environment to provide users
with supporting information that they need. This paper presents
a novel application of intelligent interaction with the environment
by combining eye tracking technology with real-time object recog-
nition. In this context we present i) algorithms for guiding object
recognition by using fixation points ii) algorithms for generating
evidence of users’ gaze on particular objects iii) building a next
generation museum guide called Museum Guide 2.0 as a prototype
application of gaze-based information provision in a real-world en-
vironment. We performed several experiments to evaluate our gaze-
based object recognition methods. Furthermore, we conducted a
user study in the context of Museum Guide 2.0 to evaluate the us-
ability of the new gaze-based interface for information provision.
These results show that an enormous amount of potential exists for
using a wearable eye tracker as a human-environment interface.

CR Categories: H.5.2 [INFORMATION INTERFACES AND
PRESENTATION]: User Interfaces—Prototyping;
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Links: DL PDF

1 Introduction

Research over the last century has contributed to understanding
the nature of human attention by analyzing eye movements us-
ing eye tracking [Buswell 1935; Henderson 2003; Yarbus 1967;
Kovic et al. 2009]. As a result, eye tracking itself has emerged as
a new technology to interact with computers. Since people gen-
erally prefer simple and intuitive interaction mechanisms to com-
plicated or incomprehensible ones, any kind of interface available
today could possibly be replaced by a simpler and more intuitive
one. From this viewpoint eye tracking is a highly remarkable tech-
nology due to its immediate connection to human intuition.
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Figure 1: The SMI head-mounted eye tracker and sample views of
both cameras.

In recent years, gaze on a computer display is employed as an in-
teractive interface in a wide range of applications such as reading
of text [Biedert et al. 2010], communicating with a virtual charac-
ter [Bee et al. 2010], typing [Majaranta et al. 2009] and so on.

Wearable eye trackers available today provide a lot of opportunities
to interact with the environment around us in an intelligent way, for
instance by using eye tracking with Augmented Reality (AR). AR
presents a view of the real world whose elements are “augmented”
by computers in several ways (such as embedding signs, sounds,
etc.). Recent smartphone applications like Wikitude1 or Google
Goggles2 present a platform to overlay information about things in
the real world onto a mobile phone display.

These advances in technology are due to research in image based
object recognition - which is also one of the most rapidly develop-
ing research fields in recent years. The objective of image based
object recognition is to recognize the objects present in an image
or in a video stream in the same way as humans do. Early stud-
ies in object recognition started to employ global features such
as color or texture histograms [Haralick et al. 1973]. However,
since such global features are not robust enough to illumination or
perspective changes and occlusions, methods based on local fea-
tures took over [Zhang et al. 2007]. Local features, which are ex-
tracted from small patches of an image are widely utilized nowa-
days [Li and Allinson 2008]. In particular SIFT (Scale-invariant
feature transform) [Lowe 2004] is widely accepted due to its in-
variance to scale, orientation, and affine distortion. Based on these
methods, recognition systems can be developed that have excel-
lent robustness against lighting and position variations, background
changes, and partial occlusion [Roth 2008; Ponce et al. 2007].

In this paper, we investigate how human gaze can be used as a
new interface for AR applications. First, we develop algorithms
for guiding object recognition by using fixation points. Then, we
present how to detect users’ gaze in the context of an AR appli-
cation, given raw eye tracking data and the corresponding object
recognition results. Finally, we develop a novel AR application
namedMuseum Guide 2.0that utilizes eye tracking as an interactive
interface and recognizes objects in a real environment to demon-
strate the application of our algorithms in practice. For this pur-
pose, we utilize a head-mounted eye tracker to capture a view of
the real world. One camera captures images of the user’s eye, while
the other captures the scene in front of him as shown in Figure1.

There are some related works that also integrate the object

1http://www.wikitude.org
2http://www.google.com/mobile/goggles/



recognition system with an eye tracking application, such as
[Ishiguro et al. 2010; Bonino et al. 2009]. However, the evaluation
of the benefits of the integration is not discussed deeply in these
previous works. Here, we present a new approach for triggering the
infomation provision and the evaluation of the approach including
the user study in a practical use-case.

