
Lambda Expressions
in CASL Architectural Specifications

Mihai Codescu
Mihai.Codescu@dfki.de

DFKI GmbH Bremen

Abstract. CASL architectural specifications provide a way to specify
the structure of the implementations of software systems. Their seman-
tics has been introduced in two manners: the first is purely model-
theoretic and the second attempts to discharge model semantics condi-
tions statically based on a diagram of dependencies between components
(extended static semantics). In the case of lambda expressions, which are
used to define the way generic units are built, the two semantics do not
agree. We present a number of situations of practical importance when
the current situation is unsatisfactory and propose a series of changes to
the extended static semantics to remedy this.

1 Introduction

An idealized view on the process of software development would be to start with
a requirement specification (most likely structured) and then to proceed with
an architectural design describing the expected structure of the implementation
(which can be different from the one of the specification). Architectural speci-
fications in CASL [3] have been introduced as means of providing structure for
the implementation: each architectural specification contains a number of com-
ponents together with a linking procedure which describes how to combine the
components to obtain an implementation of the overall system. (In contrast, the
models of a structured specification are monolithic and have no more structure
than models of basic specifications).

SP ; k

U1 : SP1

...
Un : SPn

In the figure on the right, SP is the initial specification,
U1, . . . Un are the components of the architectural spe-
cifications with their specifications SP1, . . . , SPn and k
is the linking procedure involving the units, while the
refinement relation is denoted ;. The specification of
each component can then play the role of requirement
specification and the entire process repeats until specifications that can be eas-
ily translated into a program are reached. The only interaction allowed between
components is the one contained in the architectural specification they are part
of, that acts as an interface for them; this allows for a separation of implemen-
tation tasks, which can be performed independently.

The semantics of architectural specifications relies on compatibility checks
between units as prerequisite for combining them. The intuitive idea is that

shared symbols must be interpreted in the same way for two models to be put
together. The rules have been presented in two ways: the first is to define a basic
static semantics and model semantics in a purely model-theoretical fashion and
the compatibility checks are required in the model semantics whenever needed,
while the second is an extended static semantics analysis which builds a graph
of dependencies between units and discards the compatibility conditions stati-
cally. We briefly recall the two semantics and the relationships between them in
Section 2. Units of an architectural specification can be generic [10], with the
intended intuitive meaning that the implementation of the result specification
depends on the implementations of the arguments (e.g. some auxiliary func-
tions). Generic units are built using generic unit expressions, written in CASL

using the λ-notation: λ X1 : SP1, . . . , Xn : SPn . UT , where UT is a unit term
which contains X1, . . . Xn .

The motivation of this paper is rather technical: the extended static semantics
rule for generic unit expression does not keep track of the dependencies between
the units used in the unit term UT . This is unsatisfactory for a number of
reasons that we give in detail in Section 3: first, the completeness theorem for
extended static semantics (Theorem 5.4 in [4]) no longer holds when the language
is extended with definitions of parametric units. Moreover, unit imports are
known to be introducing complexity in semantics and verification of architectural
specifications. One way to reduce complexity is to replace unit imports with an
equivalent construction as below, provided that M is made visible locally in the
anonymous architectural specification:

units M : SP1;
N : SP2 given M;
...

is equivalent to

units M : SP1;
N : arch spec {

units F : SP1 → SP2
result F[M]};

...

If N would be a generic unit, then the result of the architectural specification in
the right side would be a λ-expression and the two constructions would no longer
be equivalent because they treat differently the dependency between M and N .
In Section 4 we present our proposed changes for the extended static semantics
of architectural specifications, followed by a discussion in Section 4.1 on how the
completeness result can be extended to cover lambda expressions as well. Section
4.2 further extends the changes to parametric architectural specifications i.e.
those having lambda expressions as result, while in Section 5 we present a larger
example motivating the introduction of the new rules, involving refinement of
units with imports. Section 6 concludes the paper.

2 CASL Architectural Specifications

As mentioned above, CASL architectural specifications describe how the im-
plementation is structured into component units. Each unit is given a name
and assigned a specification; the intended meaning is to provide a model of
the specification. Units can be generic, taking a list of specifications as argu-
ments and having a result specification; such units denote partial functions that

take as arguments models of the parameter specifications and return a model of
the result specification. The result is required to preserve the parameters (per-
sistency), with the intuition that the program of the parameter must not be
re-implemented, and the function is only defined on compatible models, mean-
ing that the implementation of the parameters must be the same on common
symbols. Units are combined in unit expressions with operations like renaming,
hiding, amalgamation and applications of generic units. Again, terms are only
defined for compatible models, in the sense that common symbols must be in-
terpreted in the same way. Let us mention that architectural specifications are
independent of the underlying formalism used for basic specifications, which is
modelled as an institution [5].

An architectural specification consists of a list of unit definitions and decla-
rations followed by a result unit expression. Fig. 1 presents a fragment of the
grammar of the CASL architectural language that is relevant for the examples of
this paper; the complete grammar can be found in [4]. Notice that we allow the
specification of a unit to be itself architectural (named or anonymous) and that
for units declarations there is an optional list of imported units (marked with
<_>). The list must be empty when USP is architectural. Moreover, in Fig. 1
A is a unit name, S is a specification name, SP is a structured specification and
σ is a signature morphism. We denote ιΣ⊆Σ′ the injection of Σ in Σ′ when Σ′
is a union of signatures with Σ among them.

