
Re�nement trees: calculi, tools, and applications

Mihai Codescu and Till Mossakowski
{Mihai.Codescu, Till.Mossakowski}@dfki.de

DFKI GmbH Bremen

Abstract. We recall a language for re�nement and branching of for-
mal developments. We introduce a notion of re�nement tree and present
proof calculi for checking correctness of re�nements as well as their con-
sistency. Both calculi have been implemented in the Heterogeneous Tool
Set (Hets), and have been integrated with other tools like model �nders
and conservativity checkers. This technique has already been applied for
showing the consistency of a �rst-order ontology that is too large to be
tackled directly by model �nders.

1 Introduction

Consider the task of providing an implementation (or �nding a model) for a
speci�cation SP . The classical theory of re�nement [2] provides the means for
vertically decomposing this task into a sequence of re�nement steps:

SP ∼∼∼>SP1∼∼∼> . . .∼∼∼>SPn∼∼∼>P

Here, SP1, . . . , SPn are intermediate speci�cations and P is an implementa-
tion or a model description. For large speci�cations, this quickly becomes un-
manageable. Horizontal decomposition allows the splitting of an implementation
task into manageable subtasks [18] that can be implemented independently (by
separate people). This leads to a re�nement tree, with leaves being speci�cations
that can be implemented directly.

SP ∼∼∼>

SP1 ∼∼∼> P1

...

SPn ∼∼∼>

SPn1 ∼∼∼>

{
SPn11 ∼∼∼> Pn11

· · ·
SPnm κnm

∼∼∼∼> Pnm

This approach is not only applicable for formal software development (where
the leaves of the tree are programs), but also for �nding models of larger theories
like upper ontologies. Note that the latter is a challenge: recently a contest for
showing (in)consistency of the ontology SUMO has been set up [16]. We propose
using re�nement trees as a way for managing this task; the leaves of the trees
then are small theories whose consistency can be proved using an automated
model �nder.

We recall a language for expressing re�nements and branching of formal de-
velopments from [13] in Sect. 2 using an example application from [3]. Section 3
formally introduces re�nement trees, and section 4 recalls the semantics of re�ne-
ments and their parts. Section 5 contains our main contribution, a calculus for
checking correctness of re�nement trees. Moreover, we implement the calculus in
a tool that also integrates model �nders and other tools. Section 6 provides a cal-
culus for consistency of (possibly architectural) re�nements, which already has
been successfully applied for showing the consistency of the DOLCE [7] upper
ontology. Section 7 concludes the paper.

2 The CASL Re�nement Language: Syntax

The Common Algebraic Speci�cation Language CASL [15] has been designed
by the �Common Framework Initiative for Algebraic Speci�cation and Develop-
ment� with the goal to unify the many previous algebraic speci�cation languages
and to provide a standard language for the speci�cation and development of
modular software systems. CASL has been designed in orthogonal layers:

1. basic speci�cations provide means for writing speci�cations of the individ-
ual software modules. The underlying logic of CASL is multi-sorted �rst-order
logic with equality, partial functions and induction principles for datatypes;

2. structured speci�cations allow to organize large speci�cations in a mod-
ular way;

3. architectural speci�cations [4] describe, in contrast to the previous layer,
the structure of the implementation of a software system, given by a (possible
structured) speci�cation of the requirements.

4. libraries of speci�cations allow storage and retrieval of named speci�ca-
tions.

The orthogonality of layers means that the syntax and semantics of each
layer are independent of those of the others. In particular, this allows to replace
the layer of CASL basic speci�cations with a completely di�erent logic without
having to modify the other layers. This is achieved in a mathematically sound
way by using the formalization of the notion of logical system as institutions [8]
and de�ning the semantics of structured and architectural speci�cations in an
institution-independent way. CASL is supported by the Heterogeneous Tool Set
(Hets) [14], that collects parsing, static analysis and proof management tools
for heterogeneous speci�cations. Heterogeneity is achieved by formalizing logics
as institutions and adding them to the graph of logics that parameterizes Hets.
Moreover, Hets interfaces various theorem provers, model �nders or consistency
checkers.

Example 1. We will illustrate the CASL architectural and re�nement language
with the help of an industrial case study: speci�cation of a steam boiler con-
trol system for controlling the water level in a steam boiler. The problem has
been formulated in [1] as a benchmark for speci�cation languages; [3] gives a

complete solution using CASL, including architectural design and re�nement of
components. However, the re�nement steps were presented in an informal way
and only the re�nement language of [13] makes it possible to formally write down
the re�nement steps using CASL re�nement speci�cations.