The basic idea ofMuseum Guide 2.0is that visitors of a museum
would wear a head mounted eye tracker while strolling through the
exhibition. Whenever the user watches any of the exhibits for a
certain duration, the system automatically presents corresponding
AR meta-information in a certain way (just like a personal human
guide might do). The main considerations that inspired us to this
application are:

• All exhibits are known and sufficient training data is available.

• Exhibits are well illuminated and the backgrounds are static
and not cluttered.

• Users watch exhibits from typical perspectives only.

Considering these aspects, we can start from a restricted scenario
that still contains a lot of challenges.

Museum Guide 2.0 works as follows: When a fixation is detected,
the image from the scene camera is piped to the object recognition
framework, which returns the name of the object the fixation points
to. Our gaze detection algorithm judges if the user’s gaze is on this
very object. In this case, Museum Guide 2.0 presents AR to the
user. In this paper, we only use pre-recorded voice data containing
additional information about the respective object for informaiton
provision. However, the way of providing information to the user
can also be alternated by another AR form, such as information
overlay using a smart phone display or so on. Once the voice data
starts playing, the user would usually concentrate and listen to it.
Consequently, the user’s gaze position may remain on the same ob-
ject or unconsciously move away from the object. Note that these
actions must not trigger another presentation. Until gaze on another
object is detected, the system keeps playing the audio data.

Although there are many different types of exhibits in a real mu-
seum, in this paper we only deal with3D, small-sizedobjects. This
is because of the following two reasons. First, the shape of a 3D
object is generally more complicated than that of a 2D object, thus
it is a more general environment to test the overall performance of
the application. Second, the entire shape of small-sized objects can
mostly be captured in one frame whereas large-sized objects typi-
cally require several frames to be captured completely when work-
ing with a fixed focal length camera. To deal with such large-sized
objects, we need a sort of compensation algorithm which adds the
required functionality to the application.

In Section 2 we describe the method we used in Museum Guide 2.0.
The experiments we conducted to evaluate the system are explained
in Section 3. In Section 4 we present our conclusion.

2 Method

2.1 Eye tracking

The goal of eye tracking is to find out what a person is looking at by
monitoring the eyes of that person. We used the iView XTM HED3

as a head-mounted monocular eye tracker in this work and therefore
briefly describe its working principle in the following paragraph.

3http://www.smivision.com/en/gaze-and-eye-tracking-
systems/products/iview-x-hed.html

Figure 2: Object recognition process. SIFT features are extracted
from images and matched between the database and the query.

The iView XTM system employs the dark pupil system for eye
tracking. In a dark pupil system the eye is illuminated by an in-
frared (IR) LED. An IR-sensitive camera watches this eye from a
fixed position (relative to the head) from a close distance. To avoid
visual disturbance for the user, LED and camera are mirrored at a
transparent glass in front of the eye and are mounted outside the
field of vision above the eyes. The eye and the face reflect this
illumination but the pupil absorbs most IR light and appears as a
high contrast dark ellipse. The image-analysis software provided
by the iView XTM system determines where the center of the pupil
is located and this is mapped to gaze position via an eye-tracking
algorithm. Dark pupil systems are versatile and easier to set up
though they also require head movement compensation.

The iView XTM requires a calibration process for each user in or-
der to establish the relationship between the position of the eye in
the camera view and a gaze point in space. We use a five-point
calibration which indicates 5 respective points which the user has
to watch owing to its quickness and accuracy. Once this process is
done appropriately, we can obtain an accurate estimate of the gaze
position.

The sampling rate of the iView XTM HED is 50 Hz and its gaze
position accuracy is0.5◦ - 1.0◦ (typ.).

2.2 Basic Object Recognition Method

In the object recognition framework, we adopt SIFT as the feature
extraction method. These features are used to find the best matched
object to a query from the database. To acquire a fast computation,
we also use Approximate Nearest Neighbour (ANN)4 for match-
ing features. A brief model of this recognition process is shown
in Figure2. First of all, we build a database consisting of features
from images of all objects to be displayed in the museum. Object
recognition is processed by finding the most similar feature from
the database when a feature from the query is given. The name of
the object which has the majority of matched features is returned as
the result.

To detect interest points of SIFT, a given image is filtered by Gaus-
sian Kernel with multiple scales of Gaussian parameterσ. Conse-
quently, interest points are detected as the maxima/minima of the
Difference of Gaussian (DoG). For further information on the SIFT
features, we like to refer to [Lowe 2004].