ASP ::= units UDD1 . . . UDDn
result UE

UDD ::= UDEFN | UDECL
UDECL ::= A : USP < given UT1, · · ·UTn >
USP ::= SP | SP1 × · · · × SPn → SP |

arch spec S | arch spec {ASP}
UDEFN ::= A = UE
UE ::= UT | λ A1 : SP1, . . . , An : SPn • UT
UT ::= A | A [FIT1] . . . [FITn] | UT and UT | UT with σ : Σ → Σ′ |

UT reduction σ : Σ → Σ′ | local UDEFN1 . . . UDEFNn within UT
FIT ::= UT | UT fit σ : Σ → Σ′

Fig. 1. Restricted language of architectural specifications.

The CASL semantics produces for any specification a signature and a class of
models over that signature. This is not different for architectural specifications:
the basic static semantics yields an architectural signature, while the model
semantics produces an architectural model. We give definitions of this notions
and a brief overview of the two semantics below.

An architectural signature consists of a unit signature for the result together
with a static unit context, describing the signatures of each unit. A unit signature
can be either a plain signature or a list of signatures for the arguments and a
signature for the result. Starting with the initial empty static unit context, the
static semantics for declarations and definitions adds to it the signature of each
new unit and the static semantics for unit terms and expressions does the type-
checking in the current static context. For any architectural specification ASP ,

we denote |ASP | the specification obtained by removing everything but the
signature from the specifications used in declarations.

Model semantics is assumed to be run only after a successful run of the basic
static semantics and it produces an architectural model over the resulting archi-
tectural signature. Model semantics of an individual unit is either simply a model
of the specification, for non-generic units, or a partial function taking compatible
models of the argument specifications to a model of the result specification. The
result is required to protect the parameters when reduced back to a model of
the corresponding signature. Generic units can be interpreted as total functions
by introducing an additional value ⊥ - this ensures consistency of generic unit
specifications in |ASP | whenever the unit specification is already consistent in
an architectural specification ASP and is called partial model semantics in [4],
Section IV:5. An architectural model over an architectural signature consists of
a result unit over the result unit signature and a collection of units over the sig-
natures given in the static context, named by their unit names. Model semantics
produces a unit context, which is a class of unit environments - maps from unit
names to units, and a unit evaluator, which is a map that gives a unit when
given a unit environment in the unit context. The analysis starts with the unit
context of all environments and each declaration and definition enlarges the unit
context, adding a new constraint. Finally, the semantics of unit terms produces
a unit evaluator for a given unit context.

Pst(F) = τ : Σ → Σ′

Cst ` T �ΣA

σ : Σ → ΣA

(σR, τR, ΣR) is the pushout of (σ, τ)
Pst, Cst ` F [T fit σ]�ΣR

C ` T � UEv
for each E ∈ C,UEv(E)|σ ∈ domE(F) (i)

for each E ∈ C, there is a unique M ∈Mod(ΣR) such that
M |τR = UEv(E) and M |σR = E(F)(UEv(E)|σ) (ii)

UEvR = {E 7→M |E ∈ C,M |τR = UEv(E),M |σR = E(F)(UEv(E)|σ)}
C ` F [T fit σ]� UEvR

Fig. 2. Basic static and model semantics rules for unit application

Fig. 2 presents the basic static semantics and model semantics rules for unit
application (notice that we simplify to the case of units with just one argument).
The static semantics rule produces the signature of the term T and returns as
signature of F [T] the pushout ΣR of the span (σ, τ), where τ is the unit signature
of F stored in the list of parameterized unit signatures Pst.

The model semantics rule first analyzes the argument T and gives a unit
evaluator UEv. Then, provided that the conditions (i) the actual parameter
actually fits the domain and (ii) the models UEv(E) and E(F)(UEv(E)|σ) can
be amalgamated to a ΣR-model M hold, the result unit evaluator UEvR gives
the amalgamation M for each E ∈ C.

Typically one would expect that conditions (ii) would be discarded statically.
For this purpose, an extended static semantics was introduced in [11], where the
dependencies between units are tracked with the help of a diagram of signatures.
The idea is that we can now verify that the interpretation of two symbols is the
same by looking for a “common origin” in the diagram, i.e. a symbol which is
mapped via some paths to both of them. We will present in this paper only the
relevant rules of extended static semantics in Section 3. We are going to make
use of the following notions. A diagram D is a functor from a small category to
the category of signatures of the underlying institution. In the following, let D
be a diagram. A family of models M = {Mp}p∈Nodes(D) indexed by the nodes
of D is consistent with D if for each node p of D, Mp ∈Mod(D(p)) and for each
edge e : p → q, Mp = Mq|D(e). A sink α on a subset K of nodes consists of a
signature Σ together with a family of morphisms {αp : D(p)→ Σ}p∈K . We say
that D ensures amalgamability along α = (Σ, {αp : D(p)→ Σ}p∈K) if for every
model familyM consistent with D there is a unique model M ∈ Mod(Σ) such
that for all p ∈ K, M |αp

=Mp.
The two semantics of architectural specifications are related by a soundness

result [11]: if the extended semantics of an architectural specification is defined,
then so is the basic semantics and the latter gives the same result. In [4], com-
pleteness is also proved for a simplified variant of the architectural language 1

and with a modified model semantics. We will discuss this in more detail in
Section 4.1.

3 Semantics of Generic Unit Expressions

We present now the extended static semantic rule for generic unit expressions,
with the help of a typical example of a dependency between the unit term of a
lambda expression and the generic unit defined by it. Such dependencies are not
tracked in the diagram built with the rules for extended static semantics defined
in [4].