The speci�cations involved can be brie�y explained as follows. Value spec-
i�es in a very abstract way a sort Value and some operations and predicates on
values. This speci�cation can be regarded as a parameter of the entire design.
Preliminary gathers the messages in the system, both sent and received, and
also de�nes a series of constants characterizing the steam boiler. Sbcs_State
introduces observers for the system states, while Sbcs_Analysis extends this
to an analysis of the messages received, failure detection and computation of
messages to be sent. Finally, Steam_Boiler_Control_System speci�es the
initial state and the reachability relation between states. 1

The initial design for the architecture of the system is recorded by the archi-
tectural speci�cation below:

arch spec Arch_Sbcs =
units P : Value → Preliminary;
S : Preliminary → Sbcs_State;
A : Sbcs_State → Sbcs_Analysis;
C : Sbcs_Analysis → Steam_Boiler_Control_System

result λ V : Value • C [A [S [P [V]]]]

Here, the units P, S, A and C are all generic units, which denote partial
functions taking compatible models of the argument speci�cations to models of
the result speci�cation in a persistent way (that is, the arguments are protected).
The compatibility of arguments means that the models can be amalgamated to a
model of the union of all the signatures. Moreover, the components are combined
in the way prescribed in the result unit of Arch_Sbcs; notice that a model of
Value is required to able to provide a model of the entire system. ut

ASP ::= S | units UDD1 . . . UDDn result UE
UDD ::= UDEFN | UDECL
UDECL ::= USP given UT1, . . . , UTn
USP ::= SP |SP1 × · · · × SPn → SP
UDEFN ::= A = UE
UE ::= UT | λ A1 : SP1, . . . , An : SPn • UT
UT ::= A | A [FIT1] . . . [FITn] | UT and UT | UT with σ : Σ → Σ′ |

UT hide σ : Σ → Σ′ | local UDEFN1 . . . UDEFNn within UT
FIT ::= UT | UT fit σ : Σ → Σ′

Fig. 1. Syntax of the CASL architectural language.

Fig. 1 presents the syntax of the architectural language of CASL. Here, S
stands for an architectural speci�cation name, A for a component name, Σ and

1 The complete speci�cation of the SBCS example can be found at https://

svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/UserManual/Sbcs.casl

Σ′ denote signatures and σ denotes a signature morphism. The architectural
language can be shortly explained as follows: an architectural speci�cation ASP
consists of a list of unit declarations UDECL and unit de�nitions UDEFN (where
declarations assign unit speci�cations USP to units and de�nitions assign unit
expressions UE to units) and a result unit expression formed with the units de-
clared/de�ned. Unit expressions are used to give de�nitions for generic units,
while unit terms de�ne non-generic units. When the result unit of an architec-
tural speci�cation is generic, the system is 'open', requiring some parameters
to provide an implementation. We would like to point out a construction in
the architectural language, namely units declared with an optional list of im-
ported unit terms, speci�ed using the given clause. This construction has been
explained in literature as generic units instantiated once:

units M : SP1;
N : SP2 given M;
...

is equivalent to

units M : SP1;
N : arch spec {

units F : SP1 → SP2

result F[M]};
...

This equivalence has been made formal in [6] and thus allows us to treat the �rst
syntactic construction as a "syntactic sugar" for the second, reducing thus the
complexity of semantics and veri�cation of architectural speci�cations. Notice
that the name F of the generic unit is chosen arbitrarily and in order to be
able to re�ne the unit N we must slightly adapt the original semantics rules for
re�nements from [13]. We will address this in more detail in Sections 4 and 5.

In [13], the architectural layer has been complemented with a re�nement lan-
guage, which allows to formalize developments as re�nement trees. The language
provides syntactic constructs (Fig. 2) for expressing re�nement between speci�-
cations, starting with the simplest form which denotes just model class inclusion
between unit speci�cations: USP re�ned via σ to USP ′ is a correct re�nement
whenM |σ ∈Mod(USP) for any modelM of USP ′ (here,M |σ denotes the reduct
of M against the signature morphism σ). We denote this USP ∼∼∼> σUSP

′ and
when σ is identity or clear from the context we omit it. This grows in com-
plexity to compositions of re�nements (written as USP re�ned to RSP , where
RSP is now an arbitrarily complex re�nement or as RSP then RSP ′), branching
introduced by architectural design, with the speci�cations of the components
being now re�nement speci�cations and �nally re�nement of components of ar-
chitectural speci�cations (written {UNi to RSPi}i∈J , where UN i stands for a
unit name). Notice that re�nement speci�cations subsume architectural speci�-
cations and we can therefore speak of a re�nement level subsuming the architec-
tural level in the CASL language. In Fig. 2 R stands for the name of a re�nement
speci�cation.

Example 2. We can then write the initial re�nement of the steam boiler system
as

re�nement Ref_Sbcs =
Steam_Boiler_Control_System re�ned to arch spec Arch_Sbcs

RSP := refinement R = RSP | USP | arch spec ASP | RSP then RSP |
SP refined [via σ] to RSP | {A1 to RSP1, . . . , An to RSPn}

UDECL ::= A : RSP | A : USP given UT1, . . . , UTn

Fig. 2. Syntax of the CASL re�nement language.