Since we assume the museum scenario, pictures for building up the

4http://www.cs.umd.edu/ mount/ANN/



database can be taken under the same conditions that are later given
for the runtime system as described in Section1, i.e. with the same
illumination and spatial arrangement.

The following step describes the process of building a database. For
all objects,

1. Place the object on a table in the museum.

2. A person wearing the iView XTM HED walks around the ta-
ble, thereby directing the scene camera to the object.

3. Record the video data from the scene camera.

4. Select images taken of different views from the video stream
and extract SIFT features from the images.

5. Label images with the name of the object.

The number of extracted SIFT features varies for each object. To
avoid disproportion in the number of indexed SIFT features for each
object, we use more images from the objects having fewer SIFT
features.

In the recognition phase, the image of an unknown object is given
as the query to the retrieval system. After extracting SIFT features
from the query image, our object recognition method matches them
to the closest features from the database in the feature space. For the
measurement of the distance, we use Euclidian metric. The identity
of the closest match for each feature is retrieved from the database
and a histogram is built representing how frequently a particular
identity was returned. The histogram is normalized to unit length
in order to remove disproportion of the number of features. In case
the highest value in the histogram exceeds a threshold, the identity
of the corresponding object is returned as the recognition result.
If none of the entries in the histogram exceeds the threshold, no
recognition result is returned.

The computational cost of the presented object recognition method
using local descriptors not only depends on the number of fea-
tures to be matched for each image, but also on the number of
stored/indexed features in the database. The larger the number
of indexed features, the longer the processing time. To demon-
strate in a real-time environment, it is necessary to reduce the
computational cost of matching. We use ANN to lower compu-
tational costs for matching features. In ANN, the nearest feature
to a query feature in the database is returned with a certain error
boundϵ [Indyk and Motwani 1998]. As the value ofϵ increases,
the retrieval becomes faster but probability of error also gets higher.
Thus, it is required to find a suitable value forϵ depending on the
size of the database and the number of queried features per image.

2.3 Real-Time Gaze-Based Object Recognition

In this section, we describereal-time gaze-based object recogni-
tion. The main objective here is to develop a computational model
which detects the existence of the user’s gaze on particular objects
using fixation information and images from the eye tracker and to
meet real-time requirements.

Although Museum Guide 2.0 is a simple and uncomplicated sce-
nario, it contains many challenges:

First, a significant difference to an ordinary camera or image based
object recognition framework is that we can obtain the user’s fix-
ation point which is directly connected to the user’s interest point
in the image. By taking advantage of this fact, we extend the basic
object recognition method tofixation guided object recognitionin
order to improve the performance of the recognition.

Figure 3: An illustration showing regions around the fixation point
containing a fixed number of feature points. The circles in the im-
ages represent the approximate region in each image. Note that the
distribution varies for each object depending on the complexity of
the object.

Secondly, the most primitive way to evaluate the recognition sys-
tem is to judge if the system outputs the correct name of the object
indicated by the fixation foreach frame. However, this kind of
evaluation does not consider a well-known problem, the so-called
Midas Touch problem [Jacob 1993]. Since the eyes are one of our
key perceptual organs, they provide a large amount of information.
Besides, the movements of the eye (fixations and saccades) strongly
reflect the mental process of viewing. Many saccades and fixations
are not caused by the user on purpose but are rather subconscious.
If the application responds for each frame individually, the overflow
of the user with irrelevant information would not lead to any accep-
tance towards the application. Therefore, we need to define another
criteria to evaluate the system based on the user’s gaze which can be
observed as a sequence of fixations on a particular object rather than
a fixation for each frame. Furthermore, to satisfy such a gaze-based
evaluation method, we propose the methods to detect the existence
of gaze on a particular object by using the object recognition result
of consecutive frames.

Lastly, since image processing generally requires high computa-
tional cost, we need to reduce it when we apply the system in a real-
time environment, where system reactions to user behavior should
be triggered with minimal delay. The majority of processing time
however is occupied by the SIFT feature extraction and matching.
While the processing for one fixated image area is done by the sys-
tem, other fixations might occur in the meanwhile. Queuing these
events for later processing is not suitable for a real-time system. To
catch up with real-time, we propose a compensation approach.