Example 1. Let us consider the CASL architectural specification from Fig. 3. The
unit term L1[A1] and L2[A2] is ill-formed w.r.t. the rules of extended static
semantics for architectural specifications because in the diagram in the Fig. 4
(built using the extended static semantics rules for generic unit expressions and
unit applications, which are presented in Fig. 5 and Fig. 6 respectively) the sort
s can not be traced to a common origin (which should be the node M).

ut

The rule for analysis of generic unit expressions (Fig. 5) introduces a node
p for the unit term of the lambda expression that keeps track of the sharing
information of the terms involved. However, this node p is not further used
1 It is nevertheless argued that the generalization to the full features of CASL archi-
tectural language is of no genuine complexity, excepting the case of imports. Our
approach covers the imports as well.

spec S = sort s
spec S1 = sort s1
spec S2 = sort s2
arch spec ASP =
units M : S; A1 : S1; A2 : S2;

L1 = λ X1 : S1 • M and X1;
L2 = λ X2 : S2 • M and X2;

result L1 [A1] and L2 [A2]

Fig. 3. Lost sharing.

Fig. 4. Diagram of ASP.

Γs ` UNIT-BIND-1� (UN1, Σ1) . . . Γs ` UNIT-BIND-n� (UNn, Σn)
Σa = 〈Σ1, .., Σn〉 and Σ = Σ1 ∪ ... ∪Σn

UN1, . . . ,UN n are new names
D′ extends dgm(CS) by new node q with D′(q) = Σ,

nodes pi and edges ei : pi → q with D′(ei) = ιΣi⊆Σ for i ∈ 1, . . . , n
C′s = ({}, {UN1 → p1, . . . , UNn → pn}, D′)

Γs, Cs + C′s ` UNIT-TERM� (p,D′′)
D′′ ensures amalgamability along (D′′(p), 〈idD′′(p), ιΣi⊆D′′(p)〉i∈1,...,n)

D′′′ extends D′′ by new node z with D′′′(z) = ∅
Γs, Cs ` unit-expr UNIT-BIND-1,..,UNIT-BIND-n UNIT-TERM�

(z,Σa → D′′(p), D′′′)

Fig. 5. Extended static semantics rule for unit expressions (CASL Ref. Manual)

in application of lambda expressions. In the extended static context, the entry
corresponding to the lambda expression only contains a new node labeled with
the empty signature, denoted z in Fig. 5, as node of imports, and this new node
is isolated. Notice also that the purpose of inserting the node q and the edges
from nodes pi to q is to ensure compatibility of the formal parameters when
making the analysis of the unit term.

Cs = (Ps, Bs, D)
Ps(UN) = (pI , (Σ1, ..., Σn → Σ))
ΣF = D(pI) ∪Σ1 ∪ ... ∪Σn

Σi, Γs, Cs ` FIT-ARG-i� (σi : Σi → ΣA
i , p

A
i , Di) for i ∈ 1, . . . , n

D1, .., Dn disjointly extend D
let DA = D1 ∪ .. ∪Dn

ΣA = D(pI) ∪ΣA
1 ... ∪ΣA

n

σA = (idD(pI) ∪ σ1 ∪ .. ∪ σn) : ΣF → ΣA

σA(∆) : Σ → (ΣA ∪ΣA(∆)), where ∆ : ΣF → Σ is the signature extension
ΣR = ΣA ∪ΣA(∆)

DA ensures amalgamability along (ΣA, 〈ιD(pI)⊆ΣA , ιΣA
i ⊆Σ

A〉i∈1,...,n)
D′ extends DAby new node qB , edge eI : pI → qB with D′(eI) = ιD(pI⊆Σ),

nodes pFi and edges eFi : pFi → qB with D′(eFi) = ιΣi⊆Σ
and ei : pFi → pAi with D′(ei) = σi for i ∈ 1, . . . , n

D′ ensures amalgamability along (ΣR, 〈σA(∆), ιΣA
i ⊆Σ

R〉i∈1,...,n)
D′′ extends D′ by new node q, edge e′ : qB → q with D′′(e′) = σA(∆)

and edges e′i : pAi → q with D′′(e′i) = ιΣA
i ⊆Σ

R for i ∈ 1, . . . , n

Γs, Cs ` unit-appl UN FIT-ARG-1,..,FIT-ARG-n � (q,D′′)

Fig. 6. Extended static semantics rules for unit application (CASL Ref. Manual)

Using this version of the rules raises a series of problems. First, there is no
methodological justification for making terms like the one in our example illegal
by not keeping track of the unit M in the lambda expressions. Moreover, ASP
has a denotation w.r.t. the basic semantics (it is easy to see that the specification
type-checks) and |ASP | has a denotation w.r.t. the model semantics (there is
no problem in amalgamating M with a model of specifications S1 or S2, since
there are no shared symbols, and when making the amalgamation of L1[A1]
with L2[A2] the symbol s is interpreted in the same way by construction). Thus,
since one would expect that the completeness result of [4] should still hold for the
entire architectural language, ASP should have a denotation w.r.t. the extended
static semantics.

Another reason to consider the current rules unsatisfactory is the relation
between units with imports and generic units. A unit declaration with imports
has been informally explained in the literature as a generic unit instantiated
once, like in the following example.

Example 2. The following unit declarations, taken from the architectural speci-
fication of a steam boiler control system (Chapter 13 of [2]):

B : Basics;
MR : Value → Messages_Received given B;

can be expressed as a generic unit instantiated once (notice that the linear
visibility of units, required in [4], is assumed to be extended):

B : Basics;
MR : arch spec {

units F : Basics × Value → Messages_Received
result λ X : Value • F [B] [X]};

ut

The two declarations in Example 2 are not equivalent because the former
traces the dependency between MR and B while the latter does not. However
it has been noticed that to be able to write down refinements of units with
imports using the CASL refinement language designed in [8], this equivalence
must become formal. This can only be the case if the second construction also
tracks the dependency of B with MR.