We further proceed with re�ning the individual units 2. The speci�cations of
C and S in Arch_Sbcs above do not require further architectural decompo-
sition. The speci�cation of S, recorded in the unit speci�cation State_Abstr,
can be re�ned by providing an implementation of states as a record of all ob-
servable values. This is done in Sbcs_State_Impl, assuming an implemen-
tation of Preliminary; we record this development in the unit speci�cation
Unit_Sbcs_State. The re�nement of S is then written in State_Ref.

unit spec State_Abstr = Preliminary → Sbcs_State

unit spec Unit_Sbcs_State =
Preliminary → Sbcs_State_Impl

re�nement State_Ref =
State_Abstr re�ned to Unit_Sbcs_State

For the units P and A, we proceed with designing their architecture. This is
recorded in the architectural speci�cations Arch_Preliminary and
Arch_Analysis (omitted here). We can now record the component re�nement:

re�nement Ref_Sbcs' = Ref_Sbcs then
{P to arch spec Arch_Preliminary,
S to StateRef,
A to arch spec Arch_Analysis}

Moreover, the components of Arch_Analysis are further re�ned:

re�nement Ref_Sbcs� =
Ref_Sbcs'

then {A to
{FD to arch spec Arch_Failure_Detection,
PR to arch spec Arch_Prediction }}

ut

3 Re�nement Trees

We now give a formal de�nition of the concept of re�nement trees. Re�nement
trees provide visualization means for the structure of the development and access
points for the logical properties of architectural and re�nement speci�cations.

2 We tacitly correct some rather minor mistakes in the speci�cations in [13] that were
revealed while testing the implementation of the static analysis rules of re�nement
in Hets.

They can be regarded as a counterpart of the development graphs [12] con-
structed for structured speci�cations. Notice that the proof calculus for re�ne-
ments presented in Section 5 produces a development graph for proving the ver-
i�cation conditions, but the components of the system decomposition are quite
di�cult to observe, since e.g. the nodes introduced in applications of generic
units and edges for dependencies between units in architectural speci�cations
are present. The approach that we propose separates the diagram of dependen-
cies from the tree-like representation of the development process.

While intuitively clear, re�nement trees are built in a stepwise manner and
must be combined in the way prescribed by the re�nement speci�cations: com-
position of re�nements gives rise to composition of re�nement trees, and we
need a mechanism for keeping track of the branches and nodes in the tree cor-
responding to units and connection points between trees. Moreover, in the case
of component re�nement, each component produces a (sub)tree.

Example 3. Fig. 3 presents the re�nement tree of the speci�cations in Example
1. Single arrows denote components, while double arrows denote re�nements.

Fig. 3. The re�nement tree of the steam boiler control system.

Notice that in the case of e.g.Ref_Sbcs� , we need to build the trees of the archi-
tectural speci�cations Arch_Failure_Detection and Arch_Prediction,

store them as corresponding to the units FD and PR in a component re�ne-
ment, obtaining thus a set of trees, then connect them to the corresponding
components of the unit A, which must be correctly identi�ed.

The example shows that re�nement trees should consist of a collection of
trees and that they can grow not only at the leaves, but also at the root, thus
becoming subtrees. This leads us to the following de�nition.

De�nition 4. A re�nement tree RT consists of a set of trees with nodes labelled
with unit speci�cations and edges that can be either (i) re�nement links n1 ⇒ n2
to denote re�nement of speci�cations or (ii) component links n1 → n2, where
n1, n2 are nodes in RT to denote architectural decomposition.

We need to de�ne an auxiliary structure to keep track of the roots, leaves
and nodes of the branching decompositions; this will make possible to compose
re�nement trees. We would like to stress that this is only done for book-keeping
and it is not visible to the user at all. Let us de�ne re�nement tree pointers in
a re�nement tree RT as either (i) simple re�nement pointers of form (n1, n2)
with n1, n2 nodes in RT , with the intuition that the �rst node is the root and
the second node is the leaf of a chain3, (ii) branching re�nement pointers of
form (n, f), where n is a node and f is a map assigning re�nement tree pointers
to unit names, or (iii) component re�nement pointers which are maps assigning
re�nement tree pointers to unit names.

Let us give a series of notations and operations with re�nement trees. We
denote RT ∅ the empty tree. If RT is a re�nement tree, RT [USP] is obtained
by adding to it a new isolated node (also returned as result) labelled with USP .
For RT 1, . . . ,RT k re�nement trees, RT [n1 → RT 1, . . . ,RT k] denotes the tree
obtained by inserting component links from the node n1 of RT to the roots of
each of the argument trees. Moreover, for two re�nement trees RT 1 with pointer
p1 andRT 2 with pointer p2, we denote (p,RT) the compositionRT 1◦p1, p2RT 2

de�ned as follows:

� if p1 is a simple re�nement pointer (n1, n2) and p2 is a simple re�nement
pointer (m1,m2), RT is obtained by adding a re�nement link from n2 to
the root of the subtree of m1 in RT 2. The pointer p is then (n1,m2). This
corresponds to State_Ref in Example 1, see branch for unit S in Fig. 3.

� if p1 is a simple re�nement pointer (n1, n2) and p2 is a branching re�nement
pointer (m1, f), RT is obtained by adding a re�nement link from n2 to m1.
The pointer p is (n1, f). This corresponds to Ref_Sbcs in Example 1, see
the initial re�nement link in Fig. 3.