2.3.1 Fixation Guided Object Recognition

A quite distinct point of our object recognition system compared
to an ordinary camera or image based one is that not only images
from the scene camera but also fixation points in the images are
given from the eye tracker. A typical object recognition system has
to deal with complete images and has to perform image analysis to
locate where the object of interest is. Hence, for example, when
an image is highly cluttered, the recognition task becomes quite
hard. Unlike such a system, we can take an advantage of fixation
information which indicates the location of the object of interest.

Ideally, we would like to extract only the image of the interested
object. Although the estimation of the boundary of an object is
one of the active topics in computer vision [Pantofaru 2008], the
technology is not mature enough to be utilized in a real-time sit-
uation. Therefore, we simply crop a rectangular region from the
image centered on the fixation point and extract SIFT features from
that region. The region is chosen to be large enough to contain suf-
ficient interest points for reliable object recognition. Besides, per-
forming SIFT feature extraction on regions near the fixation point
also speeds up the feature extraction process.



Generally, the performance of object recognition relies on the num-
ber of the features extracted from the query [Kise et al. 2010].
Therefore, we selectn features closest to the fixation point for use
in object recognition. For example, when 50 is a given number for
features, the 50 closest features to the centroid are used for object
recognition as shown in Figure3. Limiting the number of features
not only enables the object recognition module to work “locally”
on the object of interest, it also speeds up the recognition process
for complex objects. Assuming thatk features were originally ex-
tracted from the rectangular region around the fixation point, the
number of features actually used for object recognition would be
min(n, k).

In addition, by expanding thisnon-weighting fixation guided recog-
nition methoddescribed above, we propose another method called
SIFT feature weighting fixation guided recognition methodthat rea-
sonably utilizes the geometrical configuration of features.

The eye position is considered as the point where the user is most
interested at that moment. In other words, the attention of the
viewer decreases as its distance from the gaze position increases.
This insight gives us the idea to weight SIFT features according to
the distance from the fixation point. Hence when building the his-
togram (see Section2.2), more weight is given to the features close
to the fixation point as compared to those far away. In thisSIFT
weighting method, we employ a Gaussian function to weight the
vote in the histogram, i.e. the weightw of the feature that has an
Euclidean distanced from the fixation point is given by

w(d) = exp (−d2

a
),

wherea is a given parameter.

Each weight is added to the corresponding identity in the histogram.
Finally, the histogram is normalized to unit length as before.

2.3.2 Gaze-Based Ground Truth Generation

In order to apply any kind of benchmarking or evaluation to the
system results, one needs to define the so called ground truth - a
manually created result that represents the ideal system output. We
need to model the time intervals, in which the user likes to get ad-
ditional information (Augmented Reality, AR) about a specific ob-
ject presented. The primitive manual tagging however, which is
made on the basis of frames, needs to deal with noise which occurs
through unconscious eye-movements and respective fixations. As
the data that we manually tag with labels are the individual frames,
the frames representing noise will also be labeled. In order to judge,
whether a fixation to a specific object can be considered as noise or
as within gaze, we need to define where the border of gaze and
non-gaze fixations are.

To identify the event of a user gazing one specific object, we ana-
lyze the stream of fixations based on the following observations:

• When we gaze at an object, thedurationis usually longer than
that for any unintentional fixation or glance.

• Gaze position usually does not stay at a fixed point while we
are gazing at an object. Instead, it moves around that object
of interest. This may be considered asnoise.

Hence, in this context we definegazeas a sequence of fixations
on one specific objectX. The number of frames on that object
X must be longer than theduration thresholdTdur

5 but may also

5To find an optimal value of this thresholdTdur , we conducted experi-
ments in which the user had to give explicit verbal feedback when he was
looking at some object with consciousness. We evaluated, which threshold

Figure 4: An example of gaze detection with noise threshold
Tnoise = 2 and duration thresholdTdur = 3.

contain a certain amount ofnoise, which we consider as fixations
on objects other thanX. We explain how gaze is detected from
manually labeled video frames in detail in the following.