Notice that in general the unit imported may be written as a more complex
unit term and then its specification is no longer available directly. Moreover, as
remarked in [7], it is not always possible to find a specification that captures
exactly the class of all models that may arise as the result of the imported unit
term. It is however possible to use the proof calculus for architectural specifica-
tions defined in [6] and Section IV.5.3 of [4] to generate a structured specification
that includes this model class among its models. Another advantage of making
the equivalence formal is that the completeness result for extended static se-
mantics and the proof calculus for architectural specifications cover imports as
well, since they can now be regarded only as “syntactic sugar” for the equivalent
construction.

4 Adding Dependency Tracking

The proposed changes are based on the following observation: in the rule for unit
application(Fig. 6), new nodes are needed for the formal parameters and for the
result (labeled pFi and qB respectively). However, for lambda expressions the
nodes pi and p in Fig. 5 have already been introduced with the same purpose.
This symmetry can be exploited when making the applications of a lambda
expression and we will therefore need to keep track of the mentioned nodes.

Recall that an extended static unit context consists of a triple (Ps, Bs, D),
where Bs ∈ UnitName → Item and stores the corresponding nodes in the
diagram for non-generic units, Ps ∈ UnitName → Item × ParUnitSig and
stores the parameterized unit signature of a generic unit together with the node
of the imports, such that both Bs and Ps are finite maps and have disjoint
domains and D is the signature diagram that stores the dependencies between
units.

Firstly, we need to modify the definition of extended static unit contexts such
that Ps maps now unit names to pairs in [Item] × ParUnitSig, to be able to

store the nodes of the parameters and of the result for lambda expressions. Notice
that a lambda expression must have at least one formal parameter, so the list of
items contains either the node of the union of the imports in the case of generic
units or at least two elements in the case of definitions of lambda expressions.
Moreover, unit declarations of form UN : arch spec ASP where ASP is an
architectural specification whose result unit is a lambda expression also should
store the nodes for parameters and the result. The rule changes needed for this
latter case are not straightforward and will be addressed separately in section
4.2. In Section 4.2 we will also make use of this list of nodes for a different
purpose, namely tracking dependencies between different levels of visibility for
units.

Γs ` UNIT-BIND-i� (UNi, Σi) for i ∈ 1, . . . , n
Σa = 〈Σ1, .., Σn〉 and Σ = Σ1 ∪ ... ∪Σn

UNi are new names
D′ extends dgm(CS) by new node q with D′(q) = Σ,

nodes pi with D′(pi) = Σi
and edges ei : pi → q with D′(ei) = iΣi⊆Σ for i ∈ 1, . . . , n

C′s = ({}, {UNi → pi|i ∈ 1, . . . , n}, D′)
Γs, Cs + C′s ` UNIT-TERM� (r,D′′)

D′′ ensures amalgamability along(D′′(r), 〈idD′′(r), ιΣi⊆D′′(r)〉)
D′′′ extends D′′by new node z with D′′′(z) = ∅

D′′′ removes from D′′ the node q and its incoming edges
Γs, Cs ` unit-expr UNIT-BIND-1,..,UNIT-BIND-n UNIT-TERM�

([r, p1, ..pn], Σa → D′′′(r), D′′′)

Fig. 7. Modified extended static semantics rule for unit expressions.

Fig. 7 presents the modified static semantics rule for generic unit expressions,
which introduces new nodes pi for the parameters and a node q to ensure their
compatibility during the analysis of the unit term. Then, the result node of the
unit term p together with the nodes for parameters are returned as result of
the analysis of the lambda expression, together with the diagram resulting by
removing the node q and the edges from the nodes pi to q from the diagram
obtained after the analysis of the unit term. The reason why the node q must
be removed is that the nodes of the formal parameters will be connected to the
actual parameters and their compatibility must be rather checked than ensured.

We also have to make a case distinction in the rule of unit application. In
the case of generic units, we can use the existing rule for unit applications. The
rule for application of lambda expressions is similar with the one used in the
first case, but it puts forward the idea that the nodes for formal parameters
and result that were stored in the analysis of the lambda expression should be
used when making the application. However, this requires special care, as we will
illustrate with the help of some examples.

Example 3. Repeated applications of the same lambda expression. Let us consider
the definition F = λX : SP . X and M where we assume that SP and the

specification of M do not share symbols and M1,M2 : SP . If we use the stored
nodes for parameters and result at every application of F , we obtain the diagram
in Fig. 8, resulting after applying F to M1 and M2. Notice that the edges from
X to M1 and M2 respectively introduce a sharing requirement between the
actual parameters, which is not intended. ut

Fig. 8. Unwanted sharing.

The solution to this problem is to copy at every
application the nodes introduced in the diagram
during the analysis of the term of the lambda ex-
pression. The copy can be obtained starting with
the stored nodes pi by marking their copies as new
formal parameter nodes and going along their out-
going edges: for each new node accessible from pi,
we introduce a copy of it in the diagram together
with copies of its incoming edges - this last step
copies also the dependencies of the unit term of
the lambda expression with the outer units (in
the example, the edge from the node of M to the node of M and X is copied).
The copying stops when all nodes have been considered, and the copy of the
result node is then marked as new result node. Let us denote the procedure
described above copyDiagram, which takes as inputs the nodes for result and
formal parameters of the lambda expression and the current diagram and returns
the copied nodes for formal parameters and result and the new diagram. The
procedure described works as expected because the diagram created during the
analysis of the unit term of the lambda expression consists of exactly the nodes
accesible from the formal parameter nodes and it has no cycles; moreover, no
new dependencies involving these nodes are ever added in the diagram.