� if p1 is a branching re�nement pointer (n1, f1) and p2 is a component re-
�nement pointer f2, RT is obtained by making for each X in dom(f2) the
composition of the subtree pointed by f1(X) with the tree f2(X), which also
returns a pointer pX . The pointer p is (n1, f1[f2]), where f1[f2] updates the
value of X in f1 with the pointer pX . This corresponds to Ref_Sbcs' in
Example 1 and introduces the second level of re�nement links in Fig. 3.

3 Notice that the two nodes can coincide.

� if p1 is a component re�nement pointer f1 and p2 is a component re�nement
pointer p2, then the re�nement tree is obtained by making for each X in
dom(f2) the composition of the subtree pointed by f1(X) with the tree
f2(X), which also returns a pointer pX . The pointer p is f1[f2]. We can obtain
an example for this last case by writing the re�nement of the components in
a slightly di�erent way:

re�nement R = {
P to arch spec Arch_Preliminary, S to StateRef,
A to arch spec Arch_Analysis }
then {
A to {FD to arch spec Arch_Failure_Detection,

PR to arch spec Arch_Prediction }}

and the corresponding re�nement trees are obtained by removing the �rst
three levels from the tree in Fig. 3.

The composition is unde�ned otherwise. Notice that the speci�cation of a unit,
needed to label the nodes of re�nement trees, will be obtained in some cases
with the proof calculus for re�nement speci�cations that we present in Section
5 and therefore the re�nement trees will be built with the proof calculus rules.

4 The CASL Re�nement Language: Semantics

The semantics of re�nement speci�cations is, as usual in CASL, model-theoretic: a
speci�cation denotes a signature (static semantics) and a class of models (model
semantics). We brie�y recall the semantics of architectural speci�cations (see
[15] for details). Unit speci�cations describe self-contained units (models) or
generic units, mapping compatible models of the arguments to models of the
result speci�cation, such that the arguments are preserved under reduct. Their
static semantics is given by unit signatures, which are themselves either plain
signatures Σ or generic unit signatures Σ1×· · ·×Σn → Σ where Σ extends the
union of Σ1, . . . , Σn. Plain CASL static semantics of architectural speci�cations
consist of a unit signature for the result unit and a mapping giving a unit sig-
nature for any unit component, while the model semantics consists of a class of
architectural models, which themselves pair a model over the unit signature of
the result with a mapping giving a model for each component.

For the static semantics of re�nements, [13] introduces re�nement signa-
tures, RΣ, which take one of the following forms: (i) unit re�nement signatures
(UΣ,UΣ′) which consist of two unit signatures and correspond to simple re-
�nements (ii)branching re�nement signatures (UΣ,BΣ′) which consist of a unit
signature UΣ and a branching signature BΣ′, which is either a unit signature
UΣ′ (in which case the branching re�nement signature is a unit re�nement sig-
nature) or a branching static context BstC ′, which is in turn a (�nite) map
assigning branching signatures to unit names, and corresponds to architectural

decompositions, and �nally (iii) component re�nement signatures which are (�-
nite) maps {UN i 7→ RΣi}i∈J from unit names to re�nement signatures and give
static semantics for re�nements of components.

The rules for static and model semantics of re�nements are introduced in [13]
as well; due to space limitations, we do not repeat them here. The only modi-
�cation that we bring handles the case of units with imports, as mentioned in
Section 2. The re�nement signature of a unit with imports is a branching re�ne-
ment signature with the branching static context having only one entry; since
the architectural speci�cation that equivalently expresses units with imports is
generated, the name of the generic unit is not available to the user. The con-
vention that we propose is to adjust the de�nition of composition of re�nement
signatures given in [13].

Given re�nement signatures RΣ1 and RΣ2, their composition RΣ1 ; RΣ2

is de�ned inductively on the form of the �rst argument. We extend the de�ni-
tion by making the composition RΣ1; RΣ2 also de�ned when RΣ1 is of form
(UΣ,BstC) with only one unit name UN in the domain of BstC and the com-
position RΣ′ of BstC (UN) with RΣ2 is de�ned . In this case, RΣ1; RΣ2 =
(UΣ,BstC [UN/RΣ′]).

We will also make use of the re�nement relations introduced in the paper
cited above, which provide a notion of re�nement model. Given a re�nement
signature RΣ, re�nement relations, R, are classes of assignments, R, which take
the following forms:

� unit assignments, for RΣ = (UΣ,UΣ′), are pairs (U,U ′) of units over unit
signatures UΣ and UΣ′, respectively;

� branching assignments, for RΣ = (UΣ,BΣ′), are pairs (U,BM ′), where U
is a unit over the unit signature UΣ and BM ′ is a branching model over
the branching signature BΣ′, which is either a unit over BΣ′ when BΣ′

is a unit signature (in which case the branching assignment is a unit as-
signment), or a branching environment BE ′ that �ts BΣ′ when BΣ′ is a
branching static context. Branching environments are (�nite) maps assign-
ing branching models to unit names, with the obvious requirements to ensure
compatibility with the branching signatures indicated in the corresponding
branching static context.