Suppose we have a video stream and each frame is manually labeled
as the identity of the object being indicated by the corresponding
fixation. If there is no fixation for that frame nor an occurence
of the object in the database, the frame is labeled as “undefined”.
From frame number zero, successively the labels of the frames are
counted. When an inspected label is a defined objectX, the algo-
rithm starts to count the number (duration) of the framesFX that
have the labelX. While counting up theFX , if the number of con-
secutive frames that arenot labeled asX (considered to be “noise”)
Fnoise exceeds the noise thresholdTnoise, the sequence is dropped
(FX is set to zero). As soon as the durationFX exceeds the du-
ration thresholdTdur, the sequence starting at the first frame with
label X (where the recent counting started) is recognized as gaze
on objectX. This gaze ends at the last frame with the labelX when
the noiseFnoise exceeds the noise thresholdTnoise.

Figure 4 shows an example of gaze detection given a sequence
of labeled video frames. In this example, we set noise threshold
Tnoise = 2 and duration thresholdTdur = 3. At frame number 3,
the label“mug” appeared for the first time and we thus start count-
ing up Fmug. Until frame number 8 (where the duration reaches
Tdur), it does not contain any consecutive noise frames more than
2, thus it is recognized as gaze on the object“mug” . But for the next
sequence ofstapler-labels, the noiseFnoise exceedsTnoise before
the durationFstapler reachesTdur. Consequently, the sequence of
the frames is dropped,Fstapler is set to zero.

We investigate video and eye tracking data with varyingTnoise and
Tdur thresholds to evaluate how much detected gaze by this al-
gorithm matches expressed consciousness within our ground truth
data of attention. These experiments and their evaluation allowed
us to find suitable values of these thresholds.

2.3.3 Gaze Detection Methods Based on Recognition Re-
sults

As a criterion for evaluation,gaze-based ground truthis generated
by the process stated in the previous section. Now we need to dis-
cuss how to detect the existence of gaze from results of fixation
guided object recognition framework. Let us for now disregard the
real-time requirements and assume, that our object recognition pro-
cess is done for each frame that has a fixation. As a result every

values yielded best result w.r.t. this spoken ground truth.



(a) An example of a gaze that
is correctly detected by the
system.

(b) An example of incorrect
system output: The system
output is too late.

(c) An example of incorrect
system output: The name of
object is incorrect.

(d) An example of incor-
rect system output: The gaze
event is split up.

Figure 5: Examples of correct and incorrect system output.

such frame then contains a respective machine generated (recog-
nized) label denoting the object in focus. In the following we need
to verify whether the user’s gaze is really focusing on that object
or whether it can be considered as an unconscious glance or noise.
Therefore, we propose one plain method and two different sophis-
ticated methods to compute existence of gaze from a sequence of
fixation guided recognition results (respective labels).

1. Plain Method: This method directly returns the results from
fixation based object recognition.

2. Accumulation of Last n Frames Method: In this method,
we directly accumulate the normalized histograms (Sec-
tion 2.2) of best matches of SIFT features from each frame.
The result is returned as the identity of the object that has the
highest value in the accumulated histogram, but only if it ex-
ceeds a given threshold (otherwise as “undefined”).

3. Pseudo Ground Truth Generative Method: In this method,
the same process is applied to the recognition results that was
used to post-process manually labeled ground truth data as
described in the Section2.3.2(see Figure4). The algorithm
counts the number of frames that have the same labelX.
When the numberFX exceeds theduration thresholdTdur

before noiseFnoise exceedsnoise thresholdTnoise, gaze is
detected for objectX.

In Museum Guide 2.0, once the user’s gaze is detected by one of
these methods, the system starts to present AR. The presentation
of AR is not stopped unless new gaze on another objectX ′ (with
X ′ ̸= X) is detected, i.e. as long as these methods return either
the name of the same objectX or “undefined”, the display of AR
information remains active.

We evaluate the system by comparing the output from each of these
methods with gaze-based ground truth that was generated from
manual labels on each video stream. Generated ground truth rep-
resents a time interval, in which the user likes to get information
about a specific object. Therefore, as shown in Figure 5(a), if there
is a chronological overlap between the detected gaze and the ground
truth, it is considered as a correct output. On the other hand, if there
is no overlap, the name of object is not the same, or the event of
gaze on the object is split up, as shown in Figure 5(b), 5(c) and 5(d)
respectively, they are considered as incorrect outputs.