Example 4. Tracking dependencies of the actual parameters with the environ-
ment.

Let us consider the architectural specification in Fig. 9, where the actual
parameter and the unit A used in the term of the lambda expression share the
sort symbol s, which can be traced in the dependency diagram to a common
origin, which is the node of P - see Fig. 10. This application should be therefore
considered correct. ut

Refering to the rule in Fig. 6, the generic unit is given by the inclusion ∆ :
ΣF → Σ of its formal parameters into the body and at application, the fitting
arguments give a signature morphism σA : ΣF → ΣA from the formal parame-
ters to the actual parameters. Then, ΣA ∪ΣA(∆) results by making the union
of the fitting arguments with the body translated along the signature extension
σA(∆) : Σ → ΣA ∪ ΣA(∆). Originally, an application has been considered not
well-formed if the result signature is not a pushout of the body and argument
signatures (this is hidden in the use of the notation σA(∆), see [4]) and notice
that this is indeed not the case in Example 4. We can drop this requirement
in the case of lambda expressions and rely on the condition that the diagram
should ensure amalgamability; indeed, in this case the application is correct if

spec S = sort x
spec T = sorts s, t
spec U = sorts s, u
arch spec ASP =

units
P : {sort s};
A : T given P;
L = λ X : S • A and X;
B : U given P
result L [B fit x 7→ u]

Fig. 9. Sharing between arguments and ac-
tual parameter.

Fig. 10. Diagram of Example 4 be-
fore application.

whenever a symbol is present both in the body and in the argument signatures,
the symbol can be traced in the diagram to a common origin which need not be
the node of the formal parameter, like in the case of sort s above.

Taking into account the observations in Examples 3 and 4, the rule of for
application of lambda expressions is presented in Fig. 11.

Cs = (Ps, Bs, Ls, D0)
Ls(UN) = ([p, p1, . . . , pn], (Σ1, . . . , Σn → Σ))

([r, f1, . . . , fn], D) = copyDiagram([p, p1, . . . , pn], D0)
ΣF = Σ1 ∪ ... ∪Σn

Σi, Γs, Cs ` FIT-ARG-i� (σi : Σi → ΣA
i , p

A
i , Di) for i ∈ 1, . . . , n

D1, .., Dn disjointly extend D
let DA = D1 ∪ .. ∪Dn
ΣA = ΣA

1 ... ∪ΣA
n

σA = (σ1 ∪ .. ∪ σn) : ΣF → ΣA

σA(∆) : Σ → (ΣA ∪ΣA(∆)), where ∆ : ΣF → Σ is the signature extension
and the pushout condition for ΣA ∪ΣA(∆) is dropped

ΣR = ΣA ∪ΣA(∆)
DA ensures amalgamability along (ΣA, 〈ιΣA

i ⊆Σ
A〉i∈1,...,n)

D′ extends DA with edges ei : fi → pAi with D′(ei) = σi, for i ∈ 1, . . . , n
D′ ensures amalgamability along (ΣR, 〈σA(∆), ιΣA

i ⊆Σ
R〉i∈1,...,n)

D′′ extends D′ by new node q, edge e′ : r → q with D′′(e′) = σA(∆)
and edges e′i : pAi → q with D′′(e′i) = ιΣA

i ⊆Σ
R , for i ∈ 1, . . . , n

Γs, Cs ` unit-appl UN FIT-ARG-1,..,FIT-ARG-n � (q,D′′)

Fig. 11. Extended static semantics rule for unit application of lambda expressions.

Fig. 12 presents the diagram of the architectural specification ASP in Exam-
ple 1 using the modified rules of Fig. 7 and 112; notice that in this diagram the
sort s can be traced to a common origin and thus the amalgamation is correct.
Moreover, when making the application of the lambda expression, the diagram
of the term M and X is copied such that no dependency between the actual
parameters is incorrectly introduced by edges from the formal parameter node
and copying the diagram does not duplicate the node M .

Fig. 12. Diagram of Example 1 with the new rules.

4.1 Completeness of Extended Static Semantics

In this section we will extend the soundness and completeness result from [4] to
the architectural specification language obtained by adding definitions of generic
units to the original fragment language in Section IV.5 of [4], i.e. unit definitions
assign to unit names unit expressions instead of unit terms. Comparing with the
language in Fig. 1, the differences are that this language does not mix declara-
tions and definitions of units, i.e. all declarations are done locally in the local
. . . within construction, unit declarations do not have imports and unit specifi-
cations are never architectural. Also we only restrict to lambda expressions with
a single parameter. Notice that these differences do not modify the language in
an essential way. The soundness and completeness result is formulated as follows.

Theorem 1. For any architectural specification ASP in which no generic unit
is applied more than once we have that ASP has a denotation w.r.t. the extended
static semantics iff ASP has a denotation w.r.t. the static semantics and |ASP |
has a denotation w.r.t. the partial model semantics.

2 Note that we omitted the nodes of the term of the lambda expression that are copied
at each application and only kept the significant ones.

The requirement that no generic unit is applied more than once is a simpli-
fying assumption for achieving a generative semantics, i.e. repeated applications
of a generic unit to same arguments no longer yields the same result.