� component assignments, for RΣ = {UN i 7→ RΣi}i∈J , are (�nite) maps
{UN i 7→ Ri}i∈J from unit names to assignments over the respective re�ne-
ment signatures. When RΣ is a re�ned-unit static context (and so each Ri,
i ∈ J , is a branching assignment) we refer to RE = {UN i 7→ (Ui,BM i)}i∈J
as a re�ned-unit environment. Any such re�ned-unit environment can be nat-
urally coerced to a unit environment π1(RE) = {UN i 7→ Ui}i∈J of the plain
CASL semantics, as well as to a branching environment π2(RE) = {UN i 7→
BM i}i∈J .

Again, the only change to the rules of model semantics is to adapt in the ex-
pected way the composition of re�nement relations to accommodate re�nements
of unit with imports, in symmetry with the change of static semantics.

The static semantic rules are of form ` SPR�RΣ while the model semantic
rules are of form ` SPR ⇒ R; when we only want to state that SPR has a
denotation w.r.t. the static or model semantics, the result is replaced with ut.

5 Proof Calculus for the CASL Re�nement Language

The main motivation for formalizing the development process using CASL ar-
chitectural speci�cations and re�nements is that one can then prove that the
process is correct. Veri�cation of correctness for a re�nement tree is presented
as a proof calculus. In [15], Section IV:5, a proof calculus for veri�cation of ar-
chitectural speci�cations (in a slightly restricted variant) was introduced as an
algorithm for checking whether the resulting units of an architectural speci�ca-
tion satisfy a given unit speci�cation. This is denoted ` ASP :: USP , where ASP
is an architectural speci�cation and USP is a unit speci�cation. Since architec-
tural speci�cations are now a particular case of re�nements, we will extend this
calculus to support the whole re�nement language.

For space limitation reasons, we omit the complete presentation of the proof
calculus of architectural speci�cations mentioned above and just explain the
rough intuition. It can be regarded as having two components. The �rst one is a
constructive component, building a graph Γ with nodes labeled with non-generic
unit signatures and edges labeled with signature morphisms where additionally
some of the nodes may be labeled with sets of speci�cations. Moreover, generic
units declared in ASP are stored in a generic context Γgen. The second compo-
nent is deductive and it uses the diagram built with the constructive component
to check whether models of a unit expression satisfy a given unit speci�cation
SP . Fig. 4 presents one of the interesting rules of the calculus, namely those for
unit expressions (only non-generic). What is particular about the rules for unit
expressions is that here is where the two components of the calculus meet: the
proof calculus rules for unit terms (of format Γgen, Γ ` UT :: Γ ′, A) modify the
context by adding the diagram of the unit term and also return the node of the
unit term, and this node is further used for checking in Γ ′ whether the given
speci�cation actually holds or not. On the notations, R is an institution trans-
lation (formalised as so-called comorphism) that translates from the institution
of interest to another with weak amalgamation property (i.e., given a diagram
and a family of models compatible with it, they can be combined to a model
of a cocone for the diagram) and the re�nement condition veri�es that for any
family of models compatible with the diagram the model corresponding to the
node A satis�es SP .

Γgen, Γ ` UT :: Γ ′, A

for all U ∈ dom(Γ ′), we have U :ΣU SPU in Γ ′

Σ, {ηU}U∈dom(Γ ′) is a weakly amalgamable cocone over R(Γ ′)

ηA(R(SP)) ;J
Σ

⋃
U∈dom(Γ ′) ηU (R(SPU))

Γgen, Γ ` UT qua UE :: SP

Fig. 4. Architectural proof calculus rule for non-generic unit expressions.

As a �rst step, we modify the proof calculus such that it becomes fully
constructive: USP is no longer provided, but rather obtained by de�ning the
speci�cation of each unit term inductively on its structure.

De�nition 5. Let ASP be an architectural speci�cation and UE a unit expres-
sion. Then the speci�cation of UE, denoted SASP (UE) is de�ned as follows:

� if UE is a unit term UT , SASP (UT) is de�ned inductively:
• if UT is a unit name, then SASP (UT) = SP where UT : SP is the decla-
ration of UT in ASP ;

• if UT = F [A1 fit σ1] . . . [An fit σn], where SASP (F) = SP1×· · ·×SPn →
SP and for any i = 1, . . . , n, SASP (Ai) hide σi |= SPi, then SASP (UT) =
{SP with σ} and SASP (A1) hide σ1 and . . .and SASP (An) hide σn,
where σ = ∪i=1,...,nσi;

• if SASP (Ai) = SPi then SASP (A1 and . . . and An) = SP1 and . . .
and SPn;

• if SASP (A) = SP , then SASP (A with σ) = SP with σ;
• if SASP (A) = SP , then SASP (A hide σ) = SP hide σ;
• SASP (local UDEFN within UT) = SASP (UT), where UDEFN is used
to obtain the speci�cation of the locally de�ned units.

� if UE is a lambda expression λA : SP . UT , then SASP (UE) = SP →
SASP (UT).