2.3.4 Compensation Approach for Real-time Processing

Our intended application is characterized by strong real-time re-
quirements: The user wants to get AR presentations right at the
time he is looking at an object. Ideally, the processing time of ob-
ject recognition is required to be short enough so that the entire pro-
cess catches up the real-time frame rate. However, the processing
of a given query-image (fixated part of a frame) by the SIFT based
retrieval system takes too long to process all frames (at 25 frames
per second) that are delivered by the eye tracker. Consequently, not
all fixation events can be processed and this system cannot detect
gaze correctly.

To resolve this problem, we propose acompensation approach for
real-time processing. In this approach, we prepare a standby image
to catch up to the real-time environment and to minimize the loss
of information. When a new fixation is detected, the corresponding
image is stored as the current standby image. If the object recogni-
tion framework becomes idle after a recognition process, the image
is piped to it to start over immediately. Simultaneously, the number
of frames having the same fixation is counted and the recognition
result is multiplied by it when the recognition process on that fixa-
tion has ended. This way, the recognition unit of our system will be
kept as busy as possible and thus produces as many labels for fix-
ated images as possible, while on the other hand the system always
analyzes the newest fixation image. Thus, if gaze is recognized and
AR is presented, it is based on the newest possible data.

3 Experiments and Results

To thoroughly evaluate different aspects of our real-time gaze-based
object recognition framework, we conducted a series of experi-
ments6.

1. We proposed thegaze-based ground truth generationalgo-
rithm in Section2.3.2. Thus, we conducted real-world ex-
periments with different users to evaluate suitable threshold
values for our generation algorithm (Subsection3.1).

2. Using the suitable threshold values obtained in Experiment
(1), we generatedgaze-based ground truthswhich are aimed
to be detected by our methods proposed in Section2.3.3. We
evaluated each of thegaze detection methods based on recog-
nition resultsusing the evaluation method stated in the sec-
tion. All methods and parameters were optimized for Museum
Guide 2.0 based on this evaluation (Subsection3.2).

3. We evaluated the performance of the system in a real-time
environment using thecompensation approach for real-time
processingintroduced in Section2.3.4(Subsection3.3).

4. Finally, we conducted a user study to test the overall perfor-
mance and usability of the presented real-time gaze-based ob-
ject recognition framework (Subsection3.4).

In Experiment (1) to (2), we ignore the constraints of a real-time
environment, i.e. there is sufficient time to process foreach frame
that we calloff-line analysis. The parameters and methods in Exper-
iment (3) and (4), which are processed in real-time, are optimized
based on the results from theoff-line analysis.

Before conducting the experiments, we designed our museum for
the entire experiments. As stated in Section1, we focused on 3D
and small-sized objects. The objects we used are shown in Fig-
ure 6. These objects were placed well spaced-out on a long table

6In addition to the experiments described here, we would also like to re-
fer [Toyama 2011] which presents how the object recognition performance
is improved by fixation (POR) guided object recognition method.



Figure 6: Example images of objects in our museum: The first
row (a tea packet, a photo frame, a robot pet and an electronic
dictionary), the second row (a remote control, a whiteboard marker,
a speaker and a cell phone) and the third row (a tin, a stapler, a pot
and a mug).

and all recordings and experiments were done under the same light
setting. The objects are relatively less complex and less fascinating
compared to real exhibits in a museum, therefore, the tasks are con-
sidered to be easier in a real scenario since a viewer in a museum
tends to look longer and objects have more features.

For building the database, we captured 438 images in total. As
stated in the previous section, we used more images from the ob-
jects that had less SIFT features within one image. For example,
we captured 21 images of anelectronic distionarywhich approx-
imately has 200 features in one image, whereas 55 images were
captured from atin which approximately has 40 features in one im-
age.

3.1 Validation of Gaze-Based Ground Truth Genera-
tion

In this experiment we aimed to find suitable threshold values for our
gaze-based ground truth generation algorithm by analyzing video
and gaze data.

In this analysis, five objects (a tin, a pen, a cell phone, a PC speaker
anda tea packet) were placed on a table and we asked the test per-
sons to give spoken feedback (e.g.“Now, I am looking at a pen.”)
when they were looking at objectsconsciously. This explicit ver-
bal feedback represents the ideals of generated gaze-based ground
truths. Six test persons took part in this experiment and they were
asked to look at objects at least 20 times in total. We also asked
the test persons to act as if they were browsing around a real mu-
seum, where some objects are only looked at for short time but also
not consciously. We evaluated with which threshold values the al-
gorithm generates the best overlapping result with respect to the
spoken ground truth.