The theorem is proved using a quite technical lemma (Lemma 5.6 in [4])
which we don’t present in full detail here. Intuitively, it says that the extended
static semantics for a unit term is successful if and only if the static and model
semantics are successful as well and if it is the case, the signatures match and the
environment obtained in the model semantics can be represented as a family of
models compatible with the diagram obtained in the extended static semantics.
The proof of this lemma is done by induction on the structure of the unit term.
In order to extend the proof to cover lambda expressions as well, we have two
new cases to consider: applications of lambda expressions and local declarations
of generic units. The new proof is quite long and tedious, but follows very closely
the existing proof. Therefore, we only sketch here the proof idea. For applications
of lambda expressions, we simply repeat the proof for unit applications but use
this time the copies of the nodes for arguments and result that are stored in the
context instead of introducing arbitrary distinguished ones. For local declarations
of generic units, the proof is similar to the one of local declarations of non-
generic units, only that now we have to spell out the rules for lambda expressions
before applying the inductive step for the unit term in the lambda expression.
The introduced dependency between the lambda expression and its unit term is
essential when proving compatibility of the environment with the diagram.

4.2 Parametric Architectural Specifications

Further changes are needed when considering the complete language in Fig.
1. The result unit of an architectural specification ASP can be itself a lambda
expression. In this case the architectural specification is called parametric. Notice
that the grammar of the architectural language also covers the case when the
specification of a unit is itself architectural (either named or anonymous). For
such units, we must ensure that designated nodes for formal parameters and
result exist in the diagram, since they are required in the rule of unit application
of generic units.

Let us first consider the case of anonymous parametric architectural spec-
ifications. For the specification below, the static analysis of the architectural
specification is currently done in the empty extended static context and thus
the nodes for formal parameters and result, which are introduced when mak-
ing the analysis of the result lambda expression, are no longer present in the
diagram at the global level. Notice that the dependency between M and F
must be tracked in the diagram in order to ensure correctness of the term
F [M1 fit t 7→ u] and F [M2 fit t 7→ v].

spec S = sort s
spec T = sort t
spec U = sort u
spec V = sort v

arch spec ASP2 =
units
F : arch spec {

units M : S
result λ X : T • M and X
};

M1 : U; M2 : V;
result F [M1 fit t 7→ u] and F [M2 fit t 7→ v]

The way we overcome this problem is by making the analysis of the inner ar-
chitectural specification in the existing global context instead of using an empty
global context. After the analysis, we will keep in the global context the dia-
gram resulting from the analysis of the locally-declared units. Thus, the nodes
introduced locally become available for further references. Moreover, the units
declared locally will not be kept in the global extended context, since we do not
want to extend their scope. By making the analysis of the local specification in
the global context, the visibility of units declared at the global level is extended
to the local context as well (remember that we assumed this extension of vis-
ibility in Example 2) and the dependencies of the global units with the local
environment are tracked by keeping the entire resulting diagram at the global
level.

The second case to consider is the one of unit declarations of form U :
arch spec ASP , when ASP is a named parametric architectural specification.
In this case, ASP cannot refer to units other than those declared within itself
and therefore its diagram does not carry any dependency information relevant
for the global level. Therefore, instead of adding the diagram of ASP to the
global diagram, we only need to introduce new nodes for formal parameters and
edges to a new result node. This abstracts away the dependencies of the result
node of ASP with the units declared locally (which we don’t need) and only
keeps the dependencies of the result node with the parameter nodes along the
new edges, which will be then copied as diagram of the unit term of the lambda
expression at each application of U .

The modifications of the extended static semantics rules are presented in
figures 13 to 21 and can be summarized as follows. At the library level, the
analysis of an architectural specification (Fig. 13) starts in the empty extended
static unit context. The analysis of an architectural specification (Fig. 14), we
need to extend the diagram for anonymous parametric architectural specifica-
tions (first rule) and named parametric architectural specifications (third rule).
In the latter case, we also need to return the (new) nodes for formal parameters
and result (r, p1, · · · , pn). The rule for basic architectural specifications (Fig. 15)
analyzes the list of declarations and definitions in the context received as pa-
rameter rather than in the empty context like before. Thus the diagrams built
locally will be added to the global diagram and the visibility of global units is
extended. The rule for result unit (Fig. 17) makes a case distinction for each of
the four alternatives in Fig. 1. When the specification of the unit is not archi-
tectural (first two rules), the imported units are analyzed, a new node p labelled

with the signature union of all imports is introduced in the diagram and the
dependency between the declared unit and the imports is tracked either via the
edge from p to q in the first case, or by storing the node p as node of imports in
the second case. When the specification of the unit is a parametric architectural
specification (third rule), the nodes of formal parameters and results are saved
and the unit will be applied using the rule for lambda expressions. Finally, when
the specification of the unit is a non-parametric architectural specification (last
rule), we set the pointer for the unit to the node of the result unit of the ar-
chitectural specification to be able to trace its dependencies. Notice that in the
last two cases there are no imports so the node p will always be labeled with the
empty signature. The changes made for unit specifications (Figures 18 to 20) are
just meant to propagate the results.

ΓS = (Gs, Vs, As, Ts)
ASN is a new name

Γs, C0 ` ARCH-SPEC� (nodes,AΣ,D′)

ΓS ` arch-spec-defn ASN ARCH-SPEC� (Gs, Vs, As ∪ {ASN 7→ AΣ}, Ts)

Fig. 13. Rule for architectural library items.

Γs, Cs ` ARCH-SPEC� (nodes,AΣ,D)

Γs, Cs ` BASIC-ARCH-SPEC� (nodes,AΣ,D′)

Γs, Cs ` BASIC-ARCH-SPEC qua ARCH-SPEC� (nodes,AΣ,D′)

ASN ∈ Dom(As)
As(ASN) = (S,Σ)

D′ extends dgm(Cs) with a new node n such that D′(n) = Σ

(Gs, Vs, As, Ts), Cs ` ASN qua ARCH-SPEC� ([n], As(ASN), dgm(Cs))

ASN ∈ Dom(As)
As(ASN) = (S, 〈Σ1, ..., Σn〉 → Σ)

D′ extends dgm(Cs) with new nodes p1, .., pn, r and edges pi → r
such that D′(pi → r) = ιΣi⊆Σ

(Gs, Vs, As, Ts), Cs ` ASN qua ARCH-SPEC� ([r, p1, ..., pn], As(ASN), D′)

Fig. 14. Rules for architectural specifications.