The speci�cation of a unit term also gets employed in expressing declarations
of units with imports as generic units: a declaration UN : SP given UT can be
written as UN : arch spec{units F : SASP (UT) → SP ; result F[UT]}. As
noticed in [9], it is not always possible to give a precise axiomatization of the
class of models produced by the unit expression. However, we will use SASP (UE)
as an approximation, since models of the unit expression are also models of this
speci�cation.

The proof calculus is then turned into a fully constructive variant by re-
moving veri�cation conditions from the rules for unit expressions and returning
the speci�cation of the result unit expression of the architectural speci�cation
instead of having one as a input parameter of the calculus. Let us denote the
constructive version of the architectural proof calculus (built using SASP (UE))
by ` ASP ::c USP .

When the architectural language is restricted by omitting the unit imports ,
the constructive and the deductive versions of the proof calculus are related by
the following straightforward result.

Proposition 6. If unit imports are omitted, ` ASP � ut and ` ASP ::c USP
then ` ASP :: USP .

Moreover, in some cases, the obtained unit speci�cation exactly captures
the models of the architectural speci�cation, if the latter are projected with
the possible semantics for the result unit term. Let therefore ProjRes take any
model of an architectural speci�cation to the interpretation of its result unit
term in this model.

Theorem 7. Let ASP be a consistent architectural speci�cation without unit
imports and unit de�nitions, where each parametric unit is applied only once. If
` ASP � ut and ` ASP ::c USP then ProjRes(Mod(ASP)) = Mod(USP).

While the proof calculus of architectural speci�cations checks that result
units satisfy a given unit speci�cation, we introduce a counterpart for the spec-
i�cation that re�nements should satisfy, tailored according to the three kinds of
re�nements. This allows to express the proof calculus rule for compositions of
re�nements in a more concise manner.

De�nition 8. Let RΣ be a re�nement signature. A veri�cation speci�cation S
over RΣ is de�ned as follows:

� if RΣ = (UΣ1, UΣ2), S = (USP1, USP2) such that ` USPi � UΣi, for i=1,2;
� if RΣ = (UΣ,BΣ), S = (USP,BSP), where ` USP � UΣ and BSP is a

branching speci�cation, which is in turn either a unit speci�cation USP ′ such
that ` USP ′�UΣ′, when BΣ = UΣ′ or a map SPM such that and SPM(X)
is a veri�cation speci�cation over BstC (X), for any X ∈ dom(BstC), when
BΣ = BstC ;

� if RΣ = {UN i 7→ RΣi}i∈J , then S = {UN i 7→ Si}i∈J , where Si is a
veri�cation speci�cation over RΣi.

Again, the proof calculus rules rely on a composition operation on veri�cation
speci�cations. The composition S1; S2 is de�ned inductively as follows:

� if S1 = (USP1, USP2), then S1; S2 is de�ned only when S2 = (USP3, SPM)
and moreover ` USP2 ; USP3. Then S1; S2 = (USP1, SPM).

� if S1 = (USP1, SPM1) then S2 must be of form SPM2. We de�ne S1; S2 =
(USP1, SPM1[SPM2]), where SPM1[SPM2](A) = SPM1(A), if
A 6∈ dom(SPM2) and SPM1[SPM2](A) = SPM1(A); SPM2(A) otherwise.

� if S1 = SPM1, then S1; S2 is de�ned only if S2 = SPM2. Then S1; S2

modi�es the ill-de�ned union of SPM1 and SPM2 by putting (S1; S2)(A) =
S1(A); S2(A) for any A ∈ dom(S1) ∩ dom(S2).

The proof calculus for architectural speci�cations is complemented at the
level of re�nement speci�cations as in Fig. 5. The judgments of the proof calculus
for re�nements are then of form ` SPR :: S,RT , p, where SPR is a re�nement
speci�cation, S is a veri�cation speci�cation, RT is a re�nement tree and p is a
re�nement tree pointer. By a slight abuse of notation, when we are not interested
in the re�nement tree and the pointer, we omit them as results.

Notice that the proof calculus for architectural speci�cations of [15] only takes
into account the case when the speci�cation of a unit is a unit speci�cation.
In the context of re�nements, the speci�cation of a unit can be an arbitrary
re�nement speci�cation, and the proof calculus of architectural speci�cations
must be therefore adapted. This means that for a unit declaration UN i : SPRi,
we de�ne SASP (UNi) = USPi if ` SPRi :: (USPi, SPMi). Moreover, we can
set SPM(UNi) = SPMi in the veri�cation speci�cation of ASP . Finally, in
the case of named re�nement speci�cations, we need to store their veri�cation
speci�cations at the library level and retrieve them by name, in the usual way.