We applied our gaze-based ground truth generation algorithm with
changing duration thresholdTdur and noise thresholdTnoise to the
recorded and manually labeled data. If the number of generated
ground truths by a particular combination of threshold values is
close to the number of verbal feedback, these ground truths are con-
sidered to be correctly reflecting our intentional behavior. Thus, we
compared the number of ground truths generated by the algorithm
to the amount of the verbal feedback from the test people.

We would like to identify a general tendency rather than the varia-
tion between individuals. Therefore, we average the number of the
generated ground truths for each test person. Figure7 shows the
average number of generated ground truths by changingTdur for

Figure 7: Gaze-based ground truth generated by the algorithm with
changingTdur. The dotted vertical line is drawn at duration thresh-
old 18. In the area between the two vertical solid lines (on 14 and
23, respectively), the graphs (noise threshold: 18 and 30) reach
almost flat lines.

Figure 8: Gaze-based ground truth generated by the algorithm
with changingTnoise. The dotted vertical line is drawn at dura-
tion threshold 18. All graphs converge asTnoise increases.

Tnoise = 3, Tnoise = 18, andTnoise = 30, respectively. The av-
erage amount of verbal feedback for each test person is also shown
in the figure as the horizontal dotted line, with a value of 24.5.

While Tnoise is low (noise threshold: 3), the slope on each point in
the graph is steep. Then, asTnoise becomes larger (noise threshold:
18 or 30), the graph reaches an almost flat line between respective
thresholds aroundTdur 14 and 23. Since the number of generated
ground truths on the flat area is close to the average number of ver-
bal feedbacks, theTdurs in that range are considered as candidates
for the optimalTdur with respect to the ground truth.

Figure8 shows the average number of generated ground truths with
changingTnoise for Tdur = 3, Tdur = 18 andTdur = 30, respec-
tively. All graphs converge asTnoise increases. From these graphs,
we can infer that 18 is a reasonable value forTnoise as the number
of generated ground truths remain constant from this point on.

From these observations, we can conclude that the algorithm reli-
ably generates quite similar results to the spoken ground truth with
the proper setting of threshold values. We select 18 as the optimal
threshold values for both noise and duration in a general case be-
cause this combination reflected verbal feedback well within this
experimental framework.

3.2 Evaluation of Methods for Detection of Gaze

In the previous subsection, we confirmed that the gaze-based
ground truth generated by our algorithm reasonably reflects the ver-
bally expressed consciousness. By using the ground truths gen-
erated by this algorithm, we evaluated the methods for detection
of gaze(plain method, accumulation of last n frames methodand
pseudo ground truth generative method) using the fixation guided
object recognition method.



Figure 9: The best results of each gaze detection method. The
pseudo method outperformed the other two methods.

This experiment is processed off-line so the processing time is not
considered critical here. The test video files and gaze data were
recorded from six test persons while they were strolling around our
museum and looked at objects according to their interests. Ten
video files were recorded from them and each frame was labeled
manually as the name of the object being indicated by the fixation
point. By applying the generating algorithm, 183 ground truths
were generated from them in total. We compared the generated
ground truths and detected gaze on particular objects by the system
as described in Section2.3.3. To evaluate the methods, we use re-
call R and precisionP . Since each gaze has a label (the identity of
the object being looked at), evaluation is done on a per class basis
and then averaged over all classes.

We compare all the detection methods in Figure9. In this figure,
the best results from a number of combinations of each parameter
are shown for each method. We can observe that the two sophisti-
cated methods outperformed the plain method. The accumulation
method worked well compared to the simple method, however it
was inferior to the pseudo method. The reason for this was that this
method was highly depending on the features from each frame. For
example, even if only one frame captured objectX in a sequence of
frames and the other frames did not capture any objects, the features
from X affected the entire recognition process in this method. In
this case,X is returned even though this is not considered as gaze.

Based on these experiments, we selectedpseudo ground truth gen-
erative methodandSIFT weighting methodas our gaze-based ob-
ject recognition system for Museum Guide 2.0. And the parame-
ters were set toTdur = 22 andTnoise = 14 (for the recognition
method).