Γs, Cs ` BASIC-ARCH-SPEC� (nodes,AΣ,D)

Γs, C
0
s ` UDD+ � Cs

Γs, Cs ` RESULT-UNIT� (nodes, UΣ,D)

Γs, C0
s ` basic-arch-spec UDD+ RESULT-UNIT� (nodes, (ctx(Cs), UΣ), D)

Fig. 15. New extended static semantics rule for basic architectural specifications.

Γs, Cs ` UNIT-DECL-DEFN+ � C′s

Γs, C
0
s ` UDD1� (Cs)1

...
Γs, (Cs)n−1 ` UDDn� (Cs)n

Γs, C0
s ` UDD1,..., UDDn� (Cs)n

Fig. 16. New extended static semantics rule for lists of declarations and definitions.

Γs, Cs ` RESULT-UNIT� (nodes, UΣ,D)

ΓS , Cs ` UNIT-EXPR� (p, UΣ,D)

Γs, Cs ` result-unit UNIT-EXPR� ([p], UΣ,D)

ΓS , Cs ` UNIT-EXPR� (r : fs, UΣ,D)

Γs, Cs ` result-unit UNIT-EXPR� (r : fs, UΣ,D)

Fig. 17. New extended static semantics rule for result unit expressions.

ΓS , Cs ` ARCH-UNIT-SPEC� (nodes, UΣ,D)

Γs, Cs ` ARCH-SPEC� (nodes, (S,UΣ), D′)

Γs, Cs ` ARCH-SPEC qua ARCH-UNIT-SPEC� (nodes, UΣ,D′)

Fig. 18. New extended static semantics rule for architectural unit specifications

Γs, Cs ` unit-defn UN UNIT-EXPR� C′s

Γs, Cs ` UNIT-EXPR� ([p], Σ,D)
UN is a new name

Γs, Cs ` unit-defn UN UNIT-EXPR� ({}, {UN 7→ (p,Σ)}, D)

Γs, Cs ` UNIT-EXPR� (r : fs, UΣ,D)
UN is a new name

Γs, Cs ` unit-defn UN UNIT-EXPR� ({UN 7→ (r : fs, UΣ)}, {}, D)

Fig. 19. New rule for unit definitions.

Σ,Γs, Cs ` UNIT-SPEC� (nodes, UΣ,D)

Γs, Cs ` ARCH-UNIT-SPEC� (nodes, UΣ,D′)

Σ,Γs, Cs ` ARCH-UNIT-SPEC qua UNIT-SPEC� (nodes, UΣ,D′)

Fig. 20. New extended static semantics rule for arch unit specs as unit specs.

5 An Application: Refinement of Units with Imports

This section illustrates the use of the new semantics rules for architectural speci-
fications with the help of a case study example - the specification of a warehouse
system by Baumeister and Bert [1]. The system keeps track of stocks of prod-
ucts and of orders and allows adding, canceling and invoicing orders, as well as
adding products to the stock.

Γs, Cs ` UNIT-DECL� (C′s, D)

Cs ` UNIT-IMPORTED� (p,D)
C = Cs + ({}, {}, D)

D(p), Γs, C ` UNIT-SPEC� ([], Σ,D′)
UN is a new name

D′′ extends D′ by a new node q with D′′(q) = D′(p) ∪Σ
and edge e : p→ q with D′′(e) = ιD′(p)⊆D′′(q)

Γs, Cs ` unit-decl UN UNIT-SPEC UNIT-IMPORTED� ({}, {UN 7→ q}, D′′)

Cs ` UNIT-IMPORTED� (p,D)
C = Cs + ({}, {}, D)

D(p), Γs, C ` UNIT-SPEC� ([], 〈Σ1, .., Σn〉 → Σ0, D
′)

UN is a new name
Γs, Cs ` unit-decl UN UNIT-SPEC UNIT-IMPORTED�

({UN 7→ (p, 〈Σ1, .., Σn〉 → Σ0 ∪ΣI)}, {}, D′)

Cs ` UNIT-IMPORTED� (p,D)
C = Cs + ({}, {}, D)

D(p), Γs ` UNIT-SPEC� (r : fp, 〈Σ1, .., Σn〉 → Σ,D′)
UN is a new name

Γs, Cs ` unit-decl UN UNIT-SPEC UNIT-IMPORTED�
({UN 7→ (r : fp, 〈Σ1, .., Σn〉 → Σ)}, {}, D′)

Cs ` UNIT-IMPORTED� (p,D)
C = Cs + ({}, {}, D)

D(p), Γs ` UNIT-SPEC� ([n], Σ,D′)
UN is a new name

Γs, Cs ` unit-decl UN UNIT-SPEC UNIT-IMPORTED�
({}, {UN 7→ ([n], Σ)}, D′)

Fig. 21. New rules for unit declarations.

Fig. 22 presents the specifications involved and the relations between them.
The specifications ORDER, PRODUCT and STOCK specify the objects of the
system. The main purpose for the INVOICE specification is to specify an op-
eration for invoicing an order for a product in the stock. The QUEUES and
ORDER_QUEUES specifications specify different types of queues (pending, in-
voiced) for orders. The WHS specification is the top-level specification, with the
main operations of the system. The next step is to come up with a more con-
crete realization of ORDER, that allows to distinguish between different orders
on the same quantity of a product by introducing labels. This results in specifica-
tions ORDER’, INVOICE’ and WHS’. The specification WHS’ of the warehouse
system is then further refined to an architectural specification describing the
structure of the implementation of the system. Moreover, NAT and LIST are
the usual specifications of natural numbers and lists.