(n,RT) = RT ∅[USP]

` USP :: (USP,USP),RT , (n, n)

` USP :: (USP,USP),RT 1, p1
` SPR :: (USP ′, BSP),RT 2, p2
(RT , p) = RT 1 ◦p1,p2 RT 2

` USP ; USP ′

` USP refined to SPR :: (USP ′, BSP),RT , p

` ASP ::c USP
` SPRi :: (USPi, BSPi),RT i, pi
for any UNi : SPRi in ASP

SPM(UNi) = BSPi
(n,RT ′) = RT ∅[USP]

RT = RT ′[n→RT 1, . . . ,RT k]
p = {UNi 7→ pi}i=1,...,k

` ASP :: (USP, SPM),RT , p

` SPRi :: Si,RT i, pi
RT = ∪RT i

p = (n, {UNi → pi})
` {UN i to SPRi}i∈J :: {UN i → Si}i∈J ,RT , p

` SPR1 :: S1,RT 1, p1
` SPR2 :: S2,RT 2, p2

S = S1; S2

(p,RT) = RT 1 ◦p1,p2 RT 2

` SPR1 then SPR2 :: S,RT , p

Fig. 5. Proof calculus for CASL re�nements.

De�nition 9. Let RΣ be a re�nement signature, S a veri�cation speci�cation
of RΣ and R a re�nement relation over RΣ. We de�ne the satisfaction of a
veri�cation speci�cation by a re�nement relation, denoted R |= S, inductively as
follows:

� if RΣ = (UΣ,UΣ′), then S = (USP,USP ′) and R = {(u, u′)|u ∈ Unit(UΣ),
u′ ∈ Unit(UΣ′)}. Then R |= S i� u ∈ Unit(USP) and u′ ∈ Unit(USP ′) for
any (u, u′) ∈ R;

� if RΣ = (UΣ,BΣ), then S = (USP, SPM) and R = {(u, bm)|u ∈ Unit(UΣ),
bm is a branching model over BΣ}. Then R |= S i� for any (u, bm) ∈ R,
u ∈ Unit(USP) and for any A ∈ dom(SPM) we have that bm(A) |= S(A).
(Notice that SPM and bm have the same domain);

� if RΣ = SPM , then S = {UNi → Si}i∈J and R = {UNi → Ri}i∈J . Then
R |= S i� Ri |= Si for any i.

The following lemma can be proven by induction and making a case distinc-
tion on re�nement signatures.

Lemma 10. Let RΣ1, RΣ2 be two re�nement signatures such that their com-
position is de�ned. Let Si be a veri�cation speci�cation over RΣi and Ri be a
re�nement relation over RΣi such that Ri |= Si, for i = 1, 2 such that R1; R2

and S1; S2 are de�ned. Then R1; R2 |= S1; S2.

The following result states that if a statically well-formed re�nement spec-
i�cation SPR can be proven correct w.r.t. a veri�cation speci�cation S using
the proof calculus for re�nements, then SPR has a denotation according to the
model semantics and moreover the re�nement relation thus obtained satis�es S.

Theorem 11 (Soundness).

Let SPR be a re�nement speci�cation such that ` SPR � ut. If ` SPR :: S,
then there is R such that ` SPR ⇒ R and R |= S.

Because we approximate the speci�cation of the result unit of architectural
speci�cations, completeness is much more di�cult to obtain and is therefore
postponed to future work.

6 Checking Consistency of Re�nement Speci�cations

We introduce a calculus for checking whether a re�nement speci�cation is con-
sistent, i.e. it has a re�nement model. In [10], we have successfully applied this
calculus to verify the consistency of the upper ontology Dolce. Indeed, Dolce is
too large for contemporary model �nders. Instead of hand-crafting a large and
speci�c model, we have shown the consistency of Dolce using an architectural
re�nement. This has the advantage of giving a modular model for Dolce, i.e. one
that can be changed at various local places (= leaves of the re�nement tree)
without a�ecting the possibility to assemble (via the semantics of architectural
speci�cations) a global model of Dolce.

Intuitively, a re�nement is consistent if its target is, and an architectural
speci�cation is consistent if all its unit speci�cations are. This makes it clear that
our calculus eventually (for checking consistency of the leaves of the re�nement
tree) needs to be based on a calculus for the consistency of unit speci�cations,
which we denote ` cons(USP) and is given by the rules in Fig. 6. Checking
consistency of non-parametric unit speci�cation amounts to checking consistency
of structured speci�cations; a calculus for this has been introduced in [17] (this
is in turn based on some institution-speci�c calculus for consistency of basic
speci�cations). Checking consistency of parametric unit speci�cation amounts
to checking conservativity of extensions of structured speci�cations; for the case
of �rst-order logic and CASL basic speci�cations, a calculus has been developed
in [11].

` cons(USP)

` cons(USP qua SPEC-REF)

` cons(SPR)

` cons(USP refined to SPR)

` cons(SPR) for any UN : SPR in ASP

` cons(ASP)

` cons(SPRi)
` cons({Ui to SPRi}i∈J)

` cons(SPR1)
` cons(SPR2)

` cons(SPR1 then SPR2)

Fig. 6. Consistency calculus for re�nement speci�cations.

Note that in the case of compositions, if SPR1 contains a branching, it does
not su�ce for SPR2 (which must be a component re�nement) to be consistent,
because some component of SPR1 outside the domain of SPR2 might be incon-
sistent.