3.3 Evaluation of the Approach for Real-time Process-
ing

We evaluate ourcompensation approach for real-time processing
introduced in Section2.3.4. In this experiment, we used the same
video and gaze data as in the previous experiments but sending 25
frames per second (the same frame rate as the iViewXTM) to the
gaze-based object recognition system optimized in the last subsec-
tion to simulate a real-time environment.

Figure10 shows the results obtained by the method with and with-
out the compensation approach and the result from the off-line ex-
periment (obtained in the previous subsection). The threshold val-
ues (Tdur andTnoise) for the gaze detection method with compen-
sation approach were the same as in the off-line experiment. How-
ever, we needed to use different values for the no compensation
approach. Due to its long processing time for object recognition,
the method optimized in the last section could not detect any gaze
in the no compensation approach. Generally, the optimizedTdur

Figure 10: Results of real-time simulation. Although recall drops
significantly, precision still remains at an acceptable level.

or Tnoise for the off-line system are too large as the recognition
system cannot catch up the real-time speed. Therefore, we dropped
Tdur = 6 andTnoise = 4 for the no compensation approach to
obtain a similar precision score as with the other approach. We can
observe an enormous drop of recall as compared to the results in
the off-line experiments. However, compared to the no compen-
sation approach, the method with compensation approach worked
significantly better.

We adopted the compensation approach for real-time processing
and it was used in the following user study.

3.4 User Study

To evaluate the usability of the complete system, we conducted a
user study with 23 users. The users were asked to stroll in our mu-
seum with two different guide system. One is our Museum Guide
2.0 and the other is an audio player based guide system. Audio
player based museum guides are currently used in most of the mu-
seums and therefore provide a good basis of comparison with exist-
ing technology. Usually exhibits have a tag number in front of them
and the users have to select the corresponding audio track from the
audio guide to get more information about that exhibit. The same
setup was used in our experiment by assigning a tag to each of the
twelve objects in our museum and storing the corresponding audio
information with the same tag in the audio player. The users were
asked to freely move in the museum and get information about the
object they are interested in with the help of the audio player.

After the users finished their round with the audio guide, they were
introduced to the eye tracker and the eye tracker was calibrated for
each user using the five point calibration algorithm mentioned in
Section2.1. Then, the users were asked to go around the museum
again wearing the eye tracker. Whenever the users gazed at an ex-
hibit and gaze on exhibits was detected, Museum Guide 2.0 played
a pre-recorded audio file to provide the same information as the
audio player about the gazed upon exhibit.

When the users finished their round with Museum Guide 2.0, they
were given a questionnaire to assess different aspects of the sys-
tem. A summary of user responses to the questions comparing the
gaze-based interface with the traditional audio player interface is
shown in Figures11. Since the eye tracker used in the study has
several hardware constraints (such as uncomfortable helmet, chin
rest, etc.), we referred only to a “gaze-based interface (device)” in
the questionnaire to judge the real potential of gaze-based infor-
mation provision. The results show that most of the users would
prefer to use a gaze-based device as compared to an audio player
when they go to a museum. Another interesting result was that al-



Figure 11: Responses in the user study for the question: How much
do you like a gaze-based interface (or a traditional audio player)
for getting information?

though many users were satisfied with the traditional audio player,
the mean opinion score (MOS) for Museum Guide 2.0 was 4.3 as
compared to 3.2 for an audio player.

The goal of this user study was to evaluate the effectiveness of gaze
based interface for information provision. We are planning to con-
duct a study in a real museum to more thoroughly evaluate the Mu-
seum Guide application.

4 Conclusion

This paper introduced a new interface for AR application that ef-
fectively utilizes human gaze and technologies of object recogni-
tion. First, we showed that the object recognition framework can
successfully be guided by using fixation points. Then, by detect-
ing users’ gaze on particular objects, the system could reasonably
trigger the presentation of AR. By testing Museum Guide 2.0 in a
real-world environment with our proposed compensation approach
for real-time processing, we demonstrated the feasibility of our ap-
proach. The results from user study showed that the usability of
this interface is superior to the traditional audio guide. Future work
would focus on developing this application not only for a museum
but in a wider environment. We are confident that this application
has great potential and would contribute to the development of this
technology.
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