Fig. 22. Structure of the specification of the warehouse system.

The modular decomposition of the warehouse system is recorded in the ar-
chitectural specification below:

arch spec Warehouse =
units NatAlg : NAT; ProductAlg : PRODUCT;
OrderFun : PRODUCT → ORDER’ given NatAlg;
OrderAlg = OrderFun [ProductAlg];
StockFun : PRODUCT → STOCK given NatAlg;
StockAlg = StockFun [ProductAlg];
InvoiceFun : {ORDER’ and STOCK} → INVOICE’;
QueuesFun : ORDER → QUEUES;
WhsFun : {QUEUES and INVOICE’} → WHS’
result WhsFun[QueuesFun [OrderAlg]

and InvoiceFun [OrderAlg and StockAlg]]

Using the refinement language introduced in [8], we can write this refinement
chain in the following way:

refinement R =
WHS refined to
WHS’ refined to arch spec Warehouse

We can further proceed to refine each component separately. For example,
let us assume we want to further refine ORDER’ in such a way that the labels of
orders are natural numbers and denote the corresponding specification ORDER”.

The changes in the extended static semantics rules allow us to rephrase the
declaration of OrderFun in an equivalent way using generic units3:

OrderFun :
arch spec
{units F : NAT × PRODUCT → ORDER’
result lambda X : PRODUCT • F [NatAlg] [X]
};

Then we need to write a unit specification for the specification of OrderFun
to be able to further refine it:

unit spec NATORDER’ = NAT × PRODUCT → ORDER’

and another unit specification to store the signature after refinement as well:

unit spec NATORDER” = NAT × PRODUCT → ORDER”

The refinement is done along a morphism that maps the sort Label to Nat:

refinement R’ =
NATORDER’ refined via Label 7→ Nat to NATORDER”

The CASL refinement language can be easily modified to allow the refinement
of OrderFun without making use of the arbitrary name (in our case F) chosen
for the generic unit 4:

refinement R” = R then {OrderFun to R’}

6 Conclusions

We have presented and discussed a series of changes to extended static semantics
of CASL architectural specifications, motivated by the unsatisfactory treatment
of lambda expressions in the original semantics of CASL [4]. We have identified a
number of practically important situations requiring lambda expressions to have
dependency tracking with their unit term and we formulated the modified rules
accordingly. We have also discussed briefly how the known completeness result
can now be successfully extended to the whole CASL architectural language; a
full proof is very lengthy and follows the lines of the existing result; for this
reason we have omitted it. Finally, we have presented an example of refinement
of generic units with imports; without the changes introduced in this paper such
a refinement could not have been expressed using the CASL refinement language.
The implementation of the modified rules in the Heterogeneous Tool Set Hets
[9] is currently in progress.
3 Notice that this equivalence becomes visible at the level of refinement signatures as
defined in [8].

4 More exactly, the composition of refinement signatures must be slightly adapted to
make this composition legal.

Acknowledgments. I would like to thank Till Mossakowski and Lutz Schrö-
der for prompt and detailed comments. I am grateful to Andrzej Tarlecki for
suggesting a series of significant technical improvements. This work has been
supported by the German Research Council (DFG) under grant MO-2428/9-1.

References

1. Hubert Baumeister and Didier Bert. Algebraic specification in Casl. In M. Frap-
pier and H. Habrias, editors, Software Specification Methods: An Overview Using
a Case Study, FACIT (Formal Approaches to Computing and Information Tech-
nology), chapter 12, pages 209–224. Springer, 2000.

2. Michel Bidoit and Peter D. Mosses. Casl User Manual. LNCS 2900 (IFIP Series).
Springer, 2004.

3. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifications
in Casl. Formal Aspects of Computing, 13:252–273, 2002.

4. Peter D. Mosses (Ed.). Casl Reference Manual. LNCS 2960 (IFIP Series).
Springer, 2004.

5. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39:95–146, 1992.

6. Piotr Hoffman. Verifying generative Casl architectural specifications. In M. Wirs-
ing, D. Pattinson, and R. Hennicker, editors, Recent Trends in Algebraic Devel-
opment Techniques, 16th International Workshop, WADT 2002, Frauenchiemsee,
Germany, 2002, Revised Selected Papers, LNCS Vol. 2755, pages 233–252. Springer,
2003.

7. Piotr Hoffman. Architectural Specifications and Their Verification. PhD thesis,
Warsaw University, 2005.

8. T. Mossakowski, D. Sannella, and A. Tarlecki. A simple refinement language for
Casl. In Jose Luiz Fiadeiro, editor, WADT 2004, volume 3423 of LNCS, pages
162–185. Springer; Berlin, 2005.

9. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool
Set. In Orna Grumberg and Michael Huth, editors, TACAS 2007, volume 4424
of Lecture Notes in Computer Science, pages 519–522. Springer-Verlag Heidelberg,
2007.

10. D. Sannella and A. Tarlecki. Toward formal development of programs from al-
gebraic specifications: implementations revisited. Acta Informatica, 25:233–281,
1988.

11. Lutz Schröder, Till Mossakowski, Piotr Hoffman, Bartek Klin, and Andrzej Tar-
lecki. Semantics of architectural specifications in CASL. In Fundamental Ap-
proaches to Software Engineering, volume 2029 of LNCS, pages 253–268. Springer;,
2001.