Proposition 12 (Soundness).
If ` SPR � ut and ` cons(SPR), there is a re�nement relation R such that

` SPR ⇒ R.
Completeness holds only by restricting the language again to a variant with-

out imports.

Proposition 13 (Completeness).
If unit imports are omitted, ` SPR�ut and ` SPR ⇒ R, then ` cons(SPR).

7 Conclusions

We have recalled the language for re�nements in CASL and we provided a sound
proof calculus for it. Thus we can formalize development process for software
systems and prove their correctness. Moreover, we have introduced re�nements
trees in theory, and also practically implemented them in the Heterogeneous Tool
Set Hets, such that browsing through and inspection of complex formal devel-
opments becomes possible. An implementation of the proof calculus is currently
in progress; the re�nement part is already implemented. Note that the proof
calculus for architectural speci�cations of [15] was given for a restricted version
of the language; it can be extended to the whole language in a way substantially
simpli�ed by the transformation of units with imports into generic units. We
also have introduced and implemented a sound and complete calculus for con-
sistency of re�nements and architectural speci�cation, which already has been
applied for proving the consistency of the upper ontology Dolce in a modular
way.

Future work includes extending the language to support behavioral re�ne-
ment. Often, a speci�cation does not satisfy the requirements literally, but only
up to some observational equivalence. The standard example is the implemen-
tation of stacks as arrays with pointer that may di�er (inessentially w.r.t. the
behavior) on the entries beyond the pointer position. This has been discussed
in the case of CASL in [5]. Another useful addition would be amalgamability
checks for other logics in the Hets' logic graph, making thus possible to have
architectural speci�cations in that logic.

Acknowledgement. This work has been supported by the German Research
Council (DFG) under grant Mo-971/2 �Logic Atlas and Integration (LATIN)�.

References

1. Jean-Raymond Abrial, Egon Börger, and Hans Langmaack, editors. Formal Meth-
ods for Industrial Applications, Specifying and Programming the Steam Boiler Con-
trol (the book grow out of a Dagstuhl Seminar, June 1995), volume 1165 of Lecture
Notes in Computer Science. Springer, 1996.

2. E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner. Algebraic Foundations of
Systems Speci�cation. Springer, 1999.

3. Michel Bidoit and Peter D. Mosses. Casl User Manual. LNCS 2900 (IFIP Series).
Springer, 2004.

4. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural speci�cations
in CASL. Formal Aspects of Computing, 13:252�273, 2002.

5. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational interpretation
of Casl speci�cations. Mathematical Structures in Computer Science, 18(2):325�
371, 2008.

6. Mihai Codescu. Lambda Expressions in CASL Architectural Speci�cations. In Till
Mossakowski and Hans-Jörg Kreowski, editors, Recent Trends in Algebraic Devel-
opment Techniques, 20th International Workshop, WADT 2010, Lecture Notes in
Computer Science. Springer, 2011.

7. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening
ontologies with DOLCE. In A. Gómez-Pérez and V. R. Benjamins, editors, EKAW,
volume 2473 of LNCS, pages 166�181. Springer, 2002.

8. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for speci-
�cation and programming. Journal of the Association for Computing Machinery,
39:95�146, 1992. Predecessor in: LNCS 164, 221�256, 1984.

9. Piotr Ho�man. Architectural Speci�cations and Their Veri�cation. PhD thesis,
Warsaw University, 2005.

10. Oliver Kutz and Till Mossakowski. A modular consistency proof for Dolce. In 25th
conference on Arti�cial Intelligence, AAAI-11, 2011. To appear.

11. Mingyi Liu. Konsistenz-Check von CASL-Spezi�kationen. Master's thesis, Univer-
sity of Bremen, 2008.

12. T. Mossakowski, S. Autexier, and D. Hutter. Development graphs � proof manage-
ment for structured speci�cations. Journal of Logic and Algebraic Programming,
67(1-2):114�145, 2006.

13. T. Mossakowski, D. Sannella, and A. Tarlecki. A simple re�nement language for
Casl. In Jose Luiz Fiadeiro, editor, WADT 2004, volume 3423 of LNCS, pages
162�185. Springer; Berlin, 2005.

14. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool
Set. In Orna Grumberg and Michael Huth, editors, TACAS 2007, volume 4424 of
LNCS, pages 519�522. Springer-Verlag Heidelberg, 2007.

15. Peter D. Mosses(Ed.). Casl Reference Manual. LNCS 2960 (IFIP Series). Springer,
2004.

16. Adam Pease. The SUMO challenges. http://www.cs.miami.edu/~tptp/

SUMOChallenge/.
17. Markus Roggenbach and Lutz Schröder. Towards trustworthy speci�cations

I: Consistency checks. In Maura Cerioli and Gianna Reggio, editors, Recent
Trends in Algebraic Speci�cation Techniques, 15th International Workshop, WADT
2001, volume 2267 of Lecture Notes in Computer Science. Springer; Berlin;
http://www.springer.de, 2001.

18. D. Sannella and A. Tarlecki. Toward formal development of programs from al-
gebraic speci�cations: implementations revisited. Acta Informatica, 25:233�281,
1988.